Knowledge (XXG)

Szpilrajn extension theorem

Source đź“ť

1698:: if the union of a family of finite sets is given the empty partial order, and this is extended to a total order, the extension defines a choice from each finite set, its minimum element in the total order. Although finite choice is a weak version of the axiom of choice, it is independent of 1712:, can be combined to prove the full axiom of choice. With these assumptions, one can choose an element from any given set by extending its empty partial order, finding a cofinal well-order, and choosing the minimum element from that well-ordering. 813:
partial order cannot be extended, by definition, so it follows from this step that a maximal partial order must be a total order. In the second step, Zorn's lemma is applied to find a maximal partial order that extends any given partial order.
1247: 1577: 1548: 1151: 1058: 809:
The theorem is proved in two steps. First, one shows that, if a partial order does not compare some two elements, it can be extended to an order with a superset of comparable pairs. A
1283: 950: 446: 335: 551: 2801: 1641: 1383: 1102: 1029: 952:
This produces a relation that is still reflexive, antisymmetric and transitive and that strictly contains the original one. It follows that if the partial orders extending
402: 1359: 1321: 201: 759: 586: 507: 291: 1797: 1829: 1519: 1487: 1455: 1215: 1183: 140: 230: 1855: 1762: 907: 881: 724: 698: 472: 361: 262: 672: 163: 1684: 1664: 1617: 1597: 1423: 1403: 1122: 1078: 997: 970: 855: 835: 799: 779: 649: 629: 609: 108: 88: 2758: 1007:
has a maximal element. A chain in this poset is a set of relations in which, for every two relations, one extends the other. An upper bound for a chain
2741: 2271: 2107: 2010: 2588: 588:
A partial order is, by definition, a reflexive, transitive and antisymmetric relation. A total order is a partial order that is connex.
1705:
The Szpilrajn extension theorem together with another consequence of the axiom of choice, the principle that every total order has a
2724: 2583: 1975: 1931: 2578: 1699: 2214: 2296: 1694:
Some form of the axiom of choice is necessary in proving the Szpilrajn extension theorem. The extension theorem implies the
1962:, Mathematical Surveys and Monographs, vol. 59, Providence, Rhode Island: American Mathematical Society, p. 299, 2615: 2535: 2209: 2400: 2329: 1220: 1553: 1524: 1127: 1034: 972:
are themselves partially ordered by extension, then any maximal element of this extension order must be a total order.
2303: 2291: 2229: 2204: 2158: 2127: 2234: 2224: 2063:
Cato, Susumu (August 2011), "Szpilrajn, Arrow and Suzumura: concise proofs of extension theorems and an extension",
1918:, Studies in the History of Mathematics and Physical Sciences, vol. 8, New York: Springer-Verlag, p. 222, 883:
to the relation, which may result in a non-transitive relation, and then restoring transitivity by adding all pairs
2600: 2100: 2573: 2239: 2791: 2505: 2132: 999:, ordered by extension, has a maximal element. The existence of such a maximal element is proved by applying 2753: 2736: 781:
that is reflexive, transitive and antisymmetric (that is, a partial order) is contained in another relation
1252: 912: 2665: 2281: 1695: 411: 405: 300: 516: 2796: 2643: 2478: 2469: 2338: 2173: 2137: 2093: 1706: 976: 51:
in such a way that every pair becomes comparable. The theorem is one of many examples of the use of the
2219: 2731: 2690: 2680: 2670: 2415: 2378: 2368: 2348: 2333: 1622: 1364: 1083: 1010: 2658: 2569: 2515: 2474: 2464: 2353: 2286: 2249: 294: 2697: 2550: 2459: 2449: 2390: 2308: 2042: 366: 235: 2770: 2610: 2244: 1734:
Suzumura proved that a binary relation can be extended to a total preorder if and only if it is
1326: 1288: 168: 729: 556: 477: 2707: 2685: 2545: 2530: 2510: 2313: 2006: 1971: 1927: 1913: 267: 2520: 2373: 2072: 2034: 1963: 1919: 1893: 1874: 1767: 48: 32: 1985: 1941: 1802: 1492: 1460: 1428: 1188: 1156: 113: 2702: 2485: 2363: 2358: 2343: 2168: 2153: 1981: 1937: 810: 510: 206: 68: 52: 2259: 1834: 1741: 1000: 886: 860: 703: 677: 451: 340: 241: 56: 654: 145: 2620: 2605: 2595: 2454: 2432: 2410: 1878: 1669: 1649: 1602: 1582: 1408: 1388: 1107: 1063: 982: 955: 840: 820: 784: 764: 634: 614: 594: 93: 73: 1686:. By the first step this maximal element must be a total order, completing the proof. 2785: 2719: 2675: 2653: 2525: 2395: 2383: 2188: 2076: 1998: 1955: 1728: 1720: 44: 36: 1003:
to this poset. Zorn's lemma states that a partial order in which every chain has an
2540: 2422: 2405: 2323: 2163: 2116: 1646:
This argument shows that Zorn's lemma may be applied to the poset of extensions of
801:
which is reflexive, transitive, antisymmetric and connex (that is, a total order).
