Knowledge

Symplectic sum

Source đź“ť

2892:
under symplectic sums, proving various versions of a symplectic sum formula for Gromov–Witten invariants. Such a formula aids computation by allowing one to decompose a given manifold into simpler pieces, whose Gromov–Witten invariants should be easier to compute. Another approach is to use an
2850:
in algebraic geometry. In fact, symplectic treatments of Gromov–Witten theory often use the symplectic sum/cut for "rescaling the target" arguments, while algebro-geometric treatments use deformation to the normal cone for these same arguments.
2278: 1326: 1113: 1701: 2476: 593:
To produce a well-defined symplectic structure, the connected sum must be performed with special attention paid to the choices of various identifications. Loosely speaking, the isomorphism
480: 3012: 400: 302: 2347: 2010: 2507: 2076: 839: 554: 2805: 1265: 2540: 1534: 2637: 2587: 2153: 1463: 43:, which decomposes a given manifold into two pieces. Together the symplectic sum and cut may be viewed as a deformation of symplectic manifolds, analogous for example to 2610: 1035: 2663: 1950: 196: 2690: 2424: 2377: 2203: 2180: 2106: 1915: 1895: 1868: 1821: 1794: 1736: 1581: 1495: 1396: 912: 688: 661: 611: 584: 250: 223: 118: 91: 1145: 1007: 984: 961: 938: 141: 3035: 2931: 2911: 2848: 2825: 2773: 2753: 2733: 2713: 2560: 2397: 2126: 1970: 1841: 1759: 1601: 1554: 1436: 1416: 1369: 1349: 1233: 1213: 1193: 1173: 885: 859: 796: 776: 756: 736: 708: 631: 161: 758:, gluing the manifold to itself along the two copies. The preceding description of the sum of two manifolds then corresponds to the special case where 2692:
is the symplectic cut of the generic fiber. So the symplectic sum and cut can be viewed together as a quadratic deformation of symplectic manifolds.
54:
The symplectic sum has been used to construct previously unknown families of symplectic manifolds, and to derive relationships among the
3076: 3062: 3017:
A formula for the Gromov–Witten invariants of a symplectic sum then yields a recursive formula for the Gromov–Witten invariants of
2881:
Around the same time, Eugene Lerman proposed the symplectic cut as a generalization of symplectic blow up and used it to study the
2211: 1273: 1047: 1609: 1761:
for the symplectic sum. Such identity elements have been used both in establishing theory and in computations; see below.
3091: 2828: 861: 2432: 55: 419: 2939: 321: 258: 2289: 1981: 1769:
It is sometimes profitable to view the symplectic sum as a family of manifolds. In this framework, the given data
634: 410: 2867: 2484: 2021: 2889: 2875: 1739: 804: 495: 2866:
The symplectic sum was first clearly defined in 1995 by Robert Gompf. He used it to demonstrate that any
2778: 1238: 2512: 1500: 2882: 2615: 2565: 2185:
Loosely speaking, one constructs this family as follows. Choose a nonvanishing holomorphic section
2182:. (That is, the generic fibers are all members of the unique isotopy class of the symplectic sum.) 2131: 29: 21: 1441: 48: 2855: 2595: 3072: 3058: 2871: 633:(or rather their corresponding punctured unit disk bundles); then this composition is used to 1020: 867:
Other generalizations also exist. However, it is not possible to remove the requirement that
2642: 1920: 166: 2878:
of symplectic manifolds was shown to be much larger than the category of Kähler manifolds.
2668: 2402: 2355: 2188: 2158: 2084: 1900: 1873: 1846: 1799: 1772: 1709: 1559: 1468: 1374: 890: 718:
In greater generality, the symplectic sum can be performed on a single symplectic manifold
666: 639: 596: 562: 228: 201: 96: 69: 1121: 486: 613:
is composed with an orientation-reversing symplectic involution of the normal bundles of
989: 966: 943: 920: 123: 3020: 2916: 2896: 2833: 2810: 2758: 2738: 2718: 2698: 2545: 2382: 2111: 1955: 1826: 1744: 1586: 1539: 1421: 1401: 1354: 1334: 1218: 1198: 1178: 1158: 870: 844: 781: 761: 741: 721: 693: 616: 146: 40: 32:, which glues two given manifolds into a single new one. It is a symplectic version of 3085: 1014: 312: 33: 406: 2854:
However, the symplectic sum is not a complex operation in general. The sum of two
1147:. So the symplectic sum is possible only along a submanifold of codimension two. 308: 17: 1038: 44: 963:-dimensional annulus. If this involution exists, it can be used to patch two 2695:
An important example occurs when one of the summands is an identity element
1973: 1465:, which has opposite normal bundle. Therefore, one may symplectically sum 2888:
A number of researchers have subsequently investigated the behavior of
590:
operation whose result is a symplectic manifold, unique up to isotopy.
