Knowledge (XXG)

Synchrotron radiation

Source 📝

901:. This blast wave gyrates electrons in ambient magnetic fields and generates synchrotron emission, revealing the radius of the blast wave at the location of the emission. Synchrotron emission can also reveal the strength of the magnetic field at the front of the shock wave, as well as the circumstellar density it encounters, but strongly depends on the choice of energy partition between the magnetic field, proton kinetic energy, and electron kinetic energy. Radio synchrotron emission has allowed astronomers to shed light on mass loss and stellar winds that occur just prior to stellar death. 152: 144: 78: 806: 719: 400: 888:
is derived from observations of synchrotron radiation. Cosmic ray electrons moving through the medium interact with relativistic plasma and emit synchrotron radiation which is detected on Earth. The properties of the radiation allow astronomers to make inferences about the magnetic field strength and
838:
at a very small angle towards the observer. Because at every point of their path the high-velocity jets are emitting light, the light they emit does not approach the observer much more quickly than the jet itself. Light emitted over hundreds of years of travel thus arrives at the observer over a much
745:
energy spectra and polarization. It is considered to be one of the most powerful tools in the study of extra-solar magnetic fields wherever relativistic charged particles are present. Most known cosmic radio sources emit synchrotron radiation. It is often used to estimate the strength of large cosmic
674:
Circular accelerators will always produce gyromagnetic radiation as the particles are deflected in the magnetic field. However, the quantity and properties of the radiation are highly dependent on the nature of the acceleration taking place. For example, due to the difference in mass, the factor of
213:
is that accelerated charged particles always emit electromagnetic radiation. Synchrotron radiation is the special case of charged particles moving at relativistic speed undergoing acceleration perpendicular to their direction of motion, typically in a magnetic field. In such a field, the force due to
871:
are archetypal. Pulsed emission gamma-ray radiation from the Crab has recently been observed up to ≥25 GeV, probably due to synchrotron emission by electrons trapped in the strong magnetic field around the pulsar. Polarization in the Crab nebula at energies from 0.1 to 1.0 MeV, illustrates this
187:
On April 24, Langmuir and I were running the machine and as usual were trying to push the electron gun and its associated pulse transformer to the limit. Some intermittent sparking had occurred and we asked the technician to observe with a mirror around the protective concrete wall. He immediately
705:
Energy loss from synchrotron radiation in circular accelerators was originally considered a nuisance, as additional energy must be supplied to the beam in order to offset the losses. However, beginning in the 1980s, circular electron accelerators known as
234: 136: 188:
signaled to turn off the synchrotron as "he saw an arc in the tube". The vacuum was still excellent, so Langmuir and I came to the end of the wall and observed. At first we thought it might be due to
741:
Synchrotron radiation is also generated by astronomical objects, typically where relativistic electrons spiral (and hence change velocity) through magnetic fields. Two of its characteristics include
826:
produce synchrotron radiation in "jets", generated by the gravitational acceleration of ions in their polar magnetic fields. The nearest such observed jet is from the core of the galaxy
609:
when observed at a small angle. Considering quantum mechanics, however, this radiation is emitted in discrete packets of photons and has significant effects in accelerators called
97:, which is emitted by a charged particle when the acceleration is parallel to the direction of motion. The general term for radiation emitted by particles in a magnetic field is 1627:
Aliu, E.; Anderhub, H.; Antonelli, L. A.; Antoranz, P.; Backes, M.; et al. (21 November 2008). "Observation of Pulsed γ-Rays Above 25 GeV from the Crab Pulsar with MAGIC".
430: 101:, for which synchrotron radiation is the ultra-relativistic special case. Radiation emitted by charged particles moving non-relativistically in a magnetic field is called 700: 638: 395:{\displaystyle P_{\gamma }={\frac {q^{2}}{6\pi \varepsilon _{0}c^{3}}}a^{2}\gamma ^{4}={\frac {q^{2}c}{6\pi \varepsilon _{0}}}{\frac {\beta ^{4}\gamma ^{4}}{\rho ^{2}}},} 562: 658: 522: 584: 2474: 500: 478: 456: 2459: 30:
This article is about physical phenomenon of synchrotron radiation. For details on the production of this radiation and applications in laboratories, see
1696:
Dean, A. J.; Clark, D. J.; Stephen, J. B.; McBride, V. A.; Bassani, L.; et al. (29 August 2008). "Polarized Gamma-Ray Emission from the Crab".
610: 2565: 1060:
Brito, João P. B.; Bernar, Rafael P.; Crispino, Luís C. B. (11 June 2020). "Synchrotron geodesic radiation in Schwarzschild–de Sitter spacetime".
889:
orientation in these regions. However, accurate calculations of field strength cannot be made without knowing the relativistic electron density.
2575: 2428: 1429: 1349: 1391: 2454: 2423: 2368: 595: 2087: 2570: 2403: 1998: 1987: 1405: 1304: 834:
motion as observed from the frame of Earth. This phenomenon is caused because the jets are traveling very near the speed of light
2469: 164:
Synchrotron radiation was first observed by technician Floyd Haber, on April 24, 1947, at the 70 MeV electron synchrotron of the
1606: 121: 839:
smaller time period, giving the illusion of faster than light travel, despite the fact that there is actually no violation of
2555: 1121:
Elder, F. R.; Gurewitsch, A. M.; Langmuir, R. V.; Pollock, H. C. (1 June 1947). "Radiation from Electrons in a Synchrotron".