20: 2746: 2439: 2318: 2183: 1004: 40: 2714: 2648: 2489: 1923: 1709: 2765: 2638: 2444: 1898: 1731:(transitive and connex relation). This claim was later proved by Hansson. 2560: 2427: 2178: 1724: 2046: 817:
For the first step, suppose that a given partial order does not compare
2038: 1967: 2025:
Hansson, Bengt (1968), "Choice structures and preference relations",
1915:
Zermelo's Axiom of Choice: Its Origins, Development, and Influence
2089: 2085: 2001:(2012), "IV.3: Quasi-orderings and compatible weak orderings", 1628: 1563: 1534: 1370: 1270: 1230: 1137: 1089: 1044: 1016: 1738:, which means that there is no cycle of elements such that 1727:(reflexive and transitive relation) can be extended to a 1031:
can be found as the union of the relations in the chain,
1557: 1528: 1224: 1131: 1038: 857:. Then the order is extended by first adding the pair 1837: 1805: 1770: 1744: 1672: 1652: 1625: 1605: 1585: 1556: 1527: 1521:, as does the union. Similarly, it can be shown that 1495: 1463: 1431: 1411: 1391: 1367: 1329: 1291: 1255: 1223: 1191: 1159: 1130: 1110: 1086: 1066: 1037: 1013: 985: 958: 915: 889: 863: 843: 823: 787: 767: 732: 706: 680: 657: 637: 617: 597: 559: 519: 480: 454: 414: 369: 343: 303: 270: 244: 209: 171: 148: 116: 96: 76: 47:
elements that leaves some pairs incomparable can be
2631: 2559: 2498: 2268: 2197: 2146: 2005:(3rd ed.), Yale University Press, p. 64, 43:. Intuitively, the theorem says that any method of 1849: 1823: 1791: 1756: 1678: 1658: 1635: 1611: 1591: 1571: 1542: 1513: 1481: 1449: 1417: 1397: 1377: 1353: 1315: 1277: 1242:{\displaystyle \textstyle \bigcup {\mathcal {C}},} 1241: 1209: 1177: 1145: 1116: 1096: 1072: 1052: 1023: 991: 964: 944: 901: 875: 849: 829: 793: 773: 753: 718: 692: 666: 643: 623: 603: 580: 545: 501: 466: 440: 396: 355: 329: 285: 256: 224: 195: 157: 134: 102: 82: 1572:{\displaystyle \textstyle \bigcup {\mathcal {C}}} 1543:{\displaystyle \textstyle \bigcup {\mathcal {C}}} 1146:{\displaystyle \textstyle \bigcup {\mathcal {C}}} 1053:{\displaystyle \textstyle \bigcup {\mathcal {C}}} 761:The extension theorem states that every relation 1799:and there is some pair of consecutive elements 59:to find a maximal set with certain properties. 1599:, so it belongs to the poset of extensions of 110:is formally defined as a set of ordered pairs 2101: 8: 1489:, and by its transitivity it also contains 2802:Theorems in the foundations of mathematics 2759:Positive cone of a partially ordered group 2108: 2094: 2086: 1897: 1836: 1804: 1769: 1743: 1671: 1651: 1627: 1626: 1624: 1604: 1584: 1562: 1561: 1555: 1533: 1532: 1526: 1494: 1462: 1430: 1410: 1390: 1369: 1368: 1366: 1328: 1290: 1269: 1268: 1254: 1229: 1228: 1222: 1190: 1158: 1136: 1135: 1129: 1109: 1088: 1087: 1085: 1065: 1043: 1042: 1036: 1015: 1014: 1012: 984: 957: 925: 914: 888: 862: 842: 822: 786: 766: 731: 705: 679: 656: 636: 616: 596: 558: 529: 518: 479: 453: 424: 413: 368: 342: 313: 302: 269: 243: 208: 170: 147: 115: 95: 75: 2742:Positive cone of an ordered vector space 1060:. This union is a relation that extends 1866: 1764:for every pair of consecutive elements 1425:must extend the other and contain both 1153:is a transitive relation. Suppose that 2058: 2056: 16:Mathematical result on order relations 1278:{\displaystyle S,T\in {\mathcal {C}}} 945:{\displaystyle qRx{\text{ and }}yRp.