801:
Additionally, the sum can be performed simultaneously on submanifolds
2827:. This is analogous to deformation to the normal cone along a smooth 1010: 778:
consists of two connected components, each containing a copy of
3071:(2004) American Mathematical Society Colloquium Publications, 559:
meeting several conditions of compatibility with the summands
2273:{\displaystyle N_{M_{1}}V\otimes _{\mathbb {C} }N_{M_{2}}V.} 2562:
deleted) onto this locus; the result is the symplectic sum
1321:{\displaystyle P:=\mathbb {P} (N_{M}V\oplus \mathbb {C} ).} 3046:
Robert Gompf: A new construction of symplectic manifolds,
1108:{\displaystyle \in H^{2}(\mathbb {S} ^{2k},\mathbb {R} ).} 2715:. For then the generic fiber is a symplectic manifold 3023: 2942: 2919: 2899: 2836: 2813: 2781: 2761: 2741: 2721: 2701: 2671: 2645: 2618: 2598: 2568: 2548: 2515: 2487: 2435: 2405: 2385: 2358: 2292: 2214: 2191: 2161: 2134: 2114: 2087: 2024: 1984: 1958: 1923: 1903: 1876: 1849: 1829: 1802: 1775: 1747: 1712: 1696:{\displaystyle (M,V)=((M,V)\#(P,V_{\infty }),V_{0}).} 1612: 1589: 1562: 1542: 1503: 1471: 1444: 1424: 1404: 1377: 1357: 1337: 1276: 1241: 1221: 1201: 1195:, one may projectively complete the normal bundle of 1181: 1161: 1124: 1050: 1023: 992: 969: 946: 923: 893: 873: 847: 807: 784: 764: 744: 724: 696: 669: 642: 619: 599: 565: 498: 422: 324: 261: 231: 204: 169: 149: 126: 99: 72: 917:
A symplectic sum along a submanifold of codimension
489:
class of symplectic structures on the connected sum
405:In the 1995 paper that defined the symplectic sum, 3029: 3006: 2925: 2905: 2842: 2819: 2799: 2767: 2747: 2727: 2707: 2684: 2657: 2631: 2604: 2581: 2554: 2534: 2501: 2470: 2418: 2391: 2371: 2341: 2272: 2197: 2174: 2147: 2120: 2100: 2070: 2004: 1964: 1944: 1909: 1889: 1862: 1835: 1815: 1788: 1753: 1730: 1695: 1595: 1575: 1548: 1528: 1489: 1457: 1430: 1410: 1390: 1363: 1343: 1320: 1259: 1227: 1207: 1187: 1167: 1139: 1107: 1029: 1001: 978: 955: 932: 906: 879: 853: 833: 790: 770: 750: 730: 702: 682: 655: 625: 605: 578: 548: 474: 394: 296: 244: 217: 190: 155: 135: 112: 85: 2471:{\displaystyle v_{1}\otimes v_{2}=\epsilon \eta } 2015:in which the central fiber is the singular space 986:-dimensional balls together to form a symplectic 1118:But this second cohomology group is zero unless 2426:, consider the locus of the quadratic equation 198:-manifold, embedded as a submanifold into both 36:along a submanifold, often called a fiber sum. 2885:and other operations on symplectic manifolds. 475:{\displaystyle \psi :N_{M_{1}}V\to N_{M_{2}}V} 3007:{\displaystyle (M,V)=(M,V)\#(P,V_{\infty }).} 395:{\displaystyle e(N_{M_{1}}V)=-e(N_{M_{2}}V).} 297:{\displaystyle j_{i}:V\hookrightarrow M_{i},} 8: 3069:J-Holomorphic Curves and Symplectic Topology 2342:{\displaystyle N_{M_{1}}V\oplus N_{M_{2}}V,} 2005:{\displaystyle Z\to D\subseteq \mathbb {C} } 1175:with codimension-two symplectic submanifold 1398:, which has normal bundle equal to that of 3022: 2992: 2941: 2918: 2898: 2835: 2812: 2791: 2787: 2784: 2783: 2780: 2760: 2740: 2720: 2700: 2676: 2670: 2644: 2623: 2617: 2597: 2573: 2567: 2547: 2520: 2514: 2502:{\displaystyle \epsilon \in \mathbb {C} } 2495: 2494: 2486: 2453: 2440: 2434: 2410: 2404: 2384: 2363: 2357: 2325: 