Knowledge (XXG)

Small-angle X-ray scattering

Source đź“ť

178:
sample perpendicular to the direction of the primary beam that initially hit the sample. The scattering pattern contains the information on the structure of the sample. The major problem that must be overcome in SAXS instrumentation is the separation of the weak scattered intensity from the strong main beam. The smaller the desired angle, the more difficult this becomes. The problem is comparable to one encountered when trying to observe a weakly radiant object close to the Sun, like the Sun's corona. Only if the Moon blocks out the main light source does the corona become visible. Likewise, in SAXS the non-scattered beam that merely travels through the sample must be blocked,
2934: 66:. Depending on the angular range in which a clear scattering signal can be recorded, SAXS is capable of delivering structural information of dimensions between 1 and 100 nm, and of repeat distances in partially ordered systems of up to 150 nm. USAXS (ultra-small angle X-ray scattering) can resolve even larger dimensions, as the smaller the recorded angle, the larger the object dimensions that are probed. 3327: 3339: 244:) of many adjacent pinhole patterns. The resulting smearing can be easily removed using model-free algorithms or deconvolution methods based on Fourier transformation, but only if the system is isotropic. Line collimation is of great benefit for any isotropic nanostructured materials, e.g. proteins, surfactants, particle dispersion and emulsions. 219:
and the wastefulness of the collimation process—only those photons are allowed to pass that happen to fly in the right direction—the scattered intensity is small and therefore the measurement time is in the order of hours or days in case of very weak scatterers. If focusing optics like bent mirrors or bent
239:
Line-collimation instruments restrict the beam only in one dimension (rather than two as for point collimation) so that the beam cross-section is a long but narrow line. The illuminated sample volume is much larger compared to point-collimation and the scattered intensity at the same flux density is
177:
of X-rays is brought to a sample from which some of the X-rays scatter, while most simply go through the sample without interacting with it. The scattered X-rays form a scattering pattern which is then detected at a detector which is typically a 2-dimensional flat X-ray detector situated behind the
218:
beam to a small circular or elliptical spot that illuminates the sample. Thus the scattering is centro-symmetrically distributed around the primary X-ray beam and the scattering pattern in the detection plane consists of circles around the primary beam. Owing to the small illuminated sample volume
97:
SAXS is used for the determination of the microscale or nanoscale structure of particle systems in terms of such parameters as averaged particle sizes, shapes, distribution, and surface-to-volume ratio. The materials can be solid or liquid and they can contain solid, liquid or gaseous domains
240:
proportionally larger. Thus measuring times with line-collimation SAXS instruments are much shorter compared to point-collimation and are in the range of minutes. A disadvantage is that the recorded pattern is essentially an integrated superposition (a self-
53:
scattering behaviour of X-rays when travelling through the material, recording their scattering at small angles (typically 0.1 – 10°, hence the "Small-angle" in its name). It belongs to the family of small-angle scattering (SAS) techniques along with
1224:
Filippov, Sergey K.; Verbraeken, Bart; Konarev, Petr V.; Svergun, Dmitri I.; Angelov, Borislav; Vishnevetskaya, Natalya S.; Papadakis, Christine M.; Rogers, Sarah; Radulescu, Aurel; Courtin, Tim; Martins, José C. (2017-08-17).
1071:
Filippov, Sergey K.; Chytil, Petr; Konarev, Petr V.; Dyakonova, Margarita; Papadakis, ChristineM.; Zhigunov, Alexander; Plestil, Josef; Stepanek, Petr; Etrych, Tomas; Ulbrich, Karel; Svergun, Dmitri I. (2012-08-13).
1119:
Filippov, Sergey K.; Franklin, John M.; Konarev, Petr V.; Chytil, Petr; Etrych, Tomas; Bogomolova, Anna; Dyakonova, Margarita; Papadakis, Christine M.; Radulescu, Aurel; Ulbrich, Karel; Stepanek, Petr (2013-11-11).
1847:
Janisova, Larisa; Gruzinov, Andrey; Zaborova, Olga V.; Velychkivska, Nadiia; Vaněk, Ondřej; Chytil, Petr; Etrych, Tomáš; Janoušková, Olga; Zhang, Xiaohan; Blanchet, Clement; Papadakis, Christine M. (2020-01-28).
1580:
Filippov, Sergey K.; Bogomolova, Anna; Kaberov, Leonid; Velychkivska, Nadiia; Starovoytova, Larisa; Cernochova, Zulfiya; Rogers, Sarah E.; Lau, Wing Man; Khutoryanskiy, Vitaliy V.; Cook, Michael T. (2016-05-31).
509:
Burger, Virginia M., Daniel J. Arenas, and Collin M. Stultz. "A structure-free method for quantifying conformational flexibility in proteins." Scientific reports 6 (2016): 29040. DOI: 10.1038/srep29040 (2016).|
1744:
Kaberov, Leonid I.; Kaberova, Zhansaya; Murmiliuk, Anastasiia; Trousil, Jiří; Sedláček, Ondřej; Konefal, Rafal; Zhigunov, Alexander; Pavlova, Ewa; Vít, Martin; Jirák, Daniel; Hoogenboom, Richard (2021-06-28).
3204: 3199: 3255: 1439:"A Novel Approach to Increase the Stability of Liposomal Containers via In Prep Coating by Poly[ N -(2-Hydroxypropyl)Methacrylamide] with Covalently Attached Cholesterol Groups" 223:
crystals or collimating and monochromating optics like multilayers are used, measurement time can be greatly reduced. Point-collimation allows the orientation of non-isotropic systems (
1697:
Sergeeva, Olga; Vlasov, Petr S.; Domnina, Nina S.; Bogomolova, Anna; Konarev, Petr V.; Svergun, Dmitri I.; Walterova, Zuzana; Horsky, Jiri; Stepanek, Petr; Filippov, Sergey K. (2014).
773:
Zhang, Xiaohan; Niebuur, Bart-Jan; Chytil, Petr; Etrych, Tomas; Filippov, Sergey K.; Kikhney, Alexey; Wieland, D. C. Florian; Svergun, Dmitri I.; Papadakis, Christine M. (2018-02-12).
1935: 1583:"Internal Nanoparticle Structure of Temperature-Responsive Self-Assembled PNIPAM- b -PEG- b -PNIPAM Triblock Copolymers in Aqueous Solutions: NMR, SANS, and Light Scattering Studies" 1175:
Riabtseva, Anna; Kaberov, Leonid I.; Noirez, Laurence; Ryukhtin, Vasyl; Nardin, Corinne; Verbraeken, Bart; Hoogenboom, Richard; Stepanek, Petr; Filippov, Sergey K. (February 2018).