} 7: 1879:"Sur l'extension de l'ordre partiel" 1124:as a subset. Next, it is shown that 441:{\displaystyle xRy{\text{ and }}yRx} 330:{\displaystyle xRy{\text{ and }}yRz} 2003:Social Choice and Individual Values 1960:Consequences of the Axiom of Choice 546:{\displaystyle xRy{\text{ or }}yRx} 2269:Properties & Types ( 14: 2725:Positive cone of an ordered field 611:is contained in another relation 2579:Ordered topological vector space 2077:10.1111/j.1467-999x.2011.04130.x 1818: 1806: 1783: 1771: 1666:, producing a maximal element 1636:{\displaystyle {\mathcal {C}}} 1508: 1496: 1476: 1464: 1444: 1432: 1378:{\displaystyle {\mathcal {C}}} 1342: 1330: 1304: 1292: 1204: 1192: 1172: 1160: 1097:{\displaystyle {\mathcal {C}}} 1024:{\displaystyle {\mathcal {C}}} 184: 172: 129: 117: 1: 2536:Series-parallel partial order 2215:Cantor's isomorphism theorem 1619:, and is an upper bound for 979:of partial orders extending 2255:Szpilrajn extension theorem 2230:Hausdorff maximal principle 2205:Boolean prime ideal theorem 1700:Zermelo–Fraenkel set theory 397:{\displaystyle x,y,z\in X;} 35:in 1930, states that every 25:Szpilrajn extension theorem 2818: 2601:Topological vector lattice 1912:Moore, Gregory H. (1982), 1354:{\displaystyle (y,z)\in T} 1316:{\displaystyle (x,y)\in S} 1104:is a partial order having 975:Next it is shown that the 631:when all ordered pairs in 196:{\displaystyle (x,y)\in R} 2123: 1924:10.1007/978-1-4613-9478-5 1080:, since every element of 754:{\displaystyle x,y\in X.} 581:{\displaystyle x,y\in X.} 502:{\displaystyle x,y\in X;} 63:Definitions and statement 29:order-extension principle 2210:Cantor–Bernstein theorem 1716:Other extension theorems 1550:is antisymmetric. Thus, 264:holds for every element 203:is often abbreviated as 2754:Partially ordered group 2574:Specialization preorder 1899:10.4064/fm-16-1-386-389 1886:Fundamenta Mathematicae 1831:in the cycle for which 286:{\displaystyle x\in X;} 2240:Kruskal's tree theorem 2235:Knaster–Tarski theorem 2225:Dushnik–Miller theorem 1851: 1825: 1793: 1792:{\displaystyle (x,y),} 1758: 1696:axiom of finite choice 1680: 1660: 1637: 1613: 1593: 1573: 1544: 1515: 1483: 1451: 1419: 1399: 1379: 1355: 1317: 1279: 1243: 1211: 1179: 1147: 1118: 1098: 1074: 1054: 1025: 993: 966: 946: 903: 877: 851: 831: 795: 775: 755: 720: 694: 668: 645: 625: 605: 582: 547: 503: 468: 442: 398: 357: 331: 287: 258: 226: 197: 159: 136: 104: 84: 1852: 1826: 1824:{\displaystyle (x,y)} 1794: 1759: 1681: 1661: 1638: 1614: 1594: 1574: 1545: 1516: 1514:{\displaystyle (x,z)} 1484: 1482:{\displaystyle (y,z)} 1452: 1450:{\displaystyle (x,y)} 1420: 1400: 1380: 1356: 1318: 1280: 1244: 1212: 1210:{\displaystyle (y,z)} 