777:
T. K. Breus noted that questions of priority on the history of astrophysical synchrotron radiation are complicated, writing:
774:
accelerate particles that emit in this way, as suggested by R. Giovanelli in 1948 and described by J.H. Piddington in 1952.
2535: 702:
in the formula for the emitted power means that electrons radiate energy at approximately 10 times the rate of protons.
66:
or naturally by fast electrons moving through magnetic fields. The radiation produced in this way has a characteristic
2291: 786: 763: 2523: 2378: 2351: 1545:
Piddington, J. H. (1953). "Thermal Theories of the High-Intensity Components of Solar Radio-Frequency Radiation".
947: 2560: 2408: 2261: 2043: 2037: 1132: 214:
the field is always perpendicular to both the direction of motion and to the direction of field, as shown by the
45: 2346: 2120: 897:
When a star explodes in a supernova, the fastest ejecta move at semi-relativistic speeds approximately 10% the
707: 669: 71: 31: 2256: 116:, synchrotron emission occurs, for instance, due to ultra-relativistic motion of a charged particle around a 2286: 2080: 823: 734: 129: 2527: 2438: 2112: 730: 210: 1760:"The Radio and X-Ray Luminous SN 2003bg and the Circumstellar Density Variations around Radio Supernovae" 2531: 169: 1591:(Historical problems of the priority questions of the synchrotron concept in astrophysics)" (2001) in 408: 105:. For particles in the mildly relativistic range (≈85% of the speed of light), the emission is termed 2388: 2276: 2233: 2183: 1952: 1873: 1822: 1781: 1705: 1646: 1554: 1511: 1466: 1261: 1224: 1136: 1079: 1003: 972: 953: 941: 885: 606: 82: 67: 63: 49: 2016:
Proceedings of the National Syposium on Frontier of Physics, National Centre for Theoretical Physics
2505: 2464: 2383: 2296: 1755: 926: 921: 881: 852: 710:
have been constructed to deliberately produce intense beams of synchrotron radiation for research.
587: 433: 189: 102: 1931:"Radio Analysis of SN2004C Reveals an Unusual CSM Density Profile as a Harbinger of Core Collapse" 1321: 2500: 2321: 2301: 2281: 2165: 2073: 1942: 1863: 1852:"Ejection of the Massive Hydrogen-rich Envelope Timed with the Collapse of the Stripped SN 2014C" 1771: 1737: 1678: 1636: 1103: 1069: 932: 916: 856: 840: 678: 616: 602: 86: 533: 1252:
Iwanenko, D.; Pomeranchuk, I. (1 June 1944). "On the Maximal Energy Attainable in a Betatron".
1032: 2393: 2271: 2208: 2173: 1994: 1983: 1982:
Brau, Charles A. Modern Problems in Classical Electrodynamics. Oxford University Press, 2004.
1911: 1729: 1721: 1670: 1662: 1570: 1527: 1484: 1435: 1425: 1401: 1345: 1300: 1277: 1193: 1152: 1095: 759: 726: 197: 746:
magnetic fields as well as analyze the contents of the interstellar and intergalactic media.
643: 507: 2398: 1960: 1901: 1891: 1881: 1830: 1789: 1713: 1654: 1562: 1519: 1474: 1269: 1232: 1183: 1144: 1087: 1011: 798: 767: 165: 569: 151: 2510: 2495: 2311: 2223: 2213: 1123: 782: 193: 2008: 1956: 1877: 1826: 1785: 1709: 1650: 1558: 1515: 1470: 1265: 1228: 1140: 1083: 1007: 2358: 2316: 2306: 2228: 2218: 2188: 1906: 1851: 910: 898: 525: 485: 463: 441: 226: 94: 81:
Pictorial representation of the radiation emission process by a source moving around a
1886: 1188: 1171: 2549: 2433: 2193: 2178: 1741: 1566: 1107: 613:. For a given acceleration, the average energy of emitted photons is proportional to 215: 125: 1588: 77: 2413: 2373: 2238: 2009:"Measurements of the Relative Oscillator Strengths using the Synchrotron Radiation" 2004: 1682: 831: 771: 143: 113: 52:
charged particles are subject to an acceleration perpendicular to their velocity (
2065: 1396: 17: 2155: 1091: 864: 810: 801:
and N. Herlofson, while K.O. Kiepenheuer and G. Hutchinson were ignored by them.
790: 601:
When the radiation is emitted by a particle moving in a plane, the radiation is
177: 173: 124:
around the black hole, the synchrotron radiation occurs for orbits close to the
1965: 1930: 1704:(5893). American Association for the Advancement of Science (AAAS): 1183–1185. 2203: 2150: 2057:– a structural biologist's resource for high energy data collection facilities 827: 794: 755: 722: 117: 1993:
Jackson, John David. Classical Electrodynamics. John Wiley & Sons, 1999.
1725: 1666: 1574: 1531: 1502:
Alfvén, H.; Herlofson, N. (1 June 1950). "Cosmic Radiation and Radio Stars".