2320: 2302: 2297: 2291: 2256: 2251: 2241: 2240: 2239: 2224: 2219: 2213: 2190: 2166: 2160: 2139: 2133: 2113: 2092: 2086: 2071:{\displaystyle Z_{0}=M_{1}\cup _{V}M_{2}} 2062: 2052: 2042: 2029: 2023: 1998: 1997: 1983: 1957: 1922: 1902: 1881: 1875: 1854: 1848: 1828: 1807: 1801: 1780: 1774: 1746: 1711: 1681: 1665: 1611: 1588: 1567: 1561: 1541: 1517: 1502: 1470: 1449: 1443: 1423: 1403: 1382: 1376: 1356: 1336: 1308: 1307: 1295: 1284: 1283: 1275: 1251: 1247: 1244: 1243: 1240: 1220: 1200: 1180: 1160: 1123: 1095: 1094: 1082: 1078: 1077: 1067: 1049: 1022: 991: 968: 945: 922: 898: 892: 872: 846: 825: 812: 806: 783: 763: 743: 723: 695: 674: 668: 647: 641: 618: 598: 570: 564: 531: 506: 497: 461: 456: 438: 433: 421: 375: 370: 340: 335: 323: 285: 266: 260: 236: 230: 209: 203: 168: 148: 125: 104: 98: 77: 71: 39:The symplectic sum is the inverse of the 2874:of a symplectic four-manifold. Thus the 586:. In other words, the theorem defines a 3057:(1998) Oxford Mathematical Monographs, 2526: 2775:"pinched off at infinity" to form the 940:requires a symplectic involution of a 1765:Symplectic sum and cut as deformation 7: 834:{\displaystyle X_{i}\subseteq M_{i}} 549:{\displaystyle (M_{1},V)\#(M_{2},V)} 3055:Introduction to Symplectic Topology 2665:described above. The central fiber 2205:of the trivial complex line bundle 914:, as the following argument shows. 2993: 2976: 1666: 1649: 1518: 1450: 738:containing two disjoint copies of 521: 14: 3067:Dusa McDuff and Dietmar Salamon: 3053:Dusa McDuff and Dietmar Salamon: 2800:{\displaystyle \mathbb {CP} ^{1}} 2081:obtained by joining the summands 1952:-dimensional symplectic manifold 1351:contains two canonical copies of 1260:{\displaystyle \mathbb {CP} ^{1}} 2535:{\displaystyle M_{i}\setminus V} 2379:representing a normal vector to 1529:{\displaystyle (P,V_{\infty })} 841:of equal dimension and meeting 28:is a geometric modification on 2998: 2979: 2973: 2961: 2955: 2943: 2649: 1988: 1939: 1924: 1725: 1713: 1687: 1671: 1652: 1646: 1634: 1631: 1625: 1613: 1523: 1504: 1484: 1472: 1312: 1288: 1099: 1073: 1057: 1051: 543: 524: 518: 499: 449: 386: 363: 351: 328: 278: 185: 170: 45:deformation to the normal cone 1: 2632:{\displaystyle Z_{\epsilon }} 2582:{\displaystyle Z_{\epsilon }} 2148:{\displaystyle Z_{\epsilon }} 887:be of codimension two in the 1017:manifold, a symplectic form 2155:is a symplectic sum of the 1706:So for any particular pair 1458:{\displaystyle V_{\infty }} 1438:, and the infinity-section 3108: 2755:with the normal bundle of 2639:naturally form the family 1917:determine a unique smooth 1013:. Because the sphere is a 2735:and the central fiber is 2605:{\displaystyle \epsilon } 58:of symplectic manifolds. 2890:pseudoholomorphic curves 2868:finitely presented group 2862:History and applications 2283:Then, in the direct sum 2128:, and the generic fiber 1583:now playing the role of 1037:on it induces a nonzero 690:along the two copies of 56:Gromov–Witten invariants 1030:{\displaystyle \omega } 413:-reversing isomorphism 3031: 3008: 2927: 2913:to write the manifold 2907: 2844: 2821: 2801: 2769: 2749: 2729: 2709: 2686: 2659: 2658:{\displaystyle Z\to D} 2633: 2606: 2583: 2556: 2536: 2503: 2472: 2420: 2393: 2373: 2343: 2274: 2199: 2176: 