1180: 1178:{\displaystyle (x,y)} 1148: 1119: 1099: 1075: 1055: 1026: 994: 967: 947: 904: 878: 852: 832: 796: 776: 756: 721: 695: 669: 646: 626: 606: 583: 548: 504: 469: 443: 399: 358: 332: 288: 259: 227: 198: 160: 137: 135:{\displaystyle (x,y)} 105: 85: 2732:Ordered vector space 1958:(1998), "Note 121", 1835: 1803: 1768: 1742: 1670: 1650: 1623: 1603: 1583: 1554: 1525: 1493: 1461: 1429: 1409: 1389: 1365: 1327: 1289: 1253: 1249:so that there exist 1221: 1189: 1157: 1128: 1108: 1084: 1064: 1035: 1011: 983: 956: 913: 887: 861: 841: 821: 785: 765: 730: 704: 678: 655: 635: 615: 595: 557: 517: 478: 452: 412: 367: 341: 301: 268: 242: 225:{\displaystyle xRy.} 207: 169: 146: 114: 94: 74: 2570:Alexandrov topology 2516:Lexicographic order 2475:Well-quasi-ordering 1850:{\displaystyle yRx} 1757:{\displaystyle xRy} 1736:Suzumura-consistent 1579:is an extension of 1385:is a chain, one of 902:{\displaystyle qRp} 876:{\displaystyle xRy} 719:{\displaystyle xSy} 693:{\displaystyle xRy} 467:{\displaystyle x=y} 356:{\displaystyle xRz} 257:{\displaystyle xRx} 2551:Transitive closure 2511:Converse/Transpose 2220:Dilworth's theorem 2039:10.1007/BF00484979 1847: 1821: 1789: 1754: 1723:stated that every 1676: 1656: 1633: 1609: 1589: 1569: 1568: 1540: 1539: 1511: 1479: 1447: 1415: 1395: 1375: 1351: 1313: 1275: 1239: 1238: 1207: 1175: 1143: 1142: 1114: 1094: 1070: 1050: 1049: 1021: 989: 962: 942: 899: 873: 847: 827: 791: 771: 751: 716: 690: 667:{\displaystyle S;} 664: 641: 621: 601: 578: 543: 499: 464: 438: 394: 353: 327: 283: 254: 222: 193: 158:{\displaystyle X,} 155: 132: 100: 80: 39:is contained in a 2779: 2778: 2737:Partially ordered 2546:Symmetric closure 2531:Reflexive closure 2274: 2012:978-0-300-18698-7 1999:Arrow, Kenneth J. 1875:Szpilrajn, Edward 1679:{\displaystyle Q} 1659:{\displaystyle R} 1612:{\displaystyle R} 1592:{\displaystyle R} 1418:{\displaystyle T} 1398:{\displaystyle S} 1117:{\displaystyle R} 1073:{\displaystyle R} 992:{\displaystyle R} 965:{\displaystyle R} 928: 850:{\displaystyle y} 830:{\displaystyle x} 794:{\displaystyle S} 774:{\displaystyle R} 644:{\displaystyle R} 624:{\displaystyle S} 604:{\displaystyle R} 532: 427: 316: 103:{\displaystyle X} 83:{\displaystyle R} 27:(also called the 2809: 2521:Linear extension 2270: 2250:Mirsky's theorem 2110: 2103: 2096: 2087: 2080: 2079: 2060: 2051: 2049: 2022: 2016: 2015: 1995: 1989: 1988: 1968:10.1090/surv/059 1951: 1945: 1944: 1909: 1903: 1902: 1901: 1883: 1871: 1856: 1854: 1853: 1848: 1830: 1828: 1827: 1822: 1798: 1796: 1795: 1790: 1763: 1761: 1760: 1755: 1702:without choice. 