89:). However, owing to the random orientation of dissolved or partially ordered molecules, the spatial averaging leads to a loss of information in SAXS compared to crystallography. 1339:
Chaves, Matheus Andrade; Oseliero Filho, Pedro Leonidas; Jange, Camila Garcia; Sinigaglia-Coimbra, Rita; Oliveira, Cristiano Luis Pinto; Pinho, Samantha Cristina (July 2018).
1747:"Fluorine-Containing Block and Gradient Copoly(2-oxazoline)s Based on 2-(3,3,3-Trifluoropropyl)-2-oxazoline: A Quest for the Optimal Self-Assembled Structure for 19F Imaging" 916:"Formation of core/corona nanoparticles with interpolyelectrolyte complex cores in aqueous solution: insight into chain dynamics in the complex from fluorescence quenching" 106:-like materials can be studied. The method is accurate, non-destructive and usually requires only a minimum of sample preparation. Applications are very broad and include 822:"Coassembly of Poly( N -isopropylacrylamide) with Dodecyl and Carboxyl Terminal Groups with Cationic Surfactant: Critical Comparison of Experimental and Simulation Data" 1074:"Macromolecular HPMA-Based Nanoparticles with Cholesterol for Solid-Tumor Targeting: Detailed Study of the Inner Structure of a Highly Efficient Drug Delivery System" 820:
Fanova, Anastasiia; Šindelka, Karel; Uchman, Mariusz; Limpouchová, Zuzana; Filippov, Sergey K.; Pispas, Stergios; Procházka, Karel; Štěpánek, Miroslav (2018-09-25).
3073: 3260: 2985: 971:"Temperature-induced structure switch in thermo-responsive micellar interpolyelectrolyte complexes: toward core–shell–corona and worm-like morphologies" 3151: 2443: 2285: 81:
is that a crystalline sample is not needed. Furthermore, the properties of SAXS allow investigation of conformational diversity in these molecules.
2348: 2295: 718:
Fanova, Anastasiia; Janata, Miroslav; Filippov, Sergey K.; Šlouf, Miroslav; Netopilík, Miloš; Mariani, Alessandro; Štěpánek, Miroslav (2019-08-27).
290: 1967: 679:
Hollamby, Martin J.; Aratsu, Keisuke; Pauw, Brian R.; Rogers, Sarah E.; Smith, Andrew J.; Yamauchi, Mitsuaki; Lin, Xu; Yagai, Shiki (2016-08-16).
82: 1850:"Molecular Mechanisms of the Interactions of N-(2-Hydroxypropyl)methacrylamide Copolymers Designed for Cancer Therapy with Blood Plasma Proteins" 681:"Simultaneous SAXS and SANS Analysis for the Detection of Toroidal Supramolecular Polymers Composed of Noncovalent Supermacrocycles in Solution" 593:
Pedersen, JS (1994). "Determination of size distribution from small-angle scattering data for systems with effective hard-sphere interactions".
3250: 3242: 2207: 463:
Patil, N; Narayanan, T; Michels, L; Skjønsfjell, ETB; Guizar-Sicairos, M; Van den Brande, N; Claessens, R; Van Mele, B; Breiby, DW (May 2019).
1517:"Time-Resolved SAXS Studies of the Kinetics of Thermally Triggered Release of Encapsulated Silica Nanoparticles from Block Copolymer Vesicles" 1437:
Zaborova, Olga V.; Filippov, Sergey K.; Chytil, Petr; Kováčik, Lubomir; Ulbrich, Karel; Yaroslavov, Alexander A.; Etrych, Tomaš (April 2018).
914:
Murmiliuk, Anastasiia; Matějíček, Pavel; Filippov, Sergey K.; Janata, Miroslav; Šlouf, Miroslav; Pispas, Stergios; Štěpánek, Miroslav (2018).
3303: 3281: 2222: 523:
Pedersen, JS (July 1997). "Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting".
98:(so-called particles) of the same or another material in any combination. Not only particles, but also the structure of ordered systems like 3296: 3146: 2812: 2677: 2526: 2305: 2300: 3286: 3184: 2880: 2378: 2363: 2232: 159: 2533: 1515:
Mable, Charlotte J.; Derry, Matthew J.; Thompson, Kate L.; Fielding, Lee A.; Mykhaylyk, Oleksandr O.; Armes, Steven P. (2017-06-13).
162:. Different from standard RIXS measurements, the scattered photons are considered to have the same energy as the incident photons. 3308: 3166: 3136: 3065: 1916: 877:"Interpolyelectrolyte Complex and Coacervate Formation of Poly(glutamic acid) with a Dendrimer Studied by Light Scattering and SAXS" 345: 285: 1468:
Bressel, Katharina; Muthig, Michael; Prevost, Sylvain; Gummel, Jeremie; Narayanan, Theyencheri; Gradzielski, Michael (2012-07-24).
1026:"Structure and Interactions of Block Copolymer Micelles of Brij 700 Studied by Combining Small-Angle X-ray and Neutron Scattering" 49:, determine pore sizes, characteristic distances of partially ordered materials, and much more. This is achieved by analyzing the 3018: 2280: 2259: 2190: 367:"Development of an ultra-small-angle X-ray scattering instrument for probing the microstructure and the dynamics of soft matter" 3365: 3291: 3214: 3088: 2687: 1699:"Novel thermosensitive telechelic PEGs with antioxidant activity: synthesis, molecular properties and conformational behaviour" 3048: 202:
instead. Laboratory SAXS instruments can be divided into two main groups: point-collimation and line-collimation instruments:
3126: 331: 320:
Hamley, I.W. "Small-Angle Scattering: Theory, Instrumentation, Data, and Applications" – Wiley, 2022. ISBN 978-1-119-76830-2.
55: 406:
Narayanan, T; Sztucki, M; Van Vaerenbergh, P; LĂ©onardon, J; Gorini, J; Claustre, L; Sever, F; Morse, J; Boesecke, P (2018).
775:"Macromolecular p HPMA-Based Nanoparticles with Cholesterol for Solid Tumor Targeting: Behavior in HSA Protein Environment" 3141: 3131: 2436: 2310: 2275: 155: 2913: 3265: 2538: 2516: 2373: 2202: 2175: 296: 2943: 2817: 2571: 2466: 2353: 2320: 2290: 2254: 1960: 301: 70: 2227: 2933: 969:
Dähling, Claudia; Lotze, Gudrun; Drechsler, Markus; Mori, Hideharu; Pergushov, Dmitry V.; Plamper, Felix A. (2016).