1488: 1439: 1281: 1156: 1148: 1099: 2490: 2363: 2198: 2145: 2135: 2096: 1717: 1658: 742: 1915: 1733: 1674: 1523: 1273: 1197: 913: – Electromagnetic radiation due to deceleration of charged particles 2140: 2125: 1776: 1033:"Radiative processes from energetic particles II: Gyromagnetic radiation" 944: – Change in luminosity of a moving object due to special relativity 222: 2044:
Developments in the Theory of Synchrotron Radiation and its Reabsorption
1896: 805: 2418: 860: 135: 1016: 991: 70:, and the frequencies generated can range over a large portion of the 868: 1365: 1237: 1212: 1947: 1868: 1835: 1810: 1794: 1759: 1758:; Chevalier, R. A.; Kulkarni, S. R.; Frail, D. A. (November 2006). 1479: 1454: 1074: 718: 2243: 2130: 1641: 150: 142: 134: 76: 1344:(2nd ed.). Hackensack, N.J.: World Scientific. p. 166. 2069: 1589:
Istoriya prioritetov sinkhrotronnoj kontseptsii v astronomii %t
737:
core, towards the lower right, is due to synchrotron radiation.
2049: 1172:"Demystifying the synchrotron trip: a first time user's guide" 754:
This type of radiation was first detected in a jet emitted by
880:
Much of what is known about the magnetic environment of the
733:
image. The blue light from the jet emerging from the bright
1170:
Mitchell, Edward; Kuhn, Peter; Garman, Elspeth (May 1999).
2054: 929: – Laser using electron beam in vacuum as gain medium 766:
in 1953. However, it had been predicted earlier (1950) by
830:. This jet is interesting for producing the illusion of 1342:
An introduction to the physics of particle accelerators
937:
Pages displaying short descriptions of redirect targets
789:
and did not speak with him for 18 years. In the West,
2060: 1299:. Oxford: Oxford University Press. pp. 221–223. 935: – Recoil force on accelerating charged particle 681: 646: 619: 572: 536: 510: 488: 466: 444: 411: 237: 2046:, by Ginzburg, V. L., Syrovatskii, S. I., ARAA, 1969 2040:, by Ginzburg, V. L., Syrovatskii, S. I., ARAA, 1965 2038:
Cosmic Magnetobremsstrahlung (synchrotron Radiation)
2483: 2447: 2334: 2164: 2111: 2104: 594:The force on the emitting electron is given by the 1850:Margutti, Raffaella; et al. (February 2017). 694: 652: 632: 578: 556: 516: 494: 472: 450: 424: 394: 180:, allowing the radiation to be directly observed. 1811:"Synchrotron Self-Absorption in Radio Supernovae" 192:, but it soon became clearer that we were seeing 155:Synchrotron radiation from an astronomical source 1397:Synchrotron Radiation Theory and Its Development 950: – Physical phenomenon of spin-polarization 762:, who saw it as confirmation of a prediction by 221:The power carried by the radiation is found (in 62:). It is produced artificially in some types of 1929:DeMarchi, Lindsay; et al. (October 2022). 809:The bluish glow from the central region of the 779: 185: 1547:Proceedings of the Physical Society. Section B 1424:. Cham, Switzerland & New York: Springer. 2081: 1415: 1413: 8: 1607:"Apparent Superluminal Velocity of Galaxies" 872:typical property of synchrotron radiation. 855:where synchrotron emission is important is 176:built, it was the first with a transparent 139:Synchrotron radiation from a bending magnet 2108: 2088: 2074: 2066: 1455:"On Synchrotron Radiation from Messier 87" 1422:Galactic and intergalactic magnetic fields 1964: 1946: 1905: 1895: 1885: 1867: 1834: 1793: 1775: 1640: 1478: 1260:(11–12). American Physical Society: 343. 1236: 1187: 1073: 1015: 686: 680: 645: 624: 618: 571: 546: 535: 509: 487: 465: 443: 416: 410: 381: 370: 360: 353: 344: 323: 316: 307: 297: 284: 274: 257: 251: 242: 236: 1297:An introduction to particle accelerators 1213:"The discovery of synchrotron radiation" 804: 717: 1593:Istoriko-Astronomicheskie Issledovaniya 964: 147:Synchrotron radiation from an undulator 2429:Wireless electronic devices and health 1340:Conte, Mario; MacKay, William (2008). 