1685: 1683: 1682: 1677: 1665: 1663: 1662: 1657: 1642: 1640: 1639: 1634: 1632: 1631: 1618: 1616: 1615: 1610: 1598: 1596: 1595: 1590: 1578: 1576: 1575: 1570: 1567: 1566: 1549: 1547: 1546: 1541: 1538: 1537: 1520: 1518: 1517: 1512: 1488: 1486: 1485: 1480: 1456: 1454: 1453: 1448: 1424: 1422: 1421: 1416: 1404: 1402: 1401: 1396: 1384: 1382: 1381: 1376: 1374: 1373: 1360: 1358: 1357: 1352: 1322: 1320: 1319: 1314: 1284: 1282: 1281: 1276: 1274: 1273: 1248: 1246: 1245: 1240: 1234: 1233: 1216: 1214: 1213: 1208: 1184: 1182: 1181: 1176: 1152: 1150: 1149: 1144: 1141: 1140: 1123: 1121: 1120: 1115: 1103: 1101: 1100: 1095: 1093: 1092: 1079: 1077: 1076: 1071: 1059: 1057: 1056: 1051: 1048: 1047: 1030: 1028: 1027: 1022: 1020: 1019: 998: 996: 995: 990: 971: 969: 968: 963: 951: 949: 948: 943: 929: 926: 908: 906: 905: 900: 882: 880: 879: 874: 856: 854: 853: 848: 836: 834: 833: 828: 800: 798: 797: 792: 780: 778: 777: 772: 760: 758: 757: 752: 725: 723: 722: 717: 699: 697: 696: 691: 673: 671: 670: 665: 650: 648: 647: 642: 630: 628: 627: 622: 610: 608: 607: 602: 587: 585: 584: 579: 552: 550: 549: 544: 533: 530: 508: 506: 505: 500: 473: 471: 470: 465: 447: 445: 444: 439: 428: 425: 403: 401: 400: 395: 362: 360: 359: 354: 336: 334: 333: 328: 317: 314: 292: 290: 289: 284: 263: 261: 260: 255: 231: 229: 228: 223: 202: 200: 199: 194: 164: 162: 161: 156: 141: 139: 138: 133: 109: 107: 106: 101: 89: 87: 86: 81: 33:Edward Szpilrajn 2817: 2816: 2812: 2811: 2810: 2808: 2807: 2806: 2792:Axiom of choice 2782: 2781: 2780: 2775: 2771:Young's lattice 2627: 2555: 2494: 2344:Heyting algebra 2292:Boolean algebra 2264: 2245:Laver's theorem 2193: 2159:Boolean algebra 2154:Binary relation 2142: 2119: 2114: 2084: 2083: 2062: 2061: 2054: 2024: 2023: 2019: 2013: 1997: 1996: 1992: 1978: 1953: 1952: 1948: 1934: 1911: 1910: 1906: 1881: 1873: 1872: 1868: 1863: 1857:does not hold. 1833: 1832: 1801: 1800: 1766: 1765: 1740: 1739: 1718: 1692: 1668: 1667: 1648: 1647: 1621: 1620: 1601: 1600: 1581: 1580: 1552: 1551: 1523: 1522: 1491: 1490: 1459: 1458: 1427: 1426: 1407: 1406: 1387: 1386: 1363: 1362: 1325: 1324: 1287: 1286: 1251: 1250: 1219: 1218: 1187: 1186: 1155: 1154: 1126: 1125: 1106: 1105: 1082: 1081: 1062: 1061: 1033: 1032: 1009: 1008: 981: 980: 954: 953: 927: and  911: 910: 885: 884: 859: 858: 839: 838: 819: 818: 807: 783: 782: 763: 762: 728: 727: 702: 701: 676: 675: 653: 652: 651:also appear in 633: 632: 613: 612: 593: 592: 555: 554: 515: 514: 511:connex relation 476: 475: 450: 449: 426: and  410: 409: 365: 364: 339: 338: 315: and  299: 298: 266: 265: 240: 239: 205: 204: 167: 166: 144: 143: 142:of elements of 112: 111: 92: 91: 72: 71: 69:binary relation 65: 55:in the form of 53:axiom of choice 17: 12: 11: 5: 2815: 2813: 2805: 2804: 2799: 2794: 2784: 2783: 2777: 2776: 2774: 2773: 2768: 2763: 2762: 2761: 2751: 2750: 2749: 2744: 2739: 2729: 2728: 2727: 2717: 2712: 2711: 2710: 2705: 2698:Order morphism 2695: 2694: 2693: 2683: 2678: 2673: 2668: 2663: 2662: 2661: 2651: 2646: 2641: 2635: 2633: 2629: 2628: 2626: 2625: 2624: 2623: 2618: 2616:Locally convex 2613: 2608: 2598: 2596:Order topology 2593: 2592: 2591: 2589:Order topology 2586: 2576: 2566: 2564: 2557: 2556: 2554: 2553: 2548: 2543: 2538: 2533: 2528: 2523: 2518: 2513: 2508: 2502: 2500: 2496: 2495: 2493: 2492: 2482: 2472: 2467: 2462: 2457: 2452: 2447: 2442: 2437: 2436: 2435: 2425: 2420: 2419: 2418: 2413: 2408: 2403: 2401:Chain-complete 2393: 2388: 2387: 2386: 2381: 2376: 