Knowledge (XXG)

Synaptic stabilization

Source đź“ť

39: 314: 226:, a competition hypothesis has been proposed and corroborated. This hypothesis suggests that relative levels of cadherin-catenin complexes, which are distributed amongst spines in a local area in an activity-dependent manner, determines the fate of individual spines. That is, the inter-spine competition for β-catenin determines whether a spine will be matured (increased number of complexes) or pruned (decreased number of complexes). This is a critical mechanism during the refinement of cortical circuitry that occurs throughout development. 169: 187:. Components of this complex bind to a number of different scaffolding proteins, phosphotases, kinases, and receptors. Classical cadherins have five extracellular repeating structures which bind calcium, a single transmembrane domain, and an intracellular tail with a distal cytosolic domain that binds a catenin partner. Recent work has implicated the cadherin-catenin complex in a number of different central nervous system processes such as synaptic stabilization and 544:(NMDARs) to recruit the GEF Tiam1 to the complex upon ephrinB binding. Phosphorylation of Tiam1 occurs in response to NMDAR activity, which allows for the influx of calcium that activates Tiam1. This mechanism also results in the modulation of the actin cytoskeleton. As a result of this stabilization, both EphB2 forward signaling and ephrin-B3 reverse signaling has been found to induce LTP via NMDARs. 439: 509:(ROCK), which results in the rearrangement of actin filaments. Through this mechanism, astrocytic processes are able to stabilize individual dendritic protrusions as well as their maturation into spines via ephrin/EphA signaling. Forward signaling involving the activation of EphA4 results in the stabilization of synaptic proteins at the 253:-bound nectins possess an extracellular region with three immunoglobulin-like loops. The furthest loop from the membrane is called the V-type loop and the two loops more interior are C2-type loops. Multiple nectins on one cell membrane will bind together at the V-type loop to form a cluster of nectin proteins, a process called 342:. Non-neuronal cells that artificially express neurexin are sufficient to mobilize post-synaptic specializations in co-cultured neurons; neuroligin-expressing cells are likewise able to induce markers of pre-synaptic differentiation in neighboring neurons. However, while both play an important role in synaptogenesis, these 524:
interacts with the adaptor protein glutamate-receptor-interacting protein 1 (GRIP-1) to regulate the development of excitatory dendritic shaft synapses. This process, which was identified in cultures of hippocampal neurons, revealed that Eph/ephrin B3 reverse signaling recruits GRIP1 to the membrane
148:
are the two CAM’s known to be sufficient to initiate the formation of presynaptic terminals, as addition of synCAM1 to media of co-cultured neuronal and non-neuronal cells lead to the establishment of presynaptic terminals. Homophillic binding of two synCAM1 molecules on the filopodia of axonal
414:). In addition to phosphorylating itself and neurexin, CASK promotes interactions between neurexins and actin binding proteins, thus providing a direct link by which neurexin can modulate cytoskeletal dynamics that is essential for synaptic stability and plasticity. Neurexin can also bind 202:
is widely expressed at the developing synapse and later remains near the mature active zone implicating that this complex may be well-suited to provide a link between structural changes and synaptic stability. In fact, local synaptic activity changes impact the expression of the
317:
Neurexin-neuroligin interactions promote synapse stabilization. On the presynaptic side, neurexin associates with synaptotagmin, calcium channels. On the post-synaptic side, neuroligin PDZ domain interacts with scaffolding proteins that help cluster receptor channels.
429:
upon synaptic stimulation. In this way, neurexin and neuroligin coordinate the morphological and functional aspects of the synapse which in turn permits nascent, immature contacts to stabilize into full-fledged functional platforms for neurotransmission.
406:. In the case of neurexins, their intracellular binding interactions are equally as important in recruiting the essential machinery for synaptic transmission at the active zone. Like neuroligins, neurexins possess a PDZ-domain that associates with 350:
mutant of either neurexins or neuroligins exhibit a normal number of synapses but express an embryonic lethal phenotype due to impairment of normal synaptic transmission. Therefore, they are not necessary for synapse formation
310:. The displacement of these CAMs and the formation of this junction provides the nascent synaptic membranes room to interact and mature while partitioning off the surrounding membrane and providing cytoskeletal fixation. 276:. The nectins involved in formation and stabilization of this synapse are Nectin-1 and Nectin-3 which protrude from the plasma membrane of the postsynaptic cell and presynaptic cell, respectively, forming heterophilic 525:
of the postsynaptic shaft. Once at the membrane shaft, GRIP1 helps anchor glutamate receptors below the presynaptic terminal. This process also involves the phosphorylation of a serine residue near the ephrin-B
536:
Another mechanism, found in hippocampal neurons, revealed that EphB signaling could promote spine maturation by modulating Rho GTPase activity, as observed with EphAs. Unlike EphAs, however, the
516:
Ephrin B/EphB signaling is also involved in synaptic stabilization through different mechanisms. These molecules contain cytoplasmic tails which interact with scaffolding proteins via their
204: 129:
at both pre- and postsynaptic sites and their structures consist of intracellular FERM and PDZ binding domains, a single transmembrane domain, and three extracellular
1529:
Missler M, Zhang W, Rohlmann A, Kattenstroth G, Hammer RE, Gottmann K, SĂĽdhof TC (June 2003). "Alpha-neurexins couple Ca2+ channels to synaptic vesicle exocytosis".