1392:Synchrotron Radiation in Astrophysics 1366:"History: Of X-rays and synchrotrons" 992:"Single-electron cyclotron radiation" 781:In particular, the Russian physicist 480:is the magnitude of the acceleration, 120:. When the source follows a circular 7: 2455:List of civilian radiation accidents 2424:Wireless device radiation and health 2419:Biological dose units and quantities 2369:Electromagnetic radiation and health 876:Interstellar and intergalactic media 93:Synchrotron radiation is similar to 2404:Radioactivity in the life sciences 1211:Pollock, Herbert C. (March 1983). 1040:New Jersey Institute of Technology 25: 605:when observed in that plane, and 183:As recounted by Herbert Pollock: 1595:, Vyp. 26, pp. 88–97, 262 (2001) 973:"What is synchrotron radiation?" 813:is due to synchrotron radiation. 425:{\displaystyle \varepsilon _{0}} 172:. While this was not the first 42:magnetobremsstrahlung radiation 2566:Synchrotron-related techniques 990:Monreal, Benjamin (Jan 2016). 1: 2576:Experimental particle physics 1809:Chevalier, R. A. (May 1998). 1553:(2). IOP Publishing: 97–104. 1189:10.1016/s0969-2126(99)80063-x 818:From supermassive black holes 785:broke his relationships with 2292:Cosmic background radiation 2018:. Pakistan Physical Society 1887:10.3847/1538-4357/835/2/140 1217:American Journal of Physics 1092:10.1103/PhysRevD.101.124019 822:It has been suggested that 695:{\displaystyle \gamma ^{4}} 633:{\displaystyle \gamma ^{3}} 596:Abraham–Lorentz–Dirac force 590:of the particle trajectory. 227:relativistic Larmor formula 128:where the motion is in the 2592: 2521: 2379:Lasers and aviation safety 1567:10.1088/0370-1301/66/2/305 1390:Vladimir A. Bordovitsyn, " 1323:Classical Electromagnetism 667: 557:{\displaystyle \beta =v/c} 107:gyro-synchrotron radiation 29: 2571:Electromagnetic radiation 2519: 2409:Radioactive contamination 2262:Electromagnetic radiation 2252: 1935:The Astrophysical Journal 1856:The Astrophysical Journal 1815:The Astrophysical Journal 1764:The Astrophysical Journal 1459:The Astrophysical Journal 1295:Wilson, E. J. N. (2001). 1133:American Physical Society 640:and the emission rate to 46:electromagnetic radiation 27:Electromagnetic radiation 2522:See also the categories 2460:1996 Costa Rica accident 2121:Acoustic radiation force 1966:10.3847/1538-4357/ac8c26 1453:Burbidge, G. R. (1956). 1149:10.1103/physrev.71.829.5 824:supermassive black holes 670:Synchrotron light source 209:A direct consequence of 95:bremsstrahlung radiation 83:Schwarzschild black hole 72:electromagnetic spectrum 32:Synchrotron light source 2434:Radiation heat-transfer 2287:Gravitational radiation 1718:10.1126/science.1149056 1659:10.1126/science.1164718 1465:. IOP Publishing: 416. 770:and Nicolai Herlofson. 653:{\displaystyle \gamma } 517:{\displaystyle \gamma } 458:is the particle charge, 168:research laboratory in 2475:1990 Zaragoza accident 2470:1984 Moroccan accident 2439:Linear energy transfer 2113:Non-ionizing radiation 1524:10.1103/physrev.78.616 1420:Klein, Ulrich (2014). 1320:Fitzpatrick, Richard. 1274:10.1103/physrev.65.343 814: 803: 738: 696: 654: 634: 580: 558: 518: 502:is the speed of light, 496: 474: 452: 426: 396: 202: 156: 148: 140: 99:gyromagnetic radiation 90: 2556:Synchrotron radiation 2465:1987 Goiânia accident 2267:Synchrotron radiation 2257:Earth's energy budget 2239:Radioactive materials 2234:Particle accelerators 948:Sokolov–Ternov effect 808: 797:were in dispute with 721: 697: 655: 635: 581: 579:{\displaystyle \rho } 559: 519: 497: 475: 453: 427: 397: 170:Schenectady, New York 154: 146: 138: 80: 64:particle accelerators 38:Synchrotron radiation 2536:Radiation protection 