2371: 2366: 2356: 2351: 2346: 2341: 2336: 2326: 2321: 2316: 2311: 2306: 2301: 2300: 2299: 2289: 2284: 2278: 2276: 2266: 2265: 2263: 2262: 2257: 2252: 2247: 2242: 2237: 2232: 2227: 2222: 2217: 2212: 2207: 2201: 2199: 2195: 2194: 2192: 2191: 2186: 2181: 2176: 2171: 2166: 2161: 2156: 2150: 2148: 2144: 2143: 2141: 2140: 2135: 2130: 2124: 2121: 2120: 2115: 2113: 2112: 2105: 2098: 2090: 2082: 2081: 2071:(2): 235–249, 2065:Metroeconomica 2052: 2033:(4): 443–458, 2017: 2011: 1990: 1976: 1956:Rubin, Jean E. 1954:Howard, Paul; 1946: 1932: 1904: 1865: 1864: 1862: 1859: 1846: 1843: 1840: 1820: 1817: 1814: 1811: 1808: 1788: 1785: 1782: 1779: 1776: 1773: 1753: 1750: 1747: 1737: 1729:total preorder 1717: 1714: 1691: 1688: 1675: 1655: 1630: 1608: 1588: 1565: 1560: 1536: 1531: 1510: 1507: 1504: 1501: 1498: 1478: 1475: 1472: 1469: 1466: 1446: 1443: 1440: 1437: 1434: 1414: 1394: 1372: 1350: 1347: 1344: 1341: 1338: 1335: 1332: 1312: 1309: 1306: 1303: 1300: 1297: 1294: 1272: 1267: 1264: 1261: 1258: 1237: 1232: 1227: 1206: 1203: 1200: 1197: 1194: 1174: 1171: 1168: 1165: 1162: 1139: 1134: 1113: 1091: 1069: 1046: 1041: 1018: 988: 961: 941: 938: 935: 932: 924: 921: 918: 898: 895: 892: 872: 869: 866: 846: 826: 806: 803: 790: 770: 750: 747: 744: 741: 738: 735: 715: 712: 709: 689: 686: 683: 663: 660: 640: 620: 600: 577: 574: 571: 568: 565: 562: 553:holds for all 542: 539: 536: 531: or  528: 525: 522: 498: 495: 492: 489: 486: 483: 463: 460: 457: 437: 434: 431: 423: 420: 417: 393: 390: 387: 384: 381: 378: 375: 372: 352: 349: 346: 326: 323: 320: 312: 309: 306: 282: 279: 276: 273: 253: 250: 247: 234:A relation is 221: 218: 215: 212: 192: 189: 186: 183: 180: 177: 174: 154: 151: 131: 128: 125: 122: 119: 99: 79: 64: 61: 15: 13: 10: 9: 6: 4: 3: 2: 2814: 2803: 2800: 2798: 2795: 2793: 2790: 2789: 2787: 2772: 2769: 2767: 2764: 2760: 2757: 2756: 2755: 2752: 2748: 2745: 2743: 2740: 2738: 2735: 2734: 2733: 2730: 2726: 2723: 2722: 2721: 2720:Ordered field 2718: 2716: 2713: 2709: 2706: 2704: 2701: 2700: 2699: 2696: 2692: 2689: 2688: 2687: 2684: 2682: 2679: 2677: 2676:Hasse diagram 2674: 2672: 2669: 2667: 2664: 2660: 2657: 2656: 2655: 2654:Comparability 2652: 2650: 2647: 2645: 2642: 2640: 2637: 2636: 2634: 2630: 2622: 2619: 2617: 2614: 2612: 2609: 2607: 2604: 2603: 2602: 2599: 2597: 2594: 2590: 2587: 2585: 2582: 2581: 2580: 2577: 2575: 2571: 2568: 2567: 2565: 2562: 2558: 2552: 2549: 2547: 2544: 2542: 2539: 2537: 2534: 2532: 2529: 2527: 2526:Product order 2524: 2522: 2519: 2517: 2514: 2512: 2509: 2507: 2504: 2503: 2501: 2499:Constructions 2497: 2491: 2487: 2483: 2480: 2476: 2473: 2471: 2468: 2466: 2463: 2461: 2458: 2456: 2453: 2451: 2448: 2446: 2443: 2441: 2438: 2434: 2431: 2430: 2429: 2426: 2424: 2421: 2417: 2414: 2412: 2409: 2407: 2404: 2402: 2399: 2398: 2397: 2396:Partial order 2394: 2392: 2389: 2385: 2384:Join and meet 2382: 2380: 2377: 2375: 2372: 2370: 2367: 2365: 2362: 2361: 2360: 2357: 2355: 2352: 2350: 2347: 2345: 2342: 2340: 2337: 2335: 2331: 2327: 2325: 2322: 2320: 2317: 2315: 