3343: 3174: 2471: 2399: 2239: 2127: 558:
Pedersen, JS (2000). "Form factors of block copolymer micelles with spherical, ellipsoidal and cylindrical cores".
3370: 3189: 3118: 2576: 2566: 41:
technique by which nanoscale density differences in a sample can be quantified. This means that it can determine
2702: 3331: 3055: 2951: 2824: 2787: 2581: 2561: 2429: 2066: 1294:"Internal Structures of Thermosensitive Hybrid Microgels Investigated by Means of Small-Angle X-ray Scattering" 2739: 1380:"Small Angle X-ray and Neutron Scattering: Powerful Tools for Studying the Structure of Drug-Loaded Liposomes" 3179: 3023: 2968: 2717: 2682: 2875: 2692: 2368: 2217: 1953: 38: 2797: 1642:"Synthesis and solution properties of a temperature-responsive PNIPAM–b-PDMS–b-PNIPAM triblock copolymer" 3232: 3028: 2990: 2749: 2483: 2328: 2197: 2005: 139: 1177:"Structural characterization of nanoparticles formed by fluorinated poly(2-oxazoline)-based polyphiles" 2244: 2956: 2829: 2665: 2556: 2165: 2097: 2030: 1710: 1528: 982: 927: 833: 731: 692: 73:
that are used in the characterization of materials. In the case of biological macromolecules such as
2973: 2961: 2836: 2802: 2782: 2117: 2092: 2071: 261: 99: 3222: 3033: 2978: 2521: 2358: 2137: 2102: 2035: 1782: 1679: 1360: 1340: 1274: 1206: 1176: 1157: 857: 755: 492: 228: 154:
It is possible to enhance the X-ray scattering yield by matching the energy of X-ray source to a
1341:"Structural characterization of multilamellar liposomes coencapsulating curcumin and vitamin D3" 3156: 2995: 2923: 2903: 2623: 2493: 2406: 2338: 2333: 2160: 2132: 2025: 1912: 1889: 1871: 1829: 1821: 1774: 1766: 1726: 1671: 1622: 1614: 1562: 1544: 1497: 1489: 1419: 1401: 1321: 1313: 1266: 1258: 1149: 1141: 1101: 1093: 1053: 1045: 1006: 998: 951: 943: 896: 849: 802: 794: 747: 661: 610: 575: 540: 484: 464: 445: 427: 388: 341: 198:
where large bent mirrors can be used. This is why most laboratory small angle devices rely on
194:
the beam, but this is not easy when dealing with X-rays and was previously not done except on
50: 1438: 680: 408:"A multipurpose instrument for time-resolved ultra-small-angle and coherent X-ray scattering" 3194: 3000: 2918: 2908: 2707: 2640: 2611: 2604: 2122: 2000: 1879: 1861: 1813: 1758: 1718: 1661: 1653: 1604: 1594: 1552: 1536: 1481: 1450: 1409: 1391: 1352: 1305: 1248: 1238: 1196: 1188: 1133: 1085: 1037: 990: 935: 888: 841: 786: 739: 700: 651: 641: 602: 567: 532: 476: 435: 419: 378: 1746: 3083: 3078: 3043: 2863: 2762: 2697: 2660: 2655: 2506: 2452: 2394: 2249: 2112: 2076: 1995: 1802:"Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering" 199: 184: 78: 1122:"Hydrolytically Degradable Polymer Micelles for Drug Delivery: A SAXS/SANS Kinetic Study" 1714: 1532: 986: 931: 837: 821: 735: 719: 696: 182:
blocking the closely adjacent scattered radiation. Most available X-ray sources produce
2893: 2858: 2846: 2841: 2807: 2777: 2767: 2726: 2670: 2594: 2548: 1884: 1849: 1557: 1516: 1470:"Shaping Vesicles–Controlling Size and Stability by Admixture of Amphiphilic Copolymer" 1414: 1379: 656: 629: 440: 407: 337: 190: 131: 774: 536: 3359: 3038: 2851: 2650: 2170: 1786: 1683: 1641: 1364: 1278: 1227:"Block and Gradient Copoly(2-oxazoline) Micelles: Strikingly Different on the Inside" 1210: 861: 759: 496: 220: 86: 46: 1192: 1161: 188:
beams and this compounds the problem. In principle the problem could be overcome by
85:
methods encounter problems with macromolecules of higher molecular mass (> 30–40
2744: 2734: 2628: 2511: 2212: 2107: 2020: 2010: 1356: 42: 1866: 351: 1599: 1582: 1540: 1396: 845: 743: 3227: 2898: 2772: 2599: 2061: 1640:
Cook, Michael T.; Filippov, Sergey K.; Khutoryanskiy, Vitaliy V. (August 2017).
1243: 1226: 241: 195: 119: 1762: 1292:
Suzuki, Daisuke; Nagase, Yasuhisa; Kureha, Takuma; Sato, Takaaki (2014-02-27).
790: 2792: 2478: 2185: 2051: 1940: 1657: 646: 606: 571: 423: 383: 366: 253: 174: 171: 1875: 1825: 1770: 1730: 1675: 1618: 1548: 1493: 1469: 1405: 1317: 1262: 1145: 1121: 1097: 1073: 1049: 1025: 1002: 947: 900: 876: 853: 798: 751: 614: 579: 544: 488: 431: 392: 2501: 63: 1893: 1833: 1778: 1626: 1566: 1501: 1454: 1423: 1325: 1270: 1253: 1201: 1153: 1105: 1057: 1010: 955: 806: 704: 665: 480: 465:"Probing Organic Thin Films by Coherent X-ray Imaging and X-ray Scattering" 449: 3098: 2868: 2616: 2056: 115: 3108: 2180: 1941:
A movie demonstrating small-angle scattering using laserlight on a hair
1817: 1801: 1722: 1698: 994: 970: 939: 915: 211: 127: 123: 111: 107: 103: 74: 1666: 1609: 1485: 1309: 1137: 1089: 1041: 1024:
Sommer, Cornelia; Pedersen, Jan Skov; Garamus, Vasil M. (2005-03-01).
892: 511: 2015: 273: 269: 265: 257: 1293: 17: 1378:
Di Cola, Emanuela; Grillo, Isabelle; Ristori, Sandra (2016-03-28).