295:
As synapses mature in the CA3 region, nectins and cadherins, which affiliate closely with one another in synaptic stabilization, are shifted to the periphery of the
489:, whereas the EphA4 receptor is enriched in hippocampal neurons. This interaction, mediated by ephrin A3/EphA4 signaling, induces the recruitment and activation of 1427: 752:
Washbourne, Philip; Dityatev, Alexander; Scheiffele, Peter; Biederer, Thomas; Weiner, Joshua A.; Christopherson, Karen S.; El-Husseini, Alaa (20 October 2004).
292:. In this way, nectins form ridged connections of the cells actin architecture allowing for the synapse to develop in a controlled and stable environment. 513:. As in the EphA4/ephrinA3-mediated neuron–glia interaction, this process regulates dynamics of the actin cytoskeleton by activating ROCK through ephexin. 411: 338:. Presynaptic neurexin and its postsynaptic binding partner, neuroligin, complex early in neural development and are both known to be potent inducers of 1665:
Hata Y, Davletov B, Petrenko AG, Jahn R, SĂĽdhof TC (February 1993). "Interaction of synaptotagmin with the cytoplasmic domains of neurexins".
1851: 1592: 1510: 1403: 1105: 672: 454:
and their membrane bound ligands, the ephrins, are involved in a variety of cellular processes during development and maturation including
620:
Benson DL, Schnapp LM, Shapiro L, Huntley GW (November 2000). "Making memories stick: cell-adhesion molecules in synaptic plasticity".
359: 156:
of proteins. The cytosolic PDZ domains of synCAMs imbedded in the post-synaptic membrane interact with post-synaptic scaffold protein
1774: 32: 98:
Synaptic cell adhesion molecules (CAMs) play a crucial role in axon pathfinding and synaptic establishment between neurons during
1292:
Dean C, Dresbach T (January 2006). "Neuroligins and neurexins: linking cell adhesion, synapse formation and cognitive function".
1124:
Irie K, Shimizu K, Sakisaka T, Ikeda W, Takai Y (December 2004). "Roles and modes of action of nectins in cell-cell adhesion".
383: 334:
interactions help establish the trans-synaptic functional asymmetry essential for the stabilization and maintenance of proper
541: 358:
Beyond their extracellular contact with each other, neurexins and neuroligins also bind intracellularly to a vast network of
38: 419: 313: 125:
that promotes growth and stabilization of excitatory (not inhibitory) synapses. SynCAM’s are localized primarily in the
103: 1200:
Takai Y, Shimizu K, Ohtsuka T (October 2003). "The roles of cadherins and nectins in interneuronal synapse formation".
355:
but are essential for the maturation and integration of synapses into the functional circuits necessary for survival.
245:
and postsynaptic neuronal processes during synapse formation. There are only four well characterized nectins at the
19:
This article is about the process of synapse stabilization mediated by cell adhesion molecules. For other uses, see
595: 153: 442:
Ephrin A3/EphA4 signaling initiates a cascade of events that results in that regulation of the actin cytoskeleton.
1493:
Hortsch M (2009). "A Short History of the Synapse – Golgi Versus Ramón y Cajal". In Hortsch M, Umemori H (eds.).
490: 265: 1790:
Bolton MM, Eroglu C (October 2009). "Look who is weaving the neural web: glial control of synapse formation".
102:
and are integral members in many synaptic processes including the correct alignment of pre- and post-synaptic
1057:"Coordinated Spine Pruning and Maturation Mediated by Inter-Spine Competition for Cadherin/Catenin Complexes" 494: 238: 180: 62: 659:. Advances in Experimental Medicine and Biology. Vol. 970. Vienna: Springer, Vienna. pp. 97–128. 257:. When two cells possessing individual cis-clusters come into contact they form a strong complex called a 73:
and the formation of the entire nervous system. In the adult nervous system, CAMs play an integral role in
510: 343: 264:
The most robust knowledge of nectin’s role in synaptic stabilization comes from the synapses made between
195: 130: 50: 28: 149:
growth cone and dendritic spine allow for initial contact between pre- and postsynaptic cell to be made.
2059: 335: 49:
is crucial in the developing and adult nervous systems and is considered a result of the late phase of
1538: 1348: 478: 168: 121:
SynCAM’s (also known as Cadm or nectin-like molecules) are a specific type of synaptic CAM found in
1616:
Zhang C, Atasoy D, Araç D, Yang X, Fucillo MV, Robison AJ, Ko J, Brunger AT, Südhof TC (May 2010).