2149: 2122: 2102: 2072: 2006: 1966: 1946: 1945:{\displaystyle (2n+2)} 1911: 1891: 1864: 1837: 1817: 1790: 1755: 1732: 1697: 1597: 1577: 1550: 1536:; the result is again 1530: 1491: 1459: 1432: 1412: 1392: 1365: 1345: 1322: 1261: 1229: 1209: 1189: 1169: 1141: 1109: 1031: 1003: 980: 957: 934: 908: 881: 855: 835: 792: 772: 752: 732: 704: 684: 657: 627: 607: 580: 550: 476: 396: 298: 246: 219: 192: 191:{\displaystyle (2n-2)} 157: 137: 114: 87: 3048:Annals of Mathematics 3032: 3009: 2928: 2908: 2845: 2822: 2802: 2770: 2750: 2730: 2710: 2687: 2685:{\displaystyle Z_{0}} 2660: 2634: 2607: 2584: 2557: 2537: 2504: 2473: 2421: 2419:{\displaystyle M_{i}} 2394: 2374: 2372:{\displaystyle v_{i}} 2344: 2275: 2200: 2198:{\displaystyle \eta } 2177: 2175:{\displaystyle M_{i}} 2150: 2123: 2103: 2101:{\displaystyle M_{i}} 2073: 2007: 1967: 1947: 1912: 1910:{\displaystyle \psi } 1892: 1890:{\displaystyle j_{2}} 1865: 1863:{\displaystyle j_{1}} 1838: 1818: 1816:{\displaystyle M_{2}} 1791: 1789:{\displaystyle M_{1}} 1756: 1733: 1731:{\displaystyle (M,V)} 1698: 1598: 1578: 1576:{\displaystyle V_{0}} 1551: 1531: 1492: 1490:{\displaystyle (M,V)} 1460: 1433: 1413: 1393: 1391:{\displaystyle V_{0}} 1366: 1346: 1323: 1262: 1230: 1210: 1190: 1170: 1142: 1110: 1032: 1004: 981: 958: 935: 909: 907:{\displaystyle M_{i}} 882: 856: 836: 793: 773: 753: 733: 705: 685: 683:{\displaystyle M_{2}} 658: 656:{\displaystyle M_{1}} 628: 608: 606:{\displaystyle \psi } 581: 579:{\displaystyle M_{i}} 551: 485:there is a canonical 477: 397: 299: 247: 245:{\displaystyle M_{2}} 220: 218:{\displaystyle M_{1}} 193: 158: 138: 115: 113:{\displaystyle M_{2}} 88: 86:{\displaystyle M_{1}} 3021: 2940: 2933:as a symplectic sum 2917: 2897: 2858:need not be Kähler. 2834: 2811: 2779: 2759: 2739: 2719: 2699: 2669: 2643: 2616: 2596: 2566: 2546: 2513: 2509:. One can glue both 2485: 2433: 2403: 2383: 2356: 2290: 2212: 2189: 2159: 2132: 2112: 2085: 2022: 1982: 1956: 1921: 1901: 1874: 1847: 1827: 1800: 1773: 1745: 1710: 1610: 1587: 1560: 1540: 1501: 1469: 1442: 1422: 1402: 1375: 1355: 1335: 1274: 1239: 1219: 1199: 1179: 1159: 1140:{\displaystyle 2k=2} 1122: 1048: 1021: 990: 967: 944: 921: 891: 871: 845: 805: 782: 762: 742: 722: 694: 667: 640: 617: 597: 563: 496: 420: 409:proved that for any 322: 259: 229: 202: 167: 147: 124: 97: 70: 30:symplectic manifolds 3092:Symplectic topology 3050:142 (1995), 527-595 2883:symplectic quotient 2542:(the summands with 2481:for a chosen small 1371:: the zero-section 34:connected summation 22:symplectic geometry 3027: 3004: 2923: 2903: 2840: 2817: 2797: 2765: 2745: 2725: 2705: 2682: 2655: 2629: 2602: 2579: 2552: 2532: 2499: 2468: 2416: 2389: 2369: 2339: 2270: 2195: 2172: 2145: 2118: 2098: 2068: 2002: 1962: 1942: 1907: 1887: 1860: 1833: 1813: 1786: 1751: 1728: 1693: 1593: 1573: 1546: 1526: 1487: 1455: 1428: 1408: 1388: 1361: 1341: 1318: 1257: 1225: 1205: 1185: 1165: 1137: 1105: 1027: 1002:{\displaystyle 2k} 999: 979:{\displaystyle 2k} 976: 956:{\displaystyle 2k} 953: 933:{\displaystyle 2k} 930: 904: 877: 851: 831: 788: 768: 748: 728: 700: 680: 653: 623: 603: 576: 546: 472: 392: 294: 242: 215: 188: 153: 136:{\displaystyle 2n} 133: 120:be two symplectic 110: 83: 49:algebraic geometry 20:, specifically in 