3103: 2421: 1990: 1976: 720:"Evolution of Structure in a Comb Copolymer–Surfactant Coacervate" 224: 215: 135: 59: 45:
size distributions, resolve the size and shape of (monodisperse)
1945: 1345:
Colloids and Surfaces A: Physicochemical and Engineering Aspects
143: 134:
and can be found in research as well as in quality control. The
2425: 1949: 3205:
Zeitschrift für Kristallographie – New Crystal Structures
3200:
Zeitschrift für Kristallographie – Crystalline Materials
110:
of all types including interpolyelectrolyte complexes,
3093: 3274: 3241: 3213: 3165: 3117: 3064: 3011: 2942: 2725: 2716: 2639: 2547: 2492: 2459: 2387: 2319: 2268: 2153: 2146: 2085: 2044: 1983: 1909:Electron Dynamics by Inelastic X-Ray Scattering 628:Gommes, CJ; Jaksch, S; Frielinghaus, H (2021). 875:Leisner, Dietrich; Imae, Toyoko (2003-08-01). 260:, Germany; Hecus X-Ray Systems Graz, Austria; 2437: 1961: 8: 3271: 2722: 2544: 2489: 2444: 2430: 2422: 2150: 1968: 1954: 1946: 293:(Grazing-incidence small-angle scattering) 1883: 1865: 1800:BernadĂł, Pau; Svergun, Dmitri I. (2012). 1665: 1608: 1598: 1556: 1413: 1395: 1252: 1242: 1231:The Journal of Physical Chemistry Letters 1200: 655: 645: 525:Advances in Colloid and Interface Science 439: 382: 313: 83:Nuclear magnetic resonance spectroscopy 630:"Small-Angle Scattering for Beginners" 252:SAXS instrument manufacturers include 150:Resonant small-angle X-ray scattering 138:source can be a laboratory source or 69:SAXS and USAXS belong to a family of 7: 3338: 2678:Phase transformation crystallography 1443:Macromolecular Chemistry and Physics 3185:Journal of Chemical Crystallography 1907:Schuelke, Winfried (21 June 2007). 1298:The Journal of Physical Chemistry B 881:The Journal of Physical Chemistry B 512:http://hdl.handle.net/1721.1/108809 210:Point-collimation instruments have 160:resonant inelastic X-ray scattering 58:, and is typically done using hard 634:Journal of Applied Crystallography 595:Journal of Applied Crystallography 560:Journal of Applied Crystallography 412:Journal of Applied Crystallography 371:Journal of Applied Crystallography 330:Glatter O; Kratky O, eds. (1982). 297:Fluctuation X-ray scattering (FXS) 25: 365:Sztucki, M; Narayanan, T (2007). 286:Biological small-angle scattering 3337: 3326: 3325: 2932: 62:with a wavelength of 0.07 – 0.2 1193:10.1016/j.eurpolymj.2018.01.007 3127:Bilbao Crystallographic Server 1357:10.1016/j.colsurfa.2018.04.018 142:which provides a higher X-ray 56:small-angle neutron scattering 27:Radiation scattering technique 1: 1867:10.3390/pharmaceutics12020106 537:10.1016/S0001-8686(97)00312-6 469:ACS Applied Polymer Materials 248:SAXS instrument manufacturers 206:Point-collimation instruments 77:, the advantage of SAXS over 1600:10.1021/acs.langmuir.6b00284 1541:10.1021/acs.macromol.7b00475 1397:10.3390/pharmaceutics8020010 846:10.1021/acs.macromol.8b01161 744:10.1021/acs.macromol.9b00332 333:Small Angle X-ray Scattering 235:Line-collimation instruments 31:Small-angle X-ray scattering 3175:Crystal Growth & Design 2467:Timeline of crystallography 1911:. Oxford University Press. 1646:Colloid and Polymer Science 1244:10.1021/acs.jpclett.7b01588 302:Wide-angle X-ray scattering 231:liquids) to be determined. 71:X-ray scattering techniques 3387: 2986:Nuclear magnetic resonance 2240:X-Ray Fluorescence Imaging 2128:Anomalous X-ray scattering 1763:10.1021/acs.biomac.1c00367 791:10.1021/acs.biomac.7b01579 3321: 3190:Journal of Crystal Growth 2930: 1658:10.1007/s00396-017-4084-y 647:10.1107/S1600576721010293 607:10.1107/S0021889893013810 572:10.1107/S0021889899012248 424:10.1107/S1600576718012748 384:10.1107/S0021889806045833 3056:Single particle analysis 2914:Hermann–Mauguin notation 2067:Synchrotron light source 1181:European Polymer Journal 170:In a SAXS instrument, a 156:resonant absorption edge 3180:Crystallography Reviews 3024:Isomorphous replacement 2818:Lomer–Cottrell junction 2086:Interaction with matter 2045:Sources and instruments 122:, metals, cement, oil, 3366:Small-angle scattering 2693:Spinodal decomposition 2218:Diffraction tomography 1455:10.1002/macp.201700508 705:10.1002/ange.201603370 481:10.1021/acsapm.9b00324 39:small-angle scattering 3233:Gregori Aminoff Prize 3029:Molecular replacement 2329:X-ray crystallography 2198:Soft x-ray microscopy 2166:Panoramic radiography 2006:Synchrotron radiation 1936:SAXS at a Synchrotron 158:in as it is done for 2539:Structure prediction 2098:Photoelectric effect 2031:Characteristic X-ray 268:Corporation, Japan; 2803:Cottrell atmosphere 2783:Partial dislocation 2527:Restriction theorem 2118:Photodisintegration 2093:Rayleigh scattering 2072:Free-electron laser 1715:2014RSCAd...441763S 1709:(79): 41763–41771. 