2312: 2310: 2307: 2305: 2302: 2298: 2295: 2294: 2293: 2290: 2288: 2285: 2283: 2282:Antisymmetric 2280: 2279: 2277: 2273: 2267: 2261: 2258: 2256: 2253: 2251: 2248: 2246: 2243: 2241: 2238: 2236: 2233: 2231: 2228: 2226: 2223: 2221: 2218: 2216: 2213: 2211: 2208: 2206: 2203: 2202: 2200: 2196: 2190: 2189:Weak ordering 2187: 2185: 2182: 2180: 2177: 2175: 2174:Partial order 2172: 2170: 2167: 2165: 2162: 2160: 2157: 2155: 2152: 2151: 2149: 2145: 2139: 2136: 2134: 2131: 2129: 2126: 2125: 2122: 2118: 2111: 2106: 2104: 2099: 2097: 2092: 2091: 2088: 2078: 2074: 2070: 2066: 2059: 2057: 2053: 2050:; see Lemma 3 2048: 2044: 2040: 2036: 2032: 2028: 2021: 2018: 2014: 2008: 2004: 2000: 1994: 1991: 1987: 1983: 1979: 1977:0-8218-0977-6 1973: 1969: 1965: 1961: 1957: 1950: 1947: 1943: 1939: 1935: 1933:0-387-90670-3 1929: 1925: 1921: 1917: 1916: 1908: 1905: 1900: 1895: 1891: 1888:(in French), 1887: 1880: 1876: 1870: 1867: 1860: 1858: 1844: 1841: 1838: 1815: 1812: 1809: 1786: 1780: 1777: 1774: 1751: 1748: 1745: 1735: 1732: 1730: 1726: 1722: 1715: 1713: 1711: 1708: 1703: 1701: 1697: 1689: 1687: 1673: 1653: 1644: 1606: 1586: 1558: 1529: 1505: 1502: 1499: 1473: 1470: 1467: 1441: 1438: 1435: 1412: 1392: 1348: 1345: 1339: 1336: 1333: 1310: 1307: 1301: 1298: 1295: 1265: 1262: 1259: 1256: 1235: 1225: 1201: 1198: 1195: 1169: 1166: 1163: 1132: 1111: 1067: 1039: 1006: 1002: 986: 978: 973: 959: 939: 936: 933: 930: 922: 919: 916: 896: 893: 890: 870: 867: 864: 844: 824: 815: 812: 804: 802: 788: 768: 748: 745: 742: 739: 736: 733: 713: 710: 707: 687: 684: 681: 661: 658: 638: 618: 598: 589: 575: 572: 569: 566: 563: 560: 540: 537: 534: 526: 523: 520: 512: 496: 493: 490: 487: 484: 481: 461: 458: 455: 435: 432: 429: 421: 418: 415: 407: 406:antisymmetric 391: 388: 385: 382: 379: 376: 373: 370: 350: 347: 344: 324: 321: 318: 310: 307: 304: 296: 280: 277: 274: 271: 251: 248: 245: 237: 232: 219: 216: 213: 210: 190: 187: 181: 178: 175: 152: 149: 126: 123: 120: 97: 77: 70: 62: 60: 58: 54: 50: 46: 42: 38: 37:partial order 34: 31:), proved by 30: 26: 22: 2797:Order theory 2563:& Orders 2541:Star product 2470:Well-founded 2423:Prefix order 2379:Distributive 2369:Complemented 2339:Foundational 2304:Completeness 2260:Zorn's lemma 2254: 2164:Cyclic order 2147:Key concepts 2117:Order theory 2068: 2064: 2030: 2026: 2020: 2002: 1993: 1959: 1949: 1914: 1907: 1889: 1885: 1869: 1733: 1719: 1704: 1693: 1645: 1001:Zorn's lemma 974: 816: 808: 590: 509:and it is a 233: 66: 57:Zorn's lemma 28: 24: 21:order theory 18: 2747:Riesz space 2708:Isomorphism 2584:Normal cone 2506:Composition 2440:Semilattice 2349:Homogeneous 2334:Equivalence 2184:Total order 1892:: 386–389, 1005:upper bound 591:A relation 41:total order 2786:Categories 2715:Order type 2649:Cofinality 2490:Well-order 2465:Transitive 2354:Idempotent 2287:Asymmetric 1861:References 1710:well-order 1361:. Because 1285:such that 909:such that 295:transitive 2766:Upper set 2703:Embedding 2639:Antichain 2460:Tolerance 2450:Symmetric 2445:Semiorder 