560:
Rutishauser U, Jessell TM (July 1988). "Cell adhesion molecules in vertebrate neural development".
188: 74: 24: 1844:
Cellular Migration and Formation of Neuronal Connections: Comprehensive Developmental Neuroscience
418:, a protein embedded in the membrane of synaptic vesicles, and can also promote associations with 366:, help localize necessary components of synaptic transmission. For example, the first neuroligin ( 69:
discovered CAMs and studied their function during development, which showed CAMs are required for
1815: 1690: 1562: 1421: 1317: 1225: 459: 363: 273: 57:
through increased expression of cytoskeletal and extracellular matrix elements and postsynaptic
2036: 1985: 1936: 1884: 1847: 1807: 1770: 1742: 1682: 1647: 1598: 1588: 1554: 1506: 1475: 1409: 1399: 1376: 1309: 1274: 1217: 1182: 1141: 1101: 1078: 1034: 990: 938: 876: 832: 783: 727: 678: 668: 637: 577: 526: 300: 212: 172:
Temporal and spatial distribution of N-cadherin complexes in the developing and mature synapse
2026: 2016: 1975: 1967: 1926: 1918: 1876: 1799: 1732: 1724: 1674: 1637: 1629: 1546: 1498: 1465: 1457: 1366: 1356: 1301: 1264: 1256: 1209: 1172: 1133: 1068: 1024: 980: 972: 928: 920: 866: 822: 814: 773: 765: 717: 709: 697: 660: 629: 569: 423: 379: 307: 242: 223: 211:
leads to the dimerization of N-cadherin which is then cleaved leading the repression of CBP/
99: 58: 655:
Bukalo, Olena; Dityatev, Alexander (27 December 2012). "Synaptic Cell Adhesion Molecules".
215:
transcription. This repression has many developmental and plasticity related implications.
475: 415: 219: 208: 137:
accumulating rapidly when axo-dendritic connections are made and helping to form a stable
1542: 1352: 2031: 2004: 1980: 1955: 1931: 1906: 1737: 1712: 1642: 1617: 1470: 1445: 1396:
Basic neurochemistry : principles of molecular, cellular, and medical neurobiology
1371: 1337:"Postsynaptic assembly induced by neurexin-neuroligin interaction and neurotransmitter" 1336: 1269: 1244: 985: 960: 933: 908: 827: 802: 778: 753: 722: 463: 347: 339: 280:
contacts. The intracellular domain of all nectins directly bind to a protein called L-
269: 70: 66: 20: 1137: 633: 133:. During neurodevelopment, SynCAMs such as SynCAM1 act as “contact sensors” of axonal 2053: 1678: 909:"Cadherins and catenins at synapses: roles in synaptogenesis and synaptic plasticity" 455: 387: 346:
are not necessary for formation of neuronal connections during development. A triple
277: 250: 1819: 1694: 1566: 1321: 1229: 1922: 769: 467: 451: 289: 134: 115: 573: 1633: 976: 871: 854: 485:
via bi-directional ephrin/EphA signaling. Astrocytes and their processes express
1728: 1502: 1461: 713: 664: 471: 403: 296: 122: 107: 1803: 1341:
Proceedings of the National Academy of Sciences of the United States of America
1305: 1260: 1213: 1073: 1056: 924: 438: 517: 506: 482: 426: 390:
to the proper post-synaptic locale. Similarly, another isoform of neuroligin (
371: 331: 304: 299:
and form the puncta adherens junction (PAJ). The PAJ functions much like the
145: 111: 1602: 1413: 261:
which provides adhesion and, in some cases, signaling between the two cells.
1880: 1361: 521: 486: 1989: 1811: 1746: 1651: 1558: 1479: 1380: 1313: 1278: 1221: 1186: 1145: 1082: 1038: 994: 942: 880: 836: 787: 731: 682: 641: 2040: 2021: 1940: 1888: 1686: 581: 395: 327: 176: 138: 78: 54: 1971: 1550: 801:
Dalva, Matthew; McClelland, Andrew; Kayser, Matthew (14 February 2007).
198:
exhibit distinct spatial and temporal expression patterns. For example,
1618:"Neurexins physically and functionally interact with GABA(A) receptors" 1177: 1160: 529:(proximal to the PDZ-binding motif) that leads to the stabilization of 246: 184: 1846:. San Diego, CA: Elsevier Science & Technology. pp. 659–669. 498: 497:(GEF), ephexin1. Phosphorylated ephexin1 can then activate the small 447: 402:, and is responsible for activation of the synaptic adapator protein 234: 157: 82: 2005:"DC-determined displacement of the nystagmus beat in rotatory tests" 1029: 1012: 818: 65:(CAMs) play a large role in synaptic maintenance and stabilization. 53:(LTP). The mechanism involves strengthening and maintaining active 537: 437: 391: 375: 367: 312: 285: 281: 167: 126: 37: 1867:
Flannery DB (September 1988). "Nondisjunction in Down syndrome".