3030:{\displaystyle M} 2926:{\displaystyle M} 2906:{\displaystyle P} 2893:identity element 2872:fundamental group 2843:{\displaystyle V} 2820:{\displaystyle P} 2768:{\displaystyle V} 2748:{\displaystyle M} 2728:{\displaystyle M} 2708:{\displaystyle P} 2612:varies, the sums 2555:{\displaystyle V} 2392:{\displaystyle V} 2121:{\displaystyle V} 1965:{\displaystyle Z} 1836:{\displaystyle V} 1754:{\displaystyle P} 1596:{\displaystyle V} 1549:{\displaystyle M} 1431:{\displaystyle M} 1411:{\displaystyle V} 1364:{\displaystyle V} 1344:{\displaystyle P} 1228:{\displaystyle M} 1208:{\displaystyle V} 1188:{\displaystyle V} 1168:{\displaystyle M} 880:{\displaystyle V} 854:{\displaystyle V} 791:{\displaystyle V} 771:{\displaystyle X} 751:{\displaystyle V} 731:{\displaystyle M} 703:{\displaystyle V} 626:{\displaystyle V} 156:{\displaystyle V} 3099: 3036: 3034: 3033: 3028: 3013: 3011: 3010: 3005: 2997: 2996: 2932: 2930: 2929: 2924: 2912: 2910: 2909: 2904: 2856:Kähler manifolds 2849: 2847: 2846: 2841: 2826: 2824: 2823: 2818: 2806: 2804: 2803: 2798: 2796: 2795: 2790: 2774: 2772: 2771: 2766: 2754: 2752: 2751: 2746: 2734: 2732: 2731: 2726: 2714: 2712: 2711: 2706: 2691: 2689: 2688: 2683: 2681: 2680: 2664: 2662: 2661: 2656: 2638: 2636: 2635: 2630: 2628: 2627: 2611: 2609: 2608: 2603: 2588: 2586: 2585: 2580: 2578: 2577: 2561: 2559: 2558: 2553: 2541: 2539: 2538: 2533: 2525: 2524: 2508: 2506: 2505: 2500: 2498: 2477: 2475: 2474: 2469: 2458: 2457: 2445: 2444: 2425: 2423: 2422: 2417: 2415: 2414: 2398: 2396: 2395: 2390: 2378: 2376: 2375: 2370: 2368: 2367: 2348: 2346: 2345: 2340: 2332: 2331: 2330: 2329: 2309: 2308: 2307: 2306: 2279: 2277: 2276: 2271: 2263: 2262: 2261: 2260: 2246: 2245: 2244: 2231: 2230: 2229: 2228: 2204: 2202: 2201: 2196: 2181: 2179: 2178: 2173: 2171: 2170: 2154: 2152: 2151: 2146: 2144: 2143: 2127: 2125: 2124: 2119: 2107: 2105: 2104: 2099: 2097: 2096: 2077: 2075: 2074: 2069: 2067: 2066: 2057: 2056: 2047: 2046: 2034: 2033: 2011: 2009: 2008: 2003: 2001: 1971: 1969: 1968: 1963: 1951: 1949: 1948: 1943: 1916: 1914: 1913: 1908: 1896: 1894: 1893: 1888: 1886: 1885: 1869: 1867: 1866: 1861: 1859: 1858: 1842: 1840: 1839: 1834: 1822: 1820: 1819: 1814: 1812: 1811: 1795: 1793: 1792: 1787: 1785: 1784: 1760: 1758: 1757: 1752: 1740:identity element 1738:there exists an 1737: 1735: 1734: 1729: 1702: 1700: 1699: 1694: 1686: 1685: 1670: 1669: 1602: 1600: 1599: 1594: 1582: 1580: 1579: 1574: 1572: 1571: 1555: 1553: 1552: 1547: 1535: 1533: 1532: 1527: 1522: 1521: 1496: 1494: 1493: 1488: 1464: 1462: 1461: 1456: 1454: 1453: 1437: 1435: 1434: 1429: 1417: 1415: 1414: 1409: 1397: 1395: 1394: 1389: 1387: 1386: 1370: 1368: 1367: 1362: 1350: 1348: 1347: 1342: 1327: 1325: 1324: 1319: 1311: 1300: 1299: 1287: 1266: 1264: 1263: 1258: 1256: 1255: 1250: 1234: 1232: 1231: 1226: 1214: 1212: 1211: 1206: 1194: 1192: 1191: 1186: 1174: 1172: 1171: 1166: 1151:Identity element 1146: 1144: 1143: 1138: 1114: 1112: 1111: 1106: 1098: 1090: 1089: 1081: 1072: 1071: 1036: 1034: 1033: 1028: 1008: 1006: 1005: 1000: 985: 983: 982: 977: 962: 960: 959: 954: 939: 937: 936: 931: 913: 911: 910: 905: 903: 902: 886: 884: 883: 878: 860: 858: 857: 852: 840: 838: 837: 832: 830: 829: 817: 816: 797: 795: 794: 789: 777: 775: 774: 769: 757: 755: 