2389:Radiation protection 2277:Black-body radiation 2184:Background radiation 2099:(physics and health) 954:Synchrotron function 942:Relativistic beaming 886:intergalactic medium 853:astronomical sources 760:Geoffrey R. Burbidge 750:History of detection 679: 644: 617: 607:circularly polarized 570: 534: 508: 486: 464: 442: 409: 235: 2506:Radiation hardening 2448:Radiation incidents 2384:Medical radiography 2343:Radiation syndrome 2297:Cherenkov radiation 1957:2022ApJ...938...84D 1878:2017ApJ...835..140M 1827:1998ApJ...499..810C 1786:2006ApJ...651.1005S 1710:2008Sci...321.1183D 1651:2008Sci...322.1221A 1635:(5905): 1221–1224. 1559:1953PPSB...66...97P 1516:1950PhRv...78..616A 1471:1956ApJ...124..416B 1372:. 21 September 2017 1266:1944PhRv...65..343I 1229:1983AmJPh..51..278P 1141:1947PhRv...71..829E 1084:2020PhRvD.101l4019B 1008:2016PhT....69a..70M 927:Free-electron laser 922:Cyclotron radiation 882:interstellar medium 867:and its associated 857:pulsar wind nebulae 847:Pulsar wind nebulae 588:radius of curvature 434:vacuum permittivity 211:Maxwell's equations 190:Cherenkov radiation 2501:Radioactive source 2322:Radiation exposure 2302:Askaryan radiation 2282:Particle radiation 2166:Ionizing radiation 2061:X-Ray Data Booklet 933:Radiation reaction 917:Cyclotron turnover 841:special relativity 815: 764:Iosif S. Shklovsky 739: 692: 650: 630: 611:quantum excitation 603:linearly polarized 576: 554: 514: 492: 470: 448: 422: 392: 157: 149: 141: 130:ultra-relativistic 103:cyclotron emission 91: 87:de Sitter universe 2543: 2542: 2524:Radiation effects 2394:Radiation therapy 2330: 2329: 2272:Thermal radiation 2209:Neutron radiation 2174:Radioactive decay 1431:978-3-319-08942-3 1351:978-981-277-960-1 1062:Physical Review D 1017:10.1063/pt.3.3060 727:astrophysical jet 664:From accelerators 495:{\displaystyle c} 473:{\displaystyle a} 451:{\displaystyle q} 387: 351: 291: 216:Lorentz force law 18:Synchrotron light 16:(Redirected from 2583: 2561:Particle physics 2484:Related articles 2399:Radiation damage 2224:Nuclear reactors 2109: 2090: 2083: 2076: 2067: 2050:Lightsources.org 2027: 2025: 2023: 2013: 1971: 1970: 1968: 1950: 1926: 1920: 1919: 1909: 1899: 1889: 1871: 1847: 1841: 1840: 1838: 1806: 1800: 1799: 1797: 1779: 1777:astro-ph/0512413 1770:(2): 1005–1018. 1752: 1746: 1745: 1693: 1687: 1686: 1644: 1624: 1618: 1617: 1615: 1613: 1605:Chase, Scott I. 1602: 1596: 1585: 1579: 1578: 1542: 1536: 1535: 1499: 1493: 1492: 1482: 1450: 1444: 1443: 1417: 1408: 1388: 1382: 1381: 1379: 1377: 1370:lightsources.org 1362: 1356: 1355: 1337: 1331: 1330: 1328: 1317: 1311: 1310: 1292: 1286: 1285: 1249: 1243: 1242: 1240: 1208: 1202: 1201: 1191: 1182:(5): R111–R121. 1167: 1161: 1160: 1118: 1112: 1111: 1077: 1057: 1051: 1050: 1048: 1046: 1037: 1028: 1022: 1021: 1019: 987: 981: 980: 969: 938: 859:, also known as 701: 699: 698: 693: 691: 690: 659: 657: 656: 651: 639: 637: 636: 631: 629: 628: 585: 583: 582: 577: 563: 561: 560: 555: 550: 523: 521: 520: 515: 501: 499: 498: 493: 479: 477: 476: 471: 457: 455: 454: 449: 431: 429: 428: 423: 421: 420: 401: 399: 398: 393: 388: 386: 385: 376: 375: 374: 365: 364: 354: 352: 350: 349: 348: 332: 328: 327: 317: 312: 311: 302: 301: 292: 290: 289: 288: 279: 278: 262: 261: 252: 247: 246: 166:General Electric 61: 21: 2591: 2590: 2586: 2585: 2584: 2582: 2581: 2580: 2546: 2545: 2544: 2539: 2538: 2515: 2511:Havana syndrome 2496:Nuclear physics 2479: 2443: 2336: 2326: 2312:Unruh radiation 2248: 2229:Nuclear weapons 2214:Nuclear fission 2160: 2100: 2094: 2034: 2021: 2019: 2011: 2003: 1979: 1974: 1928: 1927: 1923: 1849: 1848: 1844: 1808: 1807: 1803: 1754: 1753: 1749: 1695: 1694: 1690: 1626: 1625: 1621: 1611: 1609: 1604: 1603: 1599: 1587:Breus, T. K., " 1586: 1582: 1544: 1543: 1539: 1510:(5). APS: 616. 