530: 502: 407: 399: 199: 160:
which helps anchor the complex to the underlying cytoskeleton.
1161:"The role of nectins in different types of cell-cell adhesion" 961:"Cadherins and catenins in dendrite and synapse morphogenesis" 803:"Cell adhesion molecules: signalling functions at the synapse" 114:, integration of postsynaptic receptors and anchoring to the 520:
domains to stabilize newly formed CNS synapses. For example,
696:
Biederer, Thomas; Missler, Markus; SĂĽdhof, Thomas (2012).
540:
receptor has been shown to interact with the postsynaptic
855:"Cadherins: actin with the cytoskeleton to form synapses" 1711:
Lisabeth EM, Falivelli G, Pasquale EB (September 2013).
288:
binding protein that binds to the F-actin of the actin
16:
Modifying synaptic strength via cell adhesion molecules
1245:"Neurexin-neuroligin signaling in synapse development" 1013:"Neural development: a complex competition for spines" 362:
and scaffolding structures, which in concert with the
241:. These CAMs are involved in the initial contact of 183:
that form complexes with cytosolic partners known as
2003:
Lundgren A, Tibbling L, Henriksson NG (March 2018).
1055:
Bian WJ, Miao WY, He SJ, Qiu Z, Yu X (August 2015).
505:, leading to subsequent activation of its effector, 1769:. New York, NY: Garland Science. pp. 299–302. 708:(4). Cold Spring Harbor Laboratory Press: a005694. 207:complexes. An increase in activity at a particular 1394:Brady ST, Siegel GJ, Albers RW, Price DL (2012). 42:Synaptic stabilization by cell adhesion molecules 446:Non-traditional adhesion molecules, such as the 1524: 1522: 1444:Missler M, SĂĽdhof TC, Biederer T (April 2012). 1439: 1437: 1006: 1004: 902: 900: 898: 896: 894: 892: 890: 61:, while pruning less active ones. For example, 1907:"Viral myocarditis as an incidental discovery" 1578: 1576: 754:"Cell Adhesion Molecules in Synapse Formation" 1837: 1835: 1833: 1831: 1829: 1159:Rikitake Y, Mandai K, Takai Y (August 2012). 954: 952: 8: 1126:Seminars in Cell & Developmental Biology 1119: 1117: 1050: 1048: 848: 846: 118:to ensure stability of synaptic components. 1398:(Eighth ed.). Waltham, Massachusetts. 907:Arikkath J, Reichardt LF (September 2008). 412:Calcium-calmodulin-dependent protein kinase 1760: 1758: 1756: 1717:Cold Spring Harbor Perspectives in Biology 1706: 1704: 1450:Cold Spring Harbor Perspectives in Biology 1426:: CS1 maint: location missing publisher ( 959:Seong E, Yuan L, Arikkath J (April 2015). 702:Cold Spring Harbor Perspectives in Biology 2030: 2020: 1979: 1930: 1736: 1641: 1469: 1370: 1360: 1268: 1176: 1072: 1028: 984: 932: 870: 826: 777: 721: 450:, also help stabilize synaptic contacts. 1497:. Springer, New York, NY. pp. 1–9. 422:which mediate the ion flux required for 1900: 1898: 552: 1419: 493:(Cdk5), which then phosphorylates the 249:, they are Nectin-1, 2, 3, and 4. All 1954:Arvanitis D, Davy A (February 2008). 7: 1869:American Journal of Medical Genetics 1713:"Eph receptor signaling and ephrins" 398:, a scaffolding protein specific to 106:, vesicular recycling in regards to 370:) discovered was identified by its 179:are calcium- dependent, homophilic 1243:Craig AM, Kang Y (February 2007). 14: 1098:Development of the Nervous System 33:Development of the nervous system 2009:Practica Oto-Rhino-Laryngologica 1956:"Eph/ephrin signaling: networks" 1792:Current Opinion in Neurobiology 1249:Current Opinion in Neurobiology 1202:Current Opinion in Neurobiology 1923:10.1016/j.brainres.2006.11.033 770:10.1523/JNEUROSCI.3339-04.2004 542:N-methyl-D-aspartate receptors 1: 1587:. Amsterdam: Academic Press. 