754: 749: 737: 735: 734: 729: 709: 707: 706: 701: 689: 687: 686: 681: 679: 678: 662: 660: 659: 654: 652: 651: 632: 630: 629: 624: 612: 610: 609: 604: 585: 583: 582: 577: 575: 574: 555: 553: 552: 547: 536: 535: 511: 510: 481: 479: 478: 473: 468: 467: 466: 465: 445: 444: 443: 442: 401: 399: 398: 393: 382: 381: 380: 379: 347: 346: 345: 344: 303: 301: 300: 295: 290: 289: 271: 270: 251: 249: 248: 243: 241: 240: 224: 222: 221: 216: 214: 213: 197: 195: 194: 189: 162: 160: 159: 154: 142: 140: 139: 134: 119: 117: 116: 111: 109: 108: 92: 90: 89: 84: 82: 81: 3107: 3106: 3102: 3101: 3100: 3098: 3097: 3096: 3082: 3081: 3043: 3019: 3018: 2988: 2938: 2937: 2915: 2914: 2895: 2894: 2870:appears as the 2864: 2832: 2831: 2809: 2808: 2782: 2777: 2776: 2757: 2756: 2737: 2736: 2717: 2716: 2697: 2696: 2672: 2667: 2666: 2641: 2640: 2619: 2614: 2613: 2594: 2593: 2569: 2564: 2563: 2544: 2543: 2516: 2511: 2510: 2483: 2482: 2449: 2436: 2431: 2430: 2406: 2401: 2400: 2381: 2380: 2359: 2354: 2353: 2321: 2316: 2298: 2293: 2288: 2287: 2252: 2247: 2235: 2220: 2215: 2210: 2209: 2187: 2186: 2162: 2157: 2156: 2135: 2130: 2129: 2110: 2109: 2088: 2083: 2082: 2058: 2048: 2038: 2025: 2020: 2019: 1980: 1979: 1954: 1953: 1919: 1918: 1899: 1898: 1877: 1872: 1871: 1850: 1845: 1844: 1825: 1824: 1803: 1798: 1797: 1776: 1771: 1770: 1767: 1743: 1742: 1708: 1707: 1677: 1661: 1608: 1607: 1585: 1584: 1563: 1558: 1557: 1538: 1537: 1513: 1499: 1498: 1467: 1466: 1445: 1440: 1439: 1420: 1419: 1400: 1399: 1378: 1373: 1372: 1353: 1352: 1333: 1332: 1291: 1272: 1271: 1242: 1237: 1236: 1217: 1216: 1197: 1196: 1177: 1176: 1157: 1156: 1153: 1120: 1119: 1076: 1063: 1046: 1045: 1019: 1018: 988: 987: 965: 964: 942: 941: 919: 918: 894: 889: 888: 869: 868: 843: 842: 821: 808: 803: 802: 780: 779: 760: 759: 740: 739: 720: 719: 716: 714:Generalizations 692: 691: 670: 665: 664: 643: 638: 637: 615: 614: 595: 594: 566: 561: 560: 527: 502: 494: 493: 457: 452: 434: 429: 418: 417: 371: 366: 336: 331: 320: 319: 281: 262: 257: 256: 232: 227: 226: 205: 200: 199: 165: 164: 145: 144: 143:-manifolds and 122: 121: 100: 95: 94: 73: 68: 67: 64: 12: 11: 5: 3105: 3103: 3095: 3094: 3084: 3083: 3080: 3079: 3065: 3051: 3042: 3039: 3026: 3015: 3014: 3003: 3000: 2995: 2991: 2987: 2984: 2981: 2978: 2975: 2972: 2969: 2966: 2963: 2960: 2957: 2954: 2951: 2948: 2945: 2922: 2902: 2863: 2860: 2839: 2816: 2794: 2789: 2786: 2764: 2744: 2724: 2704: 2679: 2675: 2654: 2651: 2648: 2626: 2622: 2601: 2576: 2572: 2551: 2531: 2528: 2523: 2519: 2497: 2493: 2490: 2479: 2478: 2467: 2464: 2461: 2456: 2452: 2448: 2443: 2439: 2413: 2409: 2388: 2366: 2362: 2350: 2349: 2338: 2335: 2328: 2324: 2319: 2315: 2312: 2305: 2301: 2296: 2281: 2280: 2269: 2266: 2259: 2255: 2250: 2243: 2238: 2234: 2227: 2223: 2218: 2194: 2169: 2165: 2142: 2138: 2117: 2095: 2091: 2079: 2078: 2065: 2061: 2055: 2051: 2045: 2041: 2037: 2032: 2028: 2013: 2012: 2000: 1996: 1993: 1990: 1987: 1961: 1941: 1938: 1935: 1932: 1929: 1926: 1906: 1884: 1880: 1857: 1853: 1832: 1810: 1806: 1783: 1779: 1766: 1763: 1750: 1727: 1724: 1721: 1718: 1715: 1704: 1703: 1692: 1689: 1684: 1680: 1676: 1673: 1668: 1664: 1660: 1657: 1654: 1651: 1648: 1645: 1642: 1639: 1636: 1633: 1630: 1627: 1624: 1621: 1618: 1615: 1592: 1570: 1566: 1545: 