1504:Physical Review 1501: 1500: 1496: 1452: 1451: 1447: 1432: 1419: 1418: 1411: 1389: 1385: 1375: 1373: 1364: 1363: 1359: 1352: 1339: 1338: 1334: 1326: 1319: 1318: 1314: 1307: 1294: 1293: 1289: 1254:Physical Review 1251: 1250: 1246: 1238:10.1119/1.13289 1210: 1209: 1205: 1169: 1168: 1164: 1124:Physical Review 1120: 1119: 1115: 1059: 1058: 1054: 1044: 1042: 1035: 1030: 1029: 1025: 989: 988: 984: 971: 970: 966: 962: 936: 907: 895: 878: 863:, of which the 849: 820: 752: 716: 682: 677: 676: 672: 666: 642: 641: 620: 615: 614: 568: 567: 532: 531: 506: 505: 484: 483: 462: 461: 440: 439: 412: 407: 406: 377: 366: 356: 355: 340: 333: 319: 318: 303: 293: 280: 270: 263: 253: 238: 233: 232: 207: 162: 53: 40:(also known as 35: 28: 23: 22: 15: 12: 11: 5: 2589: 2587: 2579: 2578: 2573: 2568: 2563: 2558: 2548: 2547: 2541: 2540: 2520: 2517: 2516: 2514: 2513: 2508: 2503: 2498: 2493: 2487: 2485: 2481: 2480: 2478: 2477: 2472: 2467: 2462: 2457: 2451: 2449: 2445: 2444: 2442: 2441: 2436: 2431: 2426: 2421: 2416: 2411: 2406: 2401: 2396: 2391: 2386: 2381: 2376: 2371: 2366: 2361: 2359:Health physics 2356: 2355: 2354: 2349: 2340: 2338: 2332: 2331: 2328: 2327: 2325: 2324: 2319: 2317:Dark radiation 2314: 2309: 2307:Bremsstrahlung 2304: 2299: 2294: 2289: 2284: 2279: 2274: 2269: 2264: 2259: 2253: 2250: 2249: 2247: 2246: 2241: 2236: 2231: 2226: 2221: 2219:Nuclear fusion 2216: 2211: 2206: 2201: 2196: 2191: 2189:Alpha particle 2186: 2181: 2176: 2170: 2168: 2162: 2161: 2159: 2158: 2153: 2148: 2143: 2138: 2133: 2128: 2123: 2117: 2115: 2106: 2102: 2101: 2095: 2093: 2092: 2085: 2078: 2070: 2064: 2063: 2058: 2052: 2047: 2041: 2033: 2032:External links 2030: 2029: 2028: 2001: 1991: 1978: 1975: 1973: 1972: 1921: 1842: 1836:10.1086/305676 1821:(2): 810–819. 1801: 1795:10.1086/507571 1747: 1688: 1619: 1597: 1580: 1537: 1494: 1480:10.1086/146237 1445: 1430: 1409: 1383: 1357: 1350: 1332: 1329:. p. 299. 1312: 1305: 1287: 1244: 1223:(3): 278–280. 1203: 1162: 1113: 1068:(12): 124019. 1052: 1023: 982: 963: 961: 958: 957: 956: 951: 945: 939: 930: 924: 919: 914: 911:Bremsstrahlung 906: 903: 899:speed of light 894: 891: 877: 874: 848: 845: 819: 816: 787:I.S. Shklovsky 751: 748: 715: 712: 689: 685: 668:Main article: 665: 662: 649: 627: 623: 592: 591: 575: 565: 553: 549: 545: 542: 539: 529: 526:Lorentz factor 513: 503: 491: 481: 469: 459: 447: 437: 419: 415: 391: 384: 380: 373: 369: 363: 359: 347: 343: 339: 336: 331: 326: 322: 315: 310: 306: 300: 296: 287: 283: 277: 273: 269: 266: 260: 256: 250: 245: 241: 206: 203: 161: 158: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2588: 2577: 2574: 2572: 2569: 2567: 2564: 2562: 2559: 2557: 2554: 2553: 2551: 2537: 2533: 2529: 2528:Radioactivity 2525: 2518: 2512: 2509: 2507: 2504: 2502: 2499: 2497: 2494: 2492: 2489: 2488: 2486: 2482: 2476: 2473: 2471: 2468: 2466: 2463: 2461: 2458: 2456: 2453: 2452: 2450: 2446: 2440: 2437: 2435: 2432: 2430: 2427: 2425: 2422: 2420: 2417: 2415: 2412: 2410: 2407: 2405: 2402: 2400: 2397: 2395: 2392: 2390: 2387: 2385: 2382: 2380: 2377: 2375: 2372: 2370: 2367: 2365: 2362: 2360: 2357: 2353: 2350: 2348: 2345: 2344: 2342: 2341: 2339: 2333: 2323: 2320: 2318: 2315: 2313: 2310: 2308: 2305: 2303: 2300: 2298: 2295: 2293: 2290: 2288: 2285: 2283: 2280: 2278: 2275: 2273: 2270: 2268: 2265: 2263: 2260: 2258: 2255: 2254: 2251: 2245: 2242: 2240: 2237: 2235: 2232: 2230: 2227: 2225: 2222: 2220: 2217: 2215: 2212: 2210: 2207: 2205: 2202: 2200: 2197: 2195: 2194:Beta particle 2192: 2190: 2187: 2185: 2182: 2180: 2179:Cluster decay 2177: 2175: 2172: 2171: 2169: 2167: 2163: 2157: 2154: 2152: 2149: 2147: 2144: 2142: 2139: 2137: 2134: 2132: 2129: 2127: 2124: 2122: 2119: 2118: 2116: 2114: 2110: 2107: 2105:Main articles 2103: 2098: 2091: 2086: 2084: 2079: 2077: 2072: 2071: 2068: 