1335:Nam CI, Chen L (April 2005). 1138:10.1016/s1084-9521(04)00088-6 965:Cell Adhesion & Migration 634:10.1016/S0962-8924(00)01838-9 596:"Gerald M. Edelman biography" 574:10.1152/physrev.1988.68.3.819 420:voltage-gated calcium channel 274:CA3 region of the hippocampus 1679:10.1016/0896-6273(93)90320-Q 1634:10.1016/j.neuron.2010.04.008 1585:Encyclopedia of neuroscience 1096:Sanes D (January 25, 2011). 1017:Nature Reviews. Neuroscience 977:10.4161/19336918.2014.994919 872:10.1016/j.neuron.2005.06.024 104:signal transduction pathways 1729:10.1101/cshperspect.a009159 1503:10.1007/978-0-387-92708-4_1 1462:10.1101/cshperspect.a005694 714:10.1101/cshperspect.a005694 665:10.1007/978-3-7091-0932-8_5 2076: 1905:Lerner AM (October 1990). 1804:10.1016/j.conb.2009.09.007 1767:Developmental Neurobiology 1306:10.1016/j.tins.2005.11.003 1261:10.1016/j.conb.2007.01.011 1214:10.1016/j.conb.2003.09.003 1100:(3rd ed.). Elsevier. 1074:10.1016/j.cell.2015.07.018 1011:Whalley K (October 2015). 925:10.1016/j.tins.2008.07.001 18: 1842:Rubenstein J (May 2013). 491:cyclin-dependent kinase 5 237:are a distinct family of 1446:"Synaptic cell adhesion" 698:"Synaptic Cell Adhesion" 386:that functionally links 1960:Genes & Development 1881:10.1002/ajmg.1320310123 1362:10.1073/pnas.0502038102 1294:Trends in Neurosciences 1165:Journal of Cell Science 913:Trends in Neurosciences 758:Journal of Neuroscience 533:receptors at synapses. 495:guanine exchange factor 239:cell adhesion molecules 181:cell adhesion molecules 63:cell adhesion molecules 853:Bamji SX (July 2005). 622:Trends in Cell Biology 511:neuromuscular junction 443: 384:glutamatergic synapses 344:cell adhesion molecule 319: 196:central nervous system 194:Many cadherins in the 173: 152:synCAMs belong to the 51:long-term potentiation 47:Synaptic stabilization 43: 29:Cell adhesion molecule 2022:10.3892/etm.2018.5702 562:Physiological Reviews 441: 336:synaptic transmission 316: 171: 41: 481:may be regulated by 434:Ephrin-Eph signaling 1972:10.1101/gad.1630408 1917:(10): 81–4, 87–90. 1551:10.1038/nature01755 1543:2003Natur.423..939M 1353:2005PNAS..102.6137N 657:Synaptic Plasticity 400:GABA-ergic synapses 323:Neurexin-neuroligin 144:synCAM1 along with 75:synaptic plasticity 25:Synaptic plasticity 1765:Bianchi L (2018). 1583:Squire LR (2009). 1495:The Sticky Synapse 1178:10.1242/jcs.099572 1171:(Pt 16): 3713–22. 460:neuronal migration 444: 364:actin cytoskeleton 320: 301:adherens junctions 284:. L-Afadin is an 174: 44: 1911:Hospital Practice 1853:978-0-12-397266-8 1594:978-0-08-096393-8 1512:978-0-387-92707-7 1405:978-0-12-374947-5 1107:978-0-08-092320-8 764:(42): 9244–9249. 674:978-3-7091-0932-8 527:carboxyl terminus 394:) interacts with 378:, a well-known a 272:dendrites in the 259:trans-interaction 59:scaffold proteins 2067: 2045: 2044: 2034: 2024: 2000: 1994: 1993: 1983: 1951: 1945: 1944: 1934: 1902: 1893: 1892: 1864: 1858: 1857: 1839: 1824: 1823: 1787: 1781: 1780: 1762: 1751: 1750: 1740: 1708: 1699: 1698: 1662: 1656: 1655: 1645: 1613: 1607: 1606: 1580: 1571: 1570: 1537:(6943): 939–48. 