1533:2017MaMol..50.4465M 987:2016SMat...12.5127D 932:2018SMat...14.7578M 838:2018MaMol..51.7295F 736:2019MaMol..52.6303F 697:2016AngCh.12810044H 691:(34): 10044–10047. 264:. the Netherlands, 262:Malvern Panalytical 3223:Carl Hermann Medal 3034:Molecular dynamics 2881:Defects in diamond 2876:Stone–Wales defect 2522:Reciprocal lattice 2484:Biocrystallography 2359:X-ray reflectivity 2138:X-ray fluorescence 2103:Compton scattering 2036:High-energy X-rays 1818:10.1039/C1MB05275F 1723:10.1039/C4RA06978A 995:10.1039/C6SM00757K 940:10.1039/C8SM01174E 354:on April 21, 2008. 3353: 3352: 3317: 3316: 2924:Thermal ellipsoid 2889: 2888: 2798:Frank–Read source 2758: 2757: 2624:Aperiodic crystal 2590: 2589: 2472:Crystallographers 2419: 2418: 2415: 2414: 2407:X-ray lithography 2339:Backscatter X-ray 2334:X-ray diffraction 2161:X-ray radiography 2133:X-ray diffraction 2026:Siegbahn notation 1751:Biomacromolecules 1593:(21): 5314–5323. 1527:(11): 4465–4473. 1486:10.1021/nn300359q 1310:10.1021/jp410983x 1237:(16): 3800–3804. 1138:10.1021/bm401186z 1132:(11): 4061–4070. 1126:Biomacromolecules 1090:10.1021/bm3008555 1078:Biomacromolecules 1042:10.1021/la047489k 981:(23): 5127–5137. 926:(37): 7578–7585. 893:10.1021/jp027365l 887:(32): 8078–8087. 832:(18): 7295–7308. 779:Biomacromolecules 730:(16): 6303–6310. 685:Angewandte Chemie 276:, United States. 140:synchrotron light 16:(Redirected from 3378: 3371:X-ray scattering 3341: 3340: 3329: 3328: 3272: 3195:Kristallografija 3049:Gerchberg–Saxton 2944:Characterisation 2936: 2919:Structure factor 2723: 2708:Ostwald ripening 2545: 2490: 2446: 2439: 2432: 2423: 2245:X-ray holography 2151: 2123:Radiation damage 1970: 1963: 1956: 1947: 1923: 1922: 1904: 1898: 1897: 1887: 1869: 1844: 1838: 1837: 1797: 1791: 1790: 1757:(7): 2963–2975. 1741: 1735: 1734: 1694: 1688: 1687: 1669: 1652:(8): 1351–1358. 1637: 1631: 1630: 1612: 1602: 1577: 1571: 1570: 1560: 1512: 1506: 1505: 1480:(7): 5858–5865. 1465: 1459: 1458: 1434: 1428: 1427: 1417: 1399: 1375: 1369: 1368: 1336: 1330: 1329: 1304:(8): 2194–2204. 1289: 1283: 1282: 1256: 1246: 1221: 1215: 1214: 1204: 1172: 1166: 1165: 1116: 1110: 1109: 1084:(8): 2594–2604. 1068: 1062: 1061: 1036:(6): 2137–2149. 1021: 1015: 1014: 966: 960: 959: 911: 905: 904: 872: 866: 865: 817: 811: 810: 770: 764: 763: 715: 709: 708: 676: 670: 669: 659: 649: 640:(6): 1832–1843. 625: 619: 618: 590: 584: 583: 555: 549: 548: 520: 514: 507: 501: 500: 475:(7): 1787–1797. 460: 454: 453: 443: 418:(6): 1511–1524. 403: 397: 396: 386: 362: 356: 355: 350:. Archived from 327: 321: 318: 166:SAXS instruments 21: 3386: 3385: 3381: 3380: 3379: 3377: 3376: 3375: 3356: 3355: 3354: 3349: 3313: 3270: 3237: 3209: 3161: 3113: 3084:CrystalExplorer 3060: 3044:Phase retrieval 3007: 2938: 2937: 2928: 2885: 2864:Schottky defect 2763:Perfect crystal 2754: 2750:Abnormal growth 2712: 2698:Supersaturation 2661:Miscibility gap 2642: 2635: 2586: 2543: 2507:Bravais lattice 2488: 2455: 2453:Crystallography 2450: 2420: 2411: 2395:X-ray astronomy 2383: 2315: 2264: 2250:X-ray telescope 2142: 2113:Photoionization 2081: 2077:X-ray nanoprobe 2040: 1996:Absorption edge 1984:Characteristics 1979: 1974: 1932: 1927: 1926: 1919: 1906: 1905: 1901: 1846: 1845: 1841: 1799: 1798: 1794: 1743: 1742: 1738: 1696: 1695: 1691: 1639: 1638: 1634: 1579: 1578: 1574: 1514: 1513: 1509: 1467: 1466: 1462: 1436: 1435: 1431: 1377: 1376: 1372: 1338: 1337: 1333: 1291: 1290: 1286: 1254:1854/LU-8534833 1223: 1222: 1218: 1202:1854/LU-8561215 1174: 1173: 1169: 1118: 1117: 1113: 1070: 1069: 1065: 1023: 1022: 1018: 968: 967: 963: 913: 912: 908: 874: 873: 869: 819: 818: 814: 772: 771: 767: 717: 716: 712: 678: 677: 673: 627: 626: 622: 592: 591: 587: 557: 556: 552: 522: 521: 517: 508: 504: 462: 461: 457: 405: 404: 400: 364: 363: 359: 348: 329: 328: 324: 319: 315: 310: 282: 250: 237: 214:that shape the 208: 168: 152: 132:pharmaceuticals 95: 79:crystallography 28: 23: 22: 15: 12: 11: 5: 3384: 3382: 3374: 3373: 3368: 3358: 3357: 3351: 3350: 3348: 3347: 3335: 3322: 3319: 3318: 3315: 3314: 3312: 3311: 3306: 3301: 3300: 3299: 3294: 3289: 3278: 3276: 3269: 3268: 3263: 3258: 3253: 3247: 3245: 3239: 3238: 3236: 3235: 3230: 3225: 3219: 3217: 3211: 3210: 3208: 3207: 3202: 3197: 3192: 3187: 3182: 3177: 3171: 3169: 