2062: 2059: 2056: 2053: 2051: 2048: 2045: 2042: 2039: 2036: 2035: 2031: 2017: 2010: 2006: 2002: 2000: 1999:0-471-30932-X 1996: 1992: 1989: 1988:0-19-514665-4 1985: 1981: 1980: 1976: 1967: 1962: 1958: 1954: 1949: 1944: 1940: 1936: 1932: 1925: 1922: 1917: 1913: 1908: 1903: 1898: 1893: 1888: 1883: 1879: 1875: 1870: 1865: 1861: 1857: 1853: 1846: 1843: 1837: 1832: 1828: 1824: 1820: 1816: 1812: 1805: 1802: 1796: 1791: 1787: 1783: 1778: 1773: 1769: 1765: 1761: 1757: 1756:Soderberg, A. 1751: 1748: 1743: 1739: 1735: 1731: 1727: 1723: 1719: 1715: 1711: 1707: 1703: 1699: 1692: 1689: 1684: 1680: 1676: 1672: 1668: 1664: 1660: 1656: 1652: 1648: 1643: 1638: 1634: 1630: 1623: 1620: 1608: 1601: 1598: 1594: 1590: 1584: 1581: 1576: 1572: 1568: 1564: 1560: 1556: 1552: 1548: 1541: 1538: 1533: 1529: 1525: 1521: 1517: 1513: 1509: 1505: 1498: 1495: 1490: 1486: 1481: 1476: 1472: 1468: 1464: 1460: 1456: 1449: 1446: 1441: 1437: 1433: 1427: 1423: 1416: 1414: 1410: 1407: 1406:981-02-3156-3 1403: 1399: 1398: 1393: 1387: 1384: 1371: 1367: 1361: 1358: 1353: 1347: 1343: 1336: 1333: 1325: 1324: 1316: 1313: 1308: 1306:0-19-850829-8 1302: 1298: 1291: 1288: 1283: 1279: 1275: 1271: 1267: 1263: 1259: 1255: 1248: 1245: 1239: 1234: 1230: 1226: 1222: 1218: 1214: 1207: 1204: 1199: 1195: 1190: 1185: 1181: 1177: 1173: 1166: 1163: 1158: 1154: 1150: 1146: 1142: 1138: 1134: 1130: 1126: 1125: 1117: 1114: 1109: 1105: 1101: 1097: 1093: 1089: 1085: 1081: 1076: 1071: 1067: 1063: 1056: 1053: 1041: 1034: 1027: 1024: 1018: 1013: 1009: 1005: 1001: 997: 996:Physics Today 993: 986: 983: 979:. 2010-03-02. 978: 974: 968: 965: 959: 955: 952: 949: 946: 943: 940: 934: 931: 928: 925: 923: 920: 918: 915: 912: 909: 908: 904: 902: 900: 893:In supernovae 892: 890: 887: 883: 875: 873: 870: 866: 862: 858: 854: 846: 844: 842: 837: 833: 829: 825: 817: 812: 807: 802: 800: 796: 792: 788: 784: 783:V.L. Ginzburg 778: 775: 773: 769: 768:Hannes Alfvén 765: 761: 757: 749: 747: 744: 736: 732: 728: 724: 720: 713: 711: 709: 708:light sources 703: 687: 683: 671: 663: 661: 647: 625: 621: 612: 608: 604: 599: 597: 589: 573: 566: 551: 547: 543: 540: 537: 530: 527: 511: 504: 489: 482: 467: 460: 445: 438: 435: 417: 413: 405: 404: 403: 389: 382: 378: 371: 367: 361: 357: 345: 341: 337: 334: 329: 324: 320: 313: 308: 304: 298: 294: 285: 281: 275: 271: 267: 264: 258: 254: 248: 243: 239: 230: 228: 224: 219: 217: 212: 204: 201: 199: 195: 191: 184: 181: 179: 175: 171: 167: 159: 153: 145: 137: 133: 131: 127: 123: 119: 115: 110: 108: 104: 100: 96: 88: 84: 79: 75: 73: 69: 65: 60: 56: 51: 48:emitted when 47: 43: 39: 33: 19: 2532:Radiobiology 2414:Radiobiology 2374:Laser safety 2266: 2020:. Retrieved 2015: 2005:Ishfaq Ahmad 1938: 1934: 1924: 1897:10150/624387 1859: 1855: 1845: 1818: 1814: 1804: 1767: 1763: 1750: 1701: 1697: 1691: 1632: 1628: 1622: 1610:. Retrieved 1600: 1592: 1583: 1550: 1546: 1540: 1507: 1503: 1497: 1462: 1458: 1448: 1421: 1395: 1386: 1374:. Retrieved 1369: 1360: 1341: 1335: 1322: 1315: 1296: 1290: 1257: 1253: 1247: 1220: 1216: 1206: 1179: 1175: 1165: 1128: 1122: 1116: 1065: 1061: 1055: 1043:. Retrieved 1039: 1026: 999: 995: 985: 976: 967: 896: 879: 850: 835: 832:superluminal 821: 780: 776: 772:Solar flares 753: 740: 714:In astronomy 704: 673: 600: 593: 231: 220: 208: 186: 182: 163: 114:astrophysics 111: 106: 98: 92: 68:polarization 58: 54: 50:relativistic 41: 37: 36: 2156:Ultraviolet 2151:Radio waves 1376:13 December 1135:: 829–830. 1045:10 December 1031:Chen, Bin. 865:Crab nebula 851:A class of 811:Crab Nebula 791:Thomas Gold 758:in 1956 by 205:Description 198:Pomeranchuk 178:vacuum tube 174:synchrotron 126:photosphere 2550:Categories 2337:and health 2335:Radiation 2204:Cosmic ray 2022:16 January 1977:References 1948:2203.07388 1869:1601.06806 1862:(2): 140. 