1526: 1517: 1516: 1490: 1484: 1483: 1473: 1441: 1432: 1431: 1425: 1417: 1391: 1385: 1384: 1374: 1364: 1332: 1326: 1325: 1289: 1283: 1282: 1272: 1240: 1234: 1233: 1197: 1191: 1190: 1180: 1156: 1150: 1149: 1121: 1112: 1111: 1093: 1087: 1086: 1076: 1052: 1043: 1042: 1032: 1008: 999: 998: 988: 956: 947: 946: 936: 904: 885: 884: 874: 850: 841: 840: 830: 798: 792: 791: 781: 749: 743: 742: 740: 738: 725: 693: 687: 686: 652: 646: 645: 617: 611: 610: 608: 606: 592: 586: 585: 557: 424:neurotransmitter 380:scaffold protein 360:adaptor proteins 205:cadherin-catenin 164:Cadherin-catenin 100:neurodevelopment 2075: 2074: 2070: 2069: 2068: 2066: 2065: 2064: 2050: 2049: 2048: 2002: 2001: 1997: 1953: 1952: 1948: 1904: 1903: 1896: 1866: 1865: 1861: 1854: 1841: 1840: 1827: 1789: 1788: 1784: 1777: 1764: 1763: 1754: 1710: 1709: 1702: 1664: 1663: 1659: 1615: 1614: 1610: 1595: 1582: 1581: 1574: 1528: 1527: 1520: 1513: 1492: 1491: 1487: 1443: 1442: 1435: 1418: 1406: 1393: 1392: 1388: 1347:(17): 6137–42. 1334: 1333: 1329: 1291: 1290: 1286: 1242: 1241: 1237: 1199: 1198: 1194: 1158: 1157: 1153: 1123: 1122: 1115: 1108: 1095: 1094: 1090: 1054: 1053: 1046: 1030:10.1038/nrn4024 1010: 1009: 1002: 958: 957: 950: 906: 905: 888: 852: 851: 844: 819:10.1038/nrn2075 800: 799: 795: 751: 750: 746: 736: 734: 695: 694: 690: 675: 654: 653: 649: 619: 618: 614: 604: 602: 594: 593: 589: 559: 558: 554: 550: 476:dendritic spine 436: 374:which binds to 325: 232: 220:dendritic spine 218:In the case of 166: 96: 91: 36: 17: 12: 11: 5: 2073: 2071: 2063: 2062: 2052: 2051: 2047: 2046: 1995: 1946: 1894: 1859: 1852: 1825: 1782: 1775: 1752: 1723:(9): a009159. 1700: 1657: 1608: 1593: 1572: 1518: 1511: 1485: 1456:(4): a005694. 1433: 1404: 1386: 1327: 1284: 1235: 1192: 1151: 1113: 1106: 1088: 1044: 1000: 948: 886: 842: 813:(3): 206–220. 793: 744: 688: 673: 647: 628:(11): 473–82. 612: 600:Nobelprize.org 587: 551: 549: 546: 464:synaptogenesis 435: 432: 388:NMDA receptors 348:knockout mouse 340:synaptogenesis 324: 321: 270:pyramidal cell 268:terminals and 255:cis-clustering 231: 228: 222:formation and 165: 162: 154:Ig superfamily 95: 92: 90: 87: 71:cell migration 67:Gerald Edelman 21:Synaptogenesis 15: 13: 10: 9: 6: 4: 3: 2: 2072: 2061: 2058: 2057: 2055: 2042: 2038: 2033: 2028: 2023: 2018: 2014: 2010: 2006: 1999: 1996: 1991: 1987: 1982: 1977: 1973: 1969: 1966:(4): 416–29. 1965: 1961: 1957: 1950: 1947: 1942: 1938: 1933: 1928: 1924: 1920: 1916: 1912: 1908: 1901: 1899: 1895: 1890: 1886: 1882: 1878: 1874: 1870: 1863: 1860: 1855: 1849: 1845: 1838: 1836: 1834: 1832: 1830: 1826: 1821: 1817: 1813: 1809: 1805: 1801: 1797: 1793: 1786: 1783: 1778: 1776:9780815344827 1772: 1768: 1761: 1759: 1757: 1753: 1748: 1744: 1739: 1734: 1730: 1726: 1722: 1718: 1714: 1707: 1705: 1701: 1696: 1692: 1688: 1684: 1680: 1676: 1673:(2): 307–15. 1672: 1668: 1661: 1658: 1653: 1649: 1644: 1639: 1635: 1631: 1628:(3): 403–16. 1627: 1623: 1619: 1612: 1609: 1604: 1600: 1596: 1590: 1586: 1579: 1577: 1573: 1568: 1564: 1560: 1556: 1552: 1548: 1544: 1540: 1536: 1532: 1525: 1523: 1519: 1514: 1508: 1504: 1500: 1496: 1489: 1486: 1481: 1477: 1472: 1467: 1463: 1459: 1455: 1451: 1447: 1440: 1438: 1434: 1429: 1423: 1415: 1411: 1407: 1401: 1397: 1390: 1387: 1382: 1378: 1373: 1368: 1363: 1358: 1354: 1350: 1346: 1342: 1338: 1331: 1328: 1323: 1319: 1315: 1311: 1307: 1303: 1299: 1295: 1288: 1285: 1280: 1276: 1271: 1266: 1262: 1258: 1254: 1250: 1246: 1239: 1236: 1231: 1227: 1223: 1219: 1215: 1211: 1207: 1203: 1196: 1193: 1188: 1184: 1179: 1174: 1170: 1166: 1162: 1155: 1152: 1147: 1143: 1139: 1135: 1132:(6): 643–56. 1131: 1127: 1120: 1118: 1114: 1109: 1103: 1099: 1092: 1089: 1084: 1080: 1075: 1070: 1067:(4): 808–22. 