1525: 1520: 1516: 1512: 1509: 1506: 1486: 1483: 1480: 1477: 1474: 1452: 1448: 1427: 1407: 1385: 1381: 1360: 1340: 1329: 1328: 1317: 1314: 1310: 1306: 1303: 1298: 1294: 1290: 1286: 1282: 1279: 1254: 1249: 1246: 1224: 1204: 1184: 1164: 1152: 1149: 1136: 1133: 1130: 1127: 1116: 1115: 1104: 1101: 1097: 1093: 1088: 1085: 1080: 1075: 1070: 1066: 1062: 1059: 1056: 1053: 1026: 998: 995: 975: 972: 952: 949: 929: 926: 901: 897: 876: 850: 828: 824: 820: 815: 811: 787: 767: 747: 727: 715: 712: 699: 677: 673: 650: 646: 622: 602: 588:symplectic sum 573: 569: 557: 556: 545: 542: 539: 534: 530: 526: 523: 520: 517: 514: 509: 505: 501: 483: 482: 471: 464: 460: 455: 451: 448: 441: 437: 432: 428: 425: 403: 402: 391: 388: 385: 378: 374: 369: 365: 362: 359: 356: 353: 350: 343: 339: 334: 330: 327: 315:are opposite: 313:normal bundles 307:such that the 305: 304: 293: 288: 284: 280: 277: 274: 269: 265: 239: 235: 212: 208: 187: 184: 181: 178: 175: 172: 152: 132: 129: 107: 103: 80: 76: 63: 60: 41:symplectic cut 26:symplectic sum 13: 10: 9: 6: 4: 3: 2: 3104: 3093: 3090: 3089: 3087: 3078: 3077:0-8218-3485-1 3074: 3070: 3066: 3064: 3063:0-19-850451-9 3060: 3056: 3052: 3049: 3045: 3044: 3040: 3038: 3024: 3001: 2989: 2985: 2982: 2970: 2967: 2964: 2958: 2952: 2949: 2946: 2936: 2935: 2934: 2920: 2900: 2891: 2886: 2884: 2879: 2877: 2873: 2869: 2861: 2859: 2857: 2852: 2837: 2830: 2814: 2792: 2762: 2742: 2722: 2702: 2693: 2677: 2673: 2652: 2646: 2624: 2620: 2599: 2590: 2574: 2570: 2549: 2529: 2521: 2517: 2491: 2488: 2465: 2462: 2459: 2454: 2450: 2446: 2441: 2437: 2429: 2428: 2427: 2411: 2407: 2386: 2364: 2360: 2336: 2333: 2326: 2322: 2317: 2313: 2310: 2303: 2299: 2294: 2286: 2285: 2284: 2267: 2264: 2257: 2253: 2248: 2236: 2232: 2225: 2221: 2216: 2208: 2207: 2206: 2192: 2183: 2167: 2163: 2140: 2136: 2115: 2093: 2089: 2063: 2059: 2053: 2049: 2043: 2039: 2035: 2030: 2026: 2018: 2017: 2016: 1994: 1991: 1985: 1978: 1977: 1976: 1975: 1959: 1936: 1933: 1930: 1927: 1904: 1882: 1878: 1855: 1851: 1830: 1808: 1804: 1781: 1777: 1764: 1762: 1748: 1741: 1722: 1719: 1716: 1690: 1682: 1678: 1674: 1662: 1658: 1655: 1643: 1640: 1637: 1628: 1622: 1619: 1616: 1606: 1605: 1604: 1590: 1568: 1564: 1543: 1514: 1510: 1507: 1481: 1478: 1475: 1446: 1425: 1405: 1383: 1379: 1358: 1338: 1315: 1304: 1301: 1296: 1292: 1280: 1277: 1270: 1269: 1268: 1252: 1222: 1202: 1182: 1162: 1150: 1148: 1134: 1131: 1128: 1125: 1102: 1091: 1086: 1083: 1068: 1064: 1060: 1054: 1044: 1043: 1042: 1040: 1024: 1016: 1012: 1009:-dimensional 996: 993: 973: 970: 950: 947: 927: 924: 915: 899: 895: 874: 865: 863: 862:transversally 848: 826: 822: 818: 813: 809: 799: 785: 765: 745: 725: 713: 711: 697: 675: 671: 648: 644: 636: 620: 600: 591: 589: 571: 567: 540: 537: 532: 528: 515: 512: 507: 503: 492: 491: 490: 488: 469: 462: 458: 453: 446: 439: 435: 430: 426: 423: 416: 415: 414: 412: 408: 389: 383: 376: 372: 367: 360: 357: 354: 348: 341: 337: 332: 325: 318: 317: 316: 314: 310: 309:Euler classes 291: 286: 282: 275: 272: 267: 263: 255: 254: 253: 237: 233: 210: 206: 182: 179: 176: 173: 163:a symplectic 150: 130: 127: 105: 101: 78: 74: 61: 59: 57: 52: 50: 46: 42: 37: 35: 31: 27: 23: 19: 3068: 3054: 3047: 3016: 2887: 2880: 2865: 2853: 2694: 2591: 2480: 2351: 2282: 