3163: 3162: 3160: 3159: 3154: 3149: 3144: 3139: 3134: 3129: 3123: 3121: 3115: 3114: 3112: 3111: 3106: 3101: 3096: 3091: 3086: 3081: 3076: 3070: 3068: 3062: 3061: 3059: 3058: 3053: 3052: 3051: 3041: 3036: 3031: 3026: 3021: 3019:Direct methods 3015: 3013: 3009: 3008: 3006: 3005: 3004: 3003: 2998: 2988: 2983: 2982: 2981: 2976: 2966: 2965: 2964: 2959: 2948: 2946: 2940: 2939: 2931: 2929: 2927: 2926: 2921: 2916: 2911: 2906: 2904:Ewald's sphere 2901: 2896: 2890: 2887: 2886: 2884: 2883: 2878: 2873: 2872: 2871: 2866: 2856: 2855: 2854: 2849: 2847:Frenkel defect 2844: 2842:Bjerrum defect 2834: 2833: 2832: 2822: 2821: 2820: 2815: 2810: 2808:Peierls stress 2805: 2800: 2795: 2790: 2785: 2780: 2778:Burgers vector 2770: 2768:Stacking fault 2765: 2759: 2756: 2755: 2753: 2752: 2747: 2742: 2737: 2731: 2729: 2727:Grain boundary 2720: 2714: 2713: 2711: 2710: 2705: 2700: 2695: 2690: 2685: 2680: 2675: 2674: 2673: 2671:Liquid crystal 2668: 2663: 2658: 2647: 2645: 2637: 2636: 2634: 2633: 2632: 2631: 2621: 2620: 2619: 2609: 2608: 2607: 2602: 2591: 2588: 2587: 2585: 2584: 2579: 2574: 2569: 2564: 2559: 2553: 2551: 2542: 2541: 2536: 2534:Periodic table 2531: 2530: 2529: 2524: 2519: 2514: 2509: 2498: 2496: 2487: 2486: 2481: 2476: 2475: 2474: 2463: 2461: 2457: 2456: 2451: 2449: 2448: 2441: 2434: 2426: 2417: 2416: 2413: 2412: 2410: 2409: 2404: 2403: 2402: 2391: 2389: 2385: 2384: 2382: 2381: 2376: 2371: 2366: 2361: 2356: 2351: 2346: 2341: 2336: 2331: 2325: 2323: 2317: 2316: 2314: 2313: 2308: 2303: 2298: 2293: 2288: 2283: 2278: 2272: 2270: 2266: 2265: 2263: 2262: 2257: 2252: 2247: 2242: 2237: 2236: 2235: 2230: 2225: 2215: 2210: 2205: 2200: 2195: 2194: 2193: 2188: 2178: 2173: 2168: 2163: 2157: 2155: 2148: 2144: 2143: 2141: 2140: 2135: 2130: 2125: 2120: 2115: 2110: 2105: 2100: 2095: 2089: 2087: 2083: 2082: 2080: 2079: 2074: 2069: 2064: 2059: 2054: 2048: 2046: 2042: 2041: 2039: 2038: 2033: 2028: 2023: 2018: 2013: 2008: 2003: 1998: 1993: 1987: 1985: 1981: 1980: 1975: 1973: 1972: 1965: 1958: 1950: 1944: 1943: 1938: 1931: 1930:External links 1928: 1925: 1924: 1917: 1899: 1839: 1812:(1): 151–167. 1792: 1736: 1689: 1632: 1572: 1521:Macromolecules 1507: 1460: 1449:(7): 1700508. 1429: 1370: 1331: 1284: 1216: 1167: 1111: 1063: 1016: 961: 906: 867: 826:Macromolecules 812: 785:(2): 470–480. 765: 724:Macromolecules 710: 671: 620: 601:(4): 595–608. 585: 566:(3): 637–640. 550: 515: 502: 455: 398: 357: 346: 338:Academic Press 322: 312: 311: 309: 306: 305: 304: 299: 294: 288: 281: 278: 272:, France; and 249: 246: 236: 233: 207: 204: 167: 164: 151: 148: 94: 91: 47:macromolecules 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3383: 3372: 3369: 3367: 3364: 3363: 3361: 3346: 3345: 3336: 3334: 3333: 3324: 3323: 3320: 3310: 3307: 3305: 3302: 3298: 3295: 3293: 3290: 3288: 3285: 3284: 3283: 3280: 3279: 3277: 3273: 3267: 3264: 3262: 3259: 3257: 3254: 3252: 3249: 3248: 3246: 3244: 3240: 3234: 3231: 3229: 3226: 3224: 3221: 3220: 3218: 3216: 3212: 3206: 3203: 3201: 3198: 3196: 3193: 3191: 3188: 3186: 3183: 3181: 3178: 3176: 3173: 3172: 3170: 3168: 3164: 3158: 3155: 3153: 3150: 3148: 3145: 3143: 3140: 3138: 3135: 3133: 3130: 3128: 3125: 3124: 3122: 3120: 3116: 3110: 3107: 3105: 3102: 3100: 3097: 3095: 3092: 3090: 3087: 3085: 3082: 3080: 3077: 3075: 3072: 3071: 3069: 3067: 3063: 3057: 3054: 3050: 3047: 3046: 3045: 3042: 3040: 3039:Patterson map 3037: 3035: 3032: 3030: 3027: 3025: 3022: 3020: 3017: 3016: 3014: 3010: 3002: 2999: 2997: 2994: 2993: 2992: 2989: 2987: 2984: 2980: 2977: 2975: 2972: 2971: 2970: 2967: 2963: 2960: 2958: 2955: 2954: 2953: 2950: 2949: 2947: 2945: 2941: 2935: 2925: 2922: 2920: 2917: 2915: 2912: 2910: 2909:Friedel's law 2907: 2905: 2902: 2900: 2897: 2895: 2892: 2891: 2882: 2879: 2877: 2874: 2870: 2867: 2865: 2862: 2861: 2860: 2857: 2853: 2852:Wigner effect 2850: 2848: 2845: 2843: 2840: 2839: 2838: 2837:Interstitials 2835: 2831: 2828: 2827: 2826: 2823: 2819: 2816: 2814: 2811: 2809: 2806: 2804: 2801: 2799: 2796: 2794: 2791: 2789: 2786: 2784: 2781: 2779: 2776: 2775: 2774: 2771: 2769: 2766: 2764: 2761: 2760: 2751: 2748: 2746: 2743: 2741: 2738: 2736: 2733: 2732: 2730: 2728: 2724: 2721: 2719: 2715: 2709: 2706: 2704: 2701: 2699: 2696: 2694: 2691: 2689: 2686: 2684: 2683:Precipitation 2681: 2679: 2676: 2672: 2669: 2667: 2664: 2662: 2659: 2657: 2654: 2653: 2652: 2651:Phase diagram 2649: 2648: 2646: 2644: 2638: 2630: 2627: 2626: 2625: 2622: 2618: 2615: 2614: 2613: 2610: 2606: 2603: 2601: 2598: 2597: 2596: 2593: 2592: 2583: 2580: 