1066: 1062: 1058: 1051: 1049: 1045: 1040: 1036: 1031: 1026: 1022: 1018: 1014: 1007: 1005: 1001: 996: 992: 987: 982: 978: 974: 971:(3): 202–13. 970: 966: 962: 955: 953: 949: 944: 940: 935: 930: 926: 922: 919:(9): 487–94. 918: 914: 910: 903: 901: 899: 897: 895: 893: 891: 887: 882: 878: 873: 868: 864: 860: 856: 849: 847: 843: 838: 834: 829: 824: 820: 816: 812: 808: 804: 797: 794: 789: 785: 780: 775: 771: 767: 763: 759: 755: 748: 745: 733: 729: 724: 719: 715: 711: 707: 703: 699: 692: 689: 684: 680: 676: 670: 666: 662: 658: 651: 648: 643: 639: 635: 631: 627: 623: 616: 613: 601: 597: 591: 588: 583: 579: 575: 571: 568:(3): 819–57. 567: 563: 556: 553: 547: 545: 543: 539: 534: 532: 528: 523: 519: 514: 512: 508: 504: 500: 496: 492: 488: 484: 480: 477: 473: 469: 465: 461: 457: 456:axon guidance 453: 452:Eph receptors 449: 440: 433: 431: 428: 425: 421: 417: 416:synaptotagmin 413: 409: 405: 401: 397: 393: 389: 385: 381: 377: 373: 369: 365: 361: 356: 354: 349: 345: 341: 337: 333: 329: 322: 315: 311: 309: 306: 302: 298: 293: 291: 287: 283: 279: 278:extracellular 275: 271: 267: 262: 260: 256: 252: 248: 244: 240: 236: 229: 227: 225: 221: 216: 214: 210: 206: 201: 197: 192: 190: 186: 182: 178: 170: 163: 161: 159: 155: 150: 147: 142: 140: 136: 132: 128: 124: 119: 117: 113: 109: 105: 101: 93: 89:Types of CAMs 88: 86: 84: 80: 76: 72: 68: 64: 60: 56: 52: 48: 40: 34: 30: 26: 22: 2060:Neuroscience 2015:(1): 54–64. 2012: 2008: 1998: 1963: 1959: 1949: 1914: 1910: 1875:(1): 181–2. 1872: 1868: 1862: 1843: 1798:(5): 491–7. 1795: 1791: 1785: 1766: 1720: 1716: 1670: 1666: 1660: 1625: 1621: 1611: 1584: 1534: 1530: 1494: 1488: 1453: 1449: 1395: 1389: 1344: 1340: 1330: 1297: 1293: 1287: 1255:(1): 43–52. 1252: 1248: 1238: 1208:(5): 520–6. 1205: 1201: 1195: 1168: 1164: 1154: 1129: 1125: 1097: 1091: 1064: 1060: 1020: 1016: 968: 964: 916: 912: 865:(2): 175–8. 862: 858: 810: 806: 796: 761: 757: 747: 735:. Retrieved 705: 701: 691: 656: 650: 625: 621: 615: 603:. Retrieved 599: 590: 565: 561: 555: 535: 515: 468:axon pruning 445: 357: 352: 326: 294: 290:cytoskeleton 263: 258: 254: 233: 217: 193: 175: 151: 143: 135:growth cones 120: 116:cytoskeleton 97: 77:relating to 46: 45: 1300:(1): 21–9. 1023:(10): 577. 472:hippocampus 404:collybistin 297:active zone 266:mossy fiber 243:presynaptic 123:vertebrates 108:endocytosis 548:References 507:Rho-kinase 483:astrocytes 479:morphology 427:exocytosis 372:PDZ domain 332:Neuroligin 305:epithelial 200:N-cadherin 189:plasticity 146:neuroligin 131:Ig-domains 112:exocytosis 1603:503584095 1422:cite book 1414:754167839 522:Ephrin B3 487:ephrin A3 470:. In the 177:Cadherins 141:complex. 2054:Category 1990:18281458 1820:44625935 1812:19879129 1747:24003208 1695:12954601 1652:20471353 1567:10315093 1559:12827191 1480:22278667 1381:15837930 1322:11664697 1314:16337696 1279:17275284 1230:10053035 1222:14630213 1187:23027581 1146:15561584 1083:26255771 1039:26307326 995:25914083 943:18684518 881:16039559 837:17299456 788:15496659 737:12 March 732:22278667 683:22351053 642:11050419 605:13 March 396:gephyrin 328:Neurexin 251:membrane 185:catenins 139:adhesion 79:learning 55:synapses 2041:5795627 2032:5795627 1981:2731651 1941:2170431 1932:2170431 1889:2975924 1738:3753714 1687:8439414 1643:3243752 1539:Bibcode 1471:3312681 1372:1087954 1349:Bibcode 1270:2820508 986:4594442 934:2623250 828:4756920 779:6730099 723:3312681 582:3293093 448:ephrins 308:tissues 