1075:2006.08887 828:Messier 87 795:Fred Hoyle 756:Messier 87 723:Messier 87 200:radiation. 118:black hole 2491:Half-life 2364:Dosimetry 2199:Gamma ray 2146:Microwave 2136:Starlight 2097:Radiation 1941:(1): 84. 1742:206509342 1726:0036-8075 1667:0036-8075 1642:0809.2998 1612:22 August 1575:0370-1301 1532:0031-899X 1489:0004-637X 1440:894893367 1394:" (1999) 1282:0031-899X 1176:Structure 1157:0031-899X 1108:219708236 1100:2470-0010 1002:(1): 70. 799:H. Alfven 743:power-law 684:γ 648:γ 622:γ 574:ρ 538:β 512:γ 414:ε 379:ρ 368:γ 358:β 342:ε 338:π 305:γ 272:ε 268:π 244:γ 225:) by the 132:regime. 44:) is the 2141:Sunlight 2126:Infrared 2007:, D.Sc. 1916:28684881 1734:18755970 1675:18927358 1198:10378266 905:See also 861:plerions 793:and Sir 223:SI units 194:Ivanenko 122:geodesic 57:⊥ 2352:chronic 2055:BioSync 1953:Bibcode 1907:5495200 1874:Bibcode 1823:Bibcode 1782:Bibcode 1706:Bibcode 1698:Science 1683:5387958 1647:Bibcode 1629:Science 1555:Bibcode 1512:Bibcode 1467:Bibcode 1262:Bibcode 1225:Bibcode 1137:Bibcode 1080:Bibcode 1004:Bibcode 586:is the 524:is the 432:is the 160:History 2534:, and 1997:  1986:  1914:  1904:  1740:  1732:  1724:  1681:  1673:  1665:  1573:  1530:  1487:  1438:  1428:  1404:  1348:  1303:  1280:  1196:  1155:  1131:(11). 1106:  1098:  869:pulsar 402:where 2347:acute 2244:X-ray 2131:Light 2012:(PDF) 1943:arXiv 1864:arXiv 1772:arXiv 1738:S2CID 1679:S2CID 1637:arXiv 1327:(PDF) 1104:S2CID 1070:arXiv 1036:(PDF) 960:Notes 85:in a 2024:2012 1995:ISBN 1984:ISBN 1912:PMID 1730:PMID 1722:ISSN 1671:PMID 1663:ISSN 1614:2012 1571:ISSN 1528:ISSN 1485:ISSN 1436:OCLC 1426:ISBN 1402:ISBN 1378:2021 1346:ISBN 1301:ISBN 1278:ISSN 1194:PMID 1153:ISSN 1096:ISSN 1047:2021 977:NIST 884:and 196:and 1961:doi 1939:938 1902:PMC 1892:hdl 1882:doi 1860:835 1831:doi 1819:499 1790:doi 1768:651 1714:doi 1702:321 1655:doi 1633:322 1563:doi 1520:doi 1475:doi 1463:124 1270:doi 1233:doi 1184:doi 1145:doi 1088:doi 1066:101 1012:doi 836:and 735:AGN 731:HST 725:'s 112:In 2552:: 2530:, 2526:, 2014:. 1959:. 1951:. 1937:. 1933:. 1910:. 1900:. 1890:. 1880:. 1872:. 1858:. 1854:. 1829:. 1817:. 1813:. 1788:. 1780:. 1766:. 1762:. 1736:. 1728:. 1720:. 1712:. 1700:. 1677:. 1669:. 1661:. 1653:. 1645:. 1631:. 1569:. 1561:. 1551:66 1549:. 1526:. 1518:. 1508:78 1506:. 1483:. 1473:. 1461:. 1457:. 1434:. 1412:^ 1400:, 1368:. 1276:. 1268:. 1258:65 1256:. 1231:. 1221:51 1219:. 1215:. 1192:. 1178:. 1174:. 1151:. 1143:. 1129:71 1127:. 1102:. 1094:. 1086:. 1078:. 1064:. 1038:. 1010:. 1000:69 998:. 994:. 975:. 843:. 729:, 660:. 598:. 229:: 218:. 109:. 89:. 74:. 2089:e 2082:t 2075:v 2026:. 1990:. 1969:. 1963:: 1955:: 1945:: 1918:. 1894:: 1884:: 1876:: 1866:: 1839:. 1833:: 1825:: 1798:. 1792:: 1784:: 1774:: 1744:. 1716:: 1708:: 1685:. 1657:: 1649:: 1639:: 1616:. 1577:. 1565:: 1557:: 1534:. 1522:: 1514:: 1491:. 1477:: 1469:: 1442:. 1380:. 1354:. 1309:. 1284:. 1272:: 1264:: 1241:. 1235:: 1227:: 1200:. 1186:: 1180:7 1159:. 1147:: 1139:: 1110:. 1090:: 1082:: 1072:: 1049:. 1020:. 1014:: 1006:: 688:4 626:3 564:, 552:c 548:/ 544:v 541:= 528:, 490:c 468:a 446:q 436:, 418:0 390:, 383:2 372:4 362:4 346:0 335:6 330:c 325:2 321:q 314:= 309:4 299:2 295:a 286:3 282:c 276:0 265:6 259:2 255:q 249:= 240:P 59:v 55:a 34:. 20:)

Index

Synchrotron light
Synchrotron light source
electromagnetic radiation
relativistic
particle accelerators
polarization
electromagnetic spectrum

Schwarzschild black hole
de Sitter universe
bremsstrahlung radiation
cyclotron emission
astrophysics
black hole
geodesic
photosphere
ultra-relativistic



General Electric
Schenectady, New York
synchrotron
vacuum tube
Cherenkov radiation
Ivanenko
Pomeranchuk
Maxwell's equations
Lorentz force law
SI units

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.