2578: 2575: 2573: 2570: 2568: 2565: 2563: 2560: 2558: 2555: 2554: 2552: 2550: 2546: 2540: 2537: 2535: 2532: 2528: 2525: 2523: 2520: 2518: 2515: 2513: 2510: 2508: 2505: 2504: 2503: 2500: 2499: 2497: 2495: 2491: 2485: 2482: 2480: 2477: 2473: 2470: 2469: 2468: 2465: 2464: 2462: 2458: 2454: 2447: 2442: 2440: 2435: 2433: 2428: 2427: 2424: 2408: 2405: 2401: 2398: 2397: 2396: 2393: 2392: 2390: 2386: 2380: 2377: 2375: 2372: 2370: 2367: 2365: 2362: 2360: 2357: 2355: 2352: 2350: 2347: 2345: 2342: 2340: 2337: 2335: 2332: 2330: 2327: 2326: 2324: 2322: 2318: 2312: 2309: 2307: 2304: 2302: 2299: 2297: 2294: 2292: 2289: 2287: 2284: 2282: 2279: 2277: 2274: 2273: 2271: 2267: 2261: 2258: 2256: 2253: 2251: 2248: 2246: 2243: 2241: 2238: 2234: 2231: 2229: 2226: 2224: 2221: 2220: 2219: 2216: 2214: 2211: 2209: 2206: 2204: 2201: 2199: 2196: 2192: 2189: 2187: 2184: 2183: 2182: 2179: 2177: 2174: 2172: 2171:Tomosynthesis 2169: 2167: 2164: 2162: 2159: 2158: 2156: 2152: 2149: 2145: 2139: 2136: 2134: 2131: 2129: 2126: 2124: 2121: 2119: 2116: 2114: 2111: 2109: 2106: 2104: 2101: 2099: 2096: 2094: 2091: 2090: 2088: 2084: 2078: 2075: 2073: 2070: 2068: 2065: 2063: 2060: 2058: 2055: 2053: 2050: 2049: 2047: 2043: 2037: 2034: 2032: 2029: 2027: 2024: 2022: 2019: 2017: 2014: 2012: 2009: 2007: 2004: 2002: 2001:Moseley's law 1999: 1997: 1994: 1992: 1989: 1988: 1986: 1982: 1978: 1977:X-ray science 1971: 1966: 1964: 1959: 1957: 1952: 1951: 1948: 1942: 1939: 1937: 1934: 1933: 1929: 1920: 1918:9780191523281 1914: 1910: 1903: 1900: 1895: 1891: 1886: 1881: 1877: 1873: 1868: 1863: 1859: 1855: 1854:Pharmaceutics 1851: 1843: 1840: 1835: 1831: 1827: 1823: 1819: 1815: 1811: 1807: 1803: 1796: 1793: 1788: 1784: 1780: 1776: 1772: 1768: 1764: 1760: 1756: 1752: 1748: 1740: 1737: 1732: 1728: 1724: 1720: 1716: 1712: 1708: 1704: 1700: 1693: 1690: 1685: 1681: 1677: 1673: 1668: 1663: 1659: 1655: 1651: 1647: 1643: 1636: 1633: 1628: 1624: 1620: 1616: 1611: 1606: 1601: 1596: 1592: 1588: 1584: 1576: 1573: 1568: 1564: 1559: 1554: 1550: 1546: 1542: 1538: 1534: 1530: 1526: 1522: 1518: 1511: 1508: 1503: 1499: 1495: 1491: 1487: 1483: 1479: 1475: 1471: 1464: 1461: 1456: 1452: 1448: 1444: 1440: 1433: 1430: 1425: 1421: 1416: 1411: 1407: 1403: 1398: 1393: 1389: 1385: 1384:Pharmaceutics 1381: 1374: 1371: 1366: 1362: 1358: 1354: 1350: 1346: 1342: 1335: 1332: 1327: 1323: 1319: 1315: 1311: 1307: 1303: 1299: 1295: 1288: 1285: 1280: 1276: 1272: 1268: 1264: 1260: 1255: 1250: 1245: 1240: 1236: 1232: 1228: 1220: 1217: 1212: 1208: 1203: 1198: 1194: 1190: 1186: 1182: 1178: 1171: 1168: 1163: 1159: 1155: 1151: 1147: 1143: 1139: 1135: 1131: 1127: 1123: 1115: 1112: 1107: 1103: 1099: 1095: 1091: 1087: 1083: 1079: 1075: 1067: 1064: 1059: 1055: 1051: 1047: 1043: 1039: 1035: 1031: 1027: 1020: 1017: 1012: 1008: 1004: 1000: 996: 992: 988: 984: 980: 976: 972: 965: 962: 957: 953: 949: 945: 941: 937: 933: 929: 925: 921: 917: 910: 907: 902: 898: 894: 890: 886: 882: 878: 871: 868: 863: 859: 855: 851: 847: 843: 839: 835: 831: 827: 823: 816: 813: 808: 804: 800: 796: 792: 788: 784: 780: 776: 769: 766: 761: 757: 753: 749: 745: 741: 737: 733: 729: 725: 721: 714: 711: 706: 702: 698: 694: 690: 686: 682: 675: 672: 667: 663: 658: 653: 648: 643: 639: 635: 631: 624: 621: 616: 612: 608: 604: 600: 596: 589: 586: 581: 577: 573: 569: 565: 561: 554: 551: 546: 542: 538: 534: 530: 526: 519: 516: 513: 506: 503: 498: 494: 490: 486: 482: 478: 474: 470: 466: 459: 456: 451: 447: 442: 437: 433: 429: 425: 421: 417: 413: 409: 402: 399: 394: 390: 385: 380: 377:: s459–s462. 376: 372: 368: 361: 358: 353: 349: 347:0-12-286280-5 343: 339: 335: 334: 326: 323: 317: 314: 307: 303: 300: 298: 295: 292: 289: 287: 284: 283: 279: 277: 275: 271: 267: 263: 259: 255: 247: 245: 243: 234: 232: 230: 226: 222: 221:monochromator 217: 213: 205: 203: 201: 197: 193: 192: 187: 186: 181: 176: 173: 172:monochromatic 165: 163: 161: 157: 149: 147: 145: 141: 137: 133: 129: 125: 121: 117: 114:, microgels, 113: 109: 105: 101: 92: 90: 88: 84: 80: 76: 72: 67: 65: 61: 57: 52: 48: 44: 40: 36: 32: 19: 3342: 3330: 3275:Associations 3243:Organisation 2735:Disclination 2666:Polymorphism 2629:Quasicrystal 2572:Orthorhombic 2512:Miller index 2460:Key concepts 2343: 2269:Spectroscopy 2213:Ptychography 2147:Applications 2108:Auger effect 2011:Water window 1908: 1902: 1857: 1853: 1842: 1809: 1806:Mol. BioSyst 1805: 1795: 1754: 1750: 1739: 1706: 1702: 1692: 1649: 1645: 1635: 1590: 1586: 1575: 1524: 1520: 1510: 1477: 1473: 1463: 1446: 1442: 1432: 1387: 