247:synapse 235:Nectins 224:pruning 94:SynCAMs 2039:  2029:  1988:  1978:  1939:  1929:  1887:  1850:  1818:  1810:  1773:  1745:  1735:  1693:  1685:  1667:Neuron 1650:  1640:  1622:Neuron 1601:  1591:  1565:  1557:  1531:Nature 1509:  1478:  1468:  1412:  1402:  1379:  1369:  1320:  1312:  1277:  1267:  1228:  1220:  1185:  1144:  1104:  1081:  1037:  993:  983:  941:  931:  879:  859:Neuron 835:  825:  807:Nature 786:  776:  730:  720:  681:  671:  640:  580:  499:GTPase 466:, and 353:per se 282:Afadin 230:Nectin 158:PSD-95 83:memory 31:, and 1816:S2CID 1691:S2CID 1563:S2CID 1318:S2CID 1226:S2CID 538:EphB2 392:NLGN2 376:PSD95 368:NLGN1 286:actin 209:spine 127:brain 2037:PMID 1986:PMID 1937:PMID 1885:PMID 1848:ISBN 1808:PMID 1771:ISBN 1743:PMID 1683:PMID 1648:PMID 1599:OCLC 1589:ISBN 1555:PMID 1507:ISBN 1476:PMID 1428:link 1410:OCLC 1400:ISBN 1377:PMID 1310:PMID 1275:PMID 1218:PMID 1183:PMID 1142:PMID 1102:ISBN 1079:PMID 1061:Cell 1035:PMID 991:PMID 939:PMID 877:PMID 833:PMID 784:PMID 739:2018 728:PMID 679:PMID 669:ISBN 638:PMID 607:2018 578:PMID 531:AMPA 503:RhoA 408:CASK 213:CREB 110:and 81:and 2027:PMC 2017:doi 1976:PMC 1968:doi 1927:PMC 1919:doi 1877:doi 1800:doi 1733:PMC 1725:doi 1675:doi 1638:PMC 1630:doi 1547:doi 1535:423 1499:doi 1466:PMC 1458:doi 1367:PMC 1357:doi 1345:102 1302:doi 1265:PMC 1257:doi 1210:doi 1173:doi 1169:125 1134:doi 1069:doi 1065:162 1025:doi 981:PMC 973:doi 929:PMC 921:doi 867:doi 823:PMC 815:doi 774:PMC 766:doi 718:PMC 710:doi 661:doi 630:doi 570:doi 518:PDZ 382:at 303:in 2056:: 2035:. 2025:. 2013:31 2011:. 2007:. 1984:. 1974:. 1964:22 1962:. 1958:. 1935:. 1925:. 1915:25 1913:. 1909:. 1897:^ 1883:. 1873:31 1871:. 1828:^ 1814:. 1806:. 1796:19 1794:. 1755:^ 1741:. 1731:. 1719:. 1715:. 1703:^ 1689:. 1681:. 1671:10 1669:. 1646:. 1636:. 1626:66 1624:. 1620:. 1597:. 1575:^ 1561:. 1553:. 1545:. 1533:. 1521:^ 1505:. 1474:. 1464:. 1452:. 1448:. 1436:^ 1424:}} 1420:{{ 1408:. 1375:. 1365:. 1355:. 1343:. 1339:. 1316:. 1308:. 1298:29 1296:. 1273:. 1263:. 1253:17 1251:. 1247:. 1224:. 1216:. 1206:13 1204:. 1181:. 1167:. 1163:. 1140:. 1130:15 1128:. 1116:^ 1077:. 1063:. 1059:. 1047:^ 1033:. 1021:16 1019:. 1015:. 1003:^ 989:. 979:. 967:. 963:. 951:^ 937:. 927:. 917:31 915:. 911:. 889:^ 875:. 863:47 861:. 857:. 845:^ 831:. 821:. 809:. 805:. 782:. 772:. 762:24 760:. 756:. 726:. 716:. 704:. 700:. 677:. 667:. 636:. 626:10 624:. 598:. 576:. 566:68 564:. 501:, 474:, 462:, 458:, 191:. 85:. 27:, 23:, 2043:. 2019:: 1992:. 1970:: 1943:. 1921:: 1891:. 1879:: 1856:. 1822:. 1802:: 1779:. 1749:. 1727:: 1721:5 1697:. 1677:: 1654:. 1632:: 1605:. 1569:. 1549:: 1541:: 1515:. 1501:: 1482:. 1460:: 1454:4 1430:) 1416:. 1383:. 1359:: 1351:: 1324:. 1304:: 1281:. 1259:: 1232:. 1212:: 1189:. 1175:: 1148:. 1136:: 1110:. 1085:. 1071:: 1041:. 1027:: 997:. 975:: 969:9 945:. 923:: 883:. 869:: 839:. 817:: 811:8 790:. 768:: 741:. 712:: 706:4 685:. 663:: 644:. 632:: 609:. 584:. 572:: 410:( 330:- 35:.

Index

Synaptogenesis
Synaptic plasticity
Cell adhesion molecule
Development of the nervous system

long-term potentiation
synapses
scaffold proteins
cell adhesion molecules
Gerald Edelman
cell migration
synaptic plasticity
learning
memory
neurodevelopment
signal transduction pathways
endocytosis
exocytosis
cytoskeleton
vertebrates
brain
Ig-domains
growth cones
adhesion
neuroligin
Ig superfamily
PSD-95

Cadherins
cell adhesion molecules

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