2184: 2080: 2014: 1768: 1705: 1330: 1154: 1117: 916: 866: 800: 717: 592: 587: 558: 484: 407:Robert Gompf 404: 306: 65: 53: 38: 25: 15: 411:orientation 18:mathematics 3041:References 1039:cohomology 62:Definition 2994:∞ 2977:# 2650:→ 2625:ϵ 2600:ϵ 2575:ϵ 2527:∖ 2492:∈ 2489:ϵ 2466:η 2463:ϵ 2447:⊗ 2314:⊕ 2237:⊗ 2193:η 2141:ϵ 2050:∪ 1995:⊆ 1989:→ 1974:fibration 1905:ψ 1667:∞ 1650:# 1519:∞ 1451:∞ 1305:⊕ 1061:∈ 1055:ω 1025:ω 819:⊆ 601:ψ 522:# 450:→ 424:ψ 358:− 279:↪ 180:− 3086:Category 2876:category 2807:-bundle 1267:-bundle 2829:divisor 1556:, with 1235:to the 1015:compact 487:isotopy 311:of the 3075:  3061:  2108:along 1972:and a 1155:Given 1041:class 1011:sphere 24:, the 2352:with 1497:with 1331:This 3073:ISBN 3059:ISBN 635:glue 252:via 225:and 93:and 66:Let 2592:As 2399:in 1418:in 1215:in 663:to 47:in 16:In 3088:: 3037:. 2589:. 1897:, 1870:, 1843:, 1823:, 1796:, 1603:: 1281::= 864:. 798:. 710:. 51:. 3025:M 3002:. 2999:) 2990:V 2986:, 2983:P 2980:( 2974:) 2971:V 2968:, 2965:M 2962:( 2959:= 2956:) 2953:V 2950:, 2947:M 2944:( 2921:M 2901:P 2838:V 2815:P 2793:1 2788:P 2785:C 2763:V 2743:M 2723:M 2703:P 2678:0 2674:Z 2653:D 2647:Z 2621:Z 2571:Z 2550:V 2530:V 2522:i 2518:M 2496:C 2460:= 2455:2 2451:v 2442:1 2438:v 2412:i 2408:M 2387:V 2365:i 2361:v 2337:, 2334:V 2327:2 2323:M 2318:N 2311:V 2304:1 2300:M 2295:N 2268:. 2265:V 2258:2 2254:M 2249:N 2242:C 2233:V 2226:1 2222:M 2217:N 2168:i 2164:M 2137:Z 2116:V 2094:i 2090:M 2064:2 2060:M 2054:V 2044:1 2040:M 2036:= 2031:0 2027:Z 1999:C 1992:D 1986:Z 1960:Z 1940:) 1937:2 1934:+ 1931:n 1928:2 1925:( 1883:2 1879:j 1856:1 1852:j 1831:V 1809:2 1805:M 1782:1 1778:M 1749:P 1726:) 1723:V 1720:, 1717:M 1714:( 1691:. 1688:) 1683:0 1679:V 1675:, 1672:) 1663:V 1659:, 1656:P 1653:( 1647:) 1644:V 1641:, 1638:M 1635:( 1632:( 1629:= 1626:) 1623:V 1620:, 1617:M 1614:( 1591:V 1569:0 1565:V 1544:M 1524:) 1515:V 1511:, 1508:P 1505:( 1485:) 1482:V 1479:, 1476:M 1473:( 1447:V 1426:M 1406:V 1384:0 1380:V 1359:V 1339:P 1316:. 1313:) 1309:C 1302:V 1297:M 1293:N 1289:( 1285:P 1278:P 1253:1 1248:P 1245:C 1223:M 1203:V 1183:V 1163:M 1135:2 1132:= 1129:k 1126:2 1103:. 1100:) 1096:R 1092:, 1087:k 1084:2 1079:S 1074:( 1069:2 1065:H 1058:] 1052:[ 997:k 994:2 974:k 971:2 951:k 948:2 928:k 925:2 900:i 896:M 875:V 849:V 827:i 823:M 814:i 810:X 786:V 766:X 746:V 726:M 698:V 676:2 672:M 649:1 645:M 621:V 572:i 568:M 544:) 541:V 538:, 533:2 529:M 525:( 519:) 516:V 513:, 508:1 504:M 500:( 470:V 463:2 459:M 454:N 447:V 440:1 436:M 431:N 427:: 390:. 387:) 384:V 377:2 373:M 368:N 364:( 361:e 355:= 352:) 349:V 342:1 338:M 333:N 329:( 326:e 292:, 287:i 283:M 276:V 273:: 268:i 264:j 238:2 234:M 211:1 207:M 186:) 183:2 177:n 174:2 171:( 151:V 131:n 128:2 106:2 102:M 79:1 75:M

Index

mathematics
symplectic geometry
symplectic manifolds
connected summation
symplectic cut
deformation to the normal cone
algebraic geometry
Gromov–Witten invariants
Euler classes
normal bundles
Robert Gompf
orientation
isotopy
glue
transversally
sphere
compact
cohomology
identity element
fibration
divisor
Kähler manifolds
finitely presented group
fundamental group
category
symplectic quotient
pseudoholomorphic curves
ISBN
0-19-850451-9
ISBN

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