2391:Reflexive 2309:Connected 1559:⋃ 1530:⋃ 1346:∈ 1308:∈ 1266:∈ 1226:⋃ 1133:⋃ 1040:⋃ 743:∈ 570:∈ 491:∈ 386:∈ 275:∈ 236:reflexive 188:∈ 90:on a set 45:comparing 2561:Topology 2428:Preorder 2411:Eulerian 2374:Complete 2324:Directed 2314:Covering 2179:Preorder 2138:Category 2133:Glossary 2047:20114617 2027:Synthese 1877:(1930), 1725:preorder 1690:Strength 726:for all 700:implies 674:that is, 474:for all 363:for all 49:extended 2666:Duality 2644:Cofinal 2632:Related 2611:FrĂ©chet 2488:)  2364:Bounded 2359:Lattice 2332:)  2330:Partial 2198:Results 2169:Lattice 1986:1637107 1942:0679315 1707:cofinal 1217:are in 811:maximal 2691:Subnet 2671:Filter 2621:Normed 2606:Banach 2572:& 2479:Better 2416:Strict 2406:Graded 2297:topics 2128:Topics 2045:  2009:  1984:  1974:  1940:  1930:  448:imply 404:it is 337:imply 293:it is 23:, the 2681:Ideal 2659:Graph 2455:Total 2433:Total 2319:Dense 2043:JSTOR 1882:(PDF) 1721:Arrow 977:poset 805:Proof 2272:list 2007:ISBN 1972:ISBN 1928:ISBN 1457:and 1323:and 1185:and 837:and 165:and 2686:Net 2486:Pre 2073:doi 2035:doi 1964:doi 1920:doi 1894:doi 1405:or 513:if 408:if 297:if 238:if 19:In 2788:: 2069:63 2067:, 2055:^ 2041:, 2031:18 2029:, 1982:MR 1980:, 1970:, 1938:MR 1936:, 1926:, 1890:16 1884:, 1643:. 67:A 2484:( 2481:) 2477:( 2328:( 2275:) 2109:e 2102:t 2095:v 2075:: 2037:: 1966:: 1922:: 1896:: 1845:x 1842:R 1839:y 1819:) 1816:y 1813:, 1810:x 1807:( 1787:, 1784:) 1781:y 1778:, 1775:x 1772:( 1752:y 1749:R 1746:x 1674:Q 1654:R 1629:C 1607:R 1587:R 1564:C 1535:C 1509:) 1506:z 1503:, 1500:x 1497:( 1477:) 1474:z 1471:, 1468:y 1465:( 1445:) 1442:y 1439:, 1436:x 1433:( 1413:T 1393:S 1371:C 1349:T 1343:) 1340:z 1337:, 1334:y 1331:( 1311:S 1305:) 1302:y 1299:, 1296:x 1293:( 1271:C 1263:T 1260:, 1257:S 1236:, 1231:C 1205:) 1202:z 1199:, 1196:y 1193:( 1173:) 1170:y 1167:, 1164:x 1161:( 1138:C 1112:R 1090:C 1068:R 1045:C 1017:C 987:R 960:R 940:. 937:p 934:R 931:y 923:x 920:R 917:q 897:p 894:R 891:q 871:y 868:R 865:x 845:y 825:x 789:S 769:R 749:. 746:X 740:y 737:, 734:x 714:y 711:S 708:x 688:y 685:R 682:x 662:; 659:S 639:R 619:S 599:R 576:. 573:X 567:y 564:, 561:x 541:x 538:R 535:y 527:y 524:R 521:x 497:; 494:X 488:y 485:, 482:x 462:y 459:= 456:x 436:x 433:R 430:y 422:y 419:R 416:x 392:; 389:X 383:z 380:, 377:y 374:, 371:x 351:z 348:R 345:x 325:z 322:R 319:y 311:y 308:R 305:x 281:; 278:X 272:x 252:x 249:R 246:x 220:. 217:y 214:R 211:x 191:R 185:) 182:y 179:, 176:x 173:( 153:, 150:X 130:) 127:y 124:, 121:x 118:( 98:X 78:R

Index

order theory
Edward Szpilrajn
partial order
total order
comparing
extended
axiom of choice
Zorn's lemma
binary relation
reflexive
transitive
antisymmetric
connex relation
maximal
poset
Zorn's lemma
upper bound
axiom of finite choice
Zermelo–Fraenkel set theory
cofinal
well-order
Arrow
preorder
total preorder
Szpilrajn, Edward
"Sur l'extension de l'ordre partiel"
doi
10.4064/fm-16-1-386-389
Zermelo's Axiom of Choice: Its Origins, Development, and Influence
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