1383: 1373: 1348: 1344: 1334: 1301: 1297: 1287: 1234: 1230: 1219: 1184: 1180: 1170: 1129: 1125: 1114: 1081: 1077: 1066: 1033: 1029: 1019: 978: 974: 964: 923: 919: 909: 884: 880: 870: 829: 825: 815: 782: 778: 768: 727: 723: 713: 688: 684: 674: 637: 633: 623: 598: 594: 588: 563: 559: 553: 528: 524: 518: 505: 472: 468: 458: 415: 411: 401: 374: 370: 360: 352:the original 332: 325: 316: 251: 238: 209: 196:synchrotrons 189: 183: 179: 169: 153: 130:, foods and 126:, plastics, 120:polymersomes 96: 93:Applications 68: 43:nanoparticle 34: 30: 29: 3228:Ewald Prize 2996:Diffraction 2974:Diffraction 2957:Diffraction 2899:Bragg plane 2894:Bragg's law 2773:Dislocation 2688:Segregation 2600:Crystallite 2517:Point group 2062:Synchrotron 1351:: 112–121. 1187:: 518–527. 975:Soft Matter 920:Soft Matter 531:: 171–210. 256:, Austria; 242:convolution 200:collimation 3360:Categories 3012:Algorithms 3001:Scattering 2979:Scattering 2962:Scattering 2830:Slip bands 2793:Cross slip 2643:transition 2577:Tetragonal 2567:Monoclinic 2479:Metallurgy 2321:Scattering 2186:Helical CT 2052:X-ray tube 1860:(2): 106. 1667:2299/19649 1610:2299/17369 308:References 258:Bruker AXS 254:Anton Paar 3119:Databases 2582:Triclinic 2562:Hexagonal 2502:Unit cell 2494:Structure 1876:1999-4923 1826:1742-206X 1787:235659596 1771:1525-7797 1731:2046-2069 1684:100587522 1676:0303-402X 1619:0743-7463 1549:0024-9297 1494:1936-0851 1406:1999-4923 1390:(2): 10. 1365:103002028 1318:1520-6106 1279:206664063 1263:1948-7185 1211:102663271 1146:1525-7797 1098:1525-7797 1050:0743-7463 1003:1744-683X 948:1744-683X 901:1520-6106 862:105195163 854:0024-9297 799:1525-7797 760:202079335 752:0024-9297 615:1600-5767 580:1600-5767 545:0001-8686 497:189992231 489:2637-6105 432:1600-5767 393:1600-5767 185:divergent 116:liposomes 3332:Category 3167:Journals 3099:OctaDist 3094:JANA2020 3066:Software 2952:Electron 2869:F-center 2656:Eutectic 2617:Fiveling 2612:Twinning 2605:Equiaxed 2057:Betatron 1894:32013056 1834:21947276 1779:34180669 1627:27159129 1587:Langmuir 1567:28626247 1502:22713309 1474:ACS Nano 1424:27043614 1326:24517119 1271:28759235 1162:36632159 1154:24083567 1106:22793269 1058:15752000 1030:Langmuir 1011:27194585 956:30140809 807:29381335 666:34963770 450:30546286 280:See also 212:pinholes 191:focusing 128:proteins 124:polymers 112:micelles 108:colloids 100:lamellae 75:proteins 3344:Commons 3292:Germany 2969:Neutron 2859:Vacancy 2718:Defects 2703:GP-zone 2549:Systems 2400:History 2154:Imaging 1885:7076460 1711:Bibcode 1703:RSC Adv 1558:5472368 1529:Bibcode 1415:4932473 983:Bibcode 928:Bibcode 834:Bibcode 732:Bibcode 693:Bibcode 657:8662971 441:6276275 229:sheared 180:without 104:fractal 51:elastic 37:) is a 3287:France 3282:Europe 3215:Awards 2745:Growth 2595:Growth 2388:Others 2349:GISAXS 2021:L-edge 2016:K-edge 1915:  1892:  1882:  1874:  1832:  1824:  1785:  1777:  1769:  1729:  1682:  1674:  1625:  1617:  1565:  1555:  1547:  1500:  1492:  1422:  1412:  1404:  1363:  1324:  1316:  1277:  1269:  1261:  1209:  1160:  1152:  1144:  1104:  1096:  1056:  1048:  1009:  1001:  954:  946:  899:  860:  852:  805:  797:  758:  750:  664:  654:  613:  578:  543:  495:  487:  448:  438:  430:  391:  344:  274:Xenocs 270:Xenocs 266:Rigaku 225:fibres 102:, and 60:X-rays 3309:Japan 3256:IOBCr 3109:SHELX 3104:Olex2 2991:X-ray 2641:Phase 2557:Cubic 2379:EDXRD 2301:XANES 2296:EXAFS 2286:ARPES 2233:3DXRD 1991:X-ray 1783:S2CID 1680:S2CID 1361:S2CID 1275:S2CID 1207:S2CID 1158:S2CID 858:S2CID 756:S2CID 493:S2CID 291:GISAS 216:X-ray 136:X-ray 3251:IUCr 3152:ICDD 3147:ICSD 3132:CCDC 3079:Coot 3074:CCP4 2825:Slip 2788:Kink 2364:RIXS 2354:WAXS 2344:SAXS 2255:DFXM 2223:XDCT 2208:STXM 2203:XPCI 2191:XACT 1913:ISBN 1890:PMID 1872:ISSN 1830:PMID 1822:ISSN 1775:PMID 1767:ISSN 1727:ISSN 1672:ISSN 1623:PMID 1615:ISSN 1563:PMID 1545:ISSN 1498:PMID 1490:ISSN 1420:PMID 1402:ISSN 1322:PMID 1314:ISSN 1267:PMID 1259:ISSN 1150:PMID 1142:ISSN 1102:PMID 1094:ISSN 1054:PMID 1046:ISSN 1007:PMID 999:ISSN 952:PMID 944:ISSN 897:ISSN 850:ISSN 803:PMID 795:ISSN 748:ISSN 662:PMID 611:ISSN 576:ISSN 541:ISSN 485:ISSN 446:PMID 428:ISSN 389:ISSN 342:ISBN 175:beam 144:flux 35:SAXS 18:SAXS 3266:DMG 3261:RAS 3157:PDB 3142:COD 3137:CIF 3089:DSR 2813:GND 2740:CSL 2369:XRS 2311:XFH 2306:EDS 2291:AES 2281:XPS 2276:XAS 2260:DXA 2228:DCT 2176:CDI 1880:PMC 1862:doi 1814:doi 1759:doi 1719:doi 1662:hdl 1654:doi 1650:295 1605:hdl 1595:doi 1553:PMC 1537:doi 1482:doi 1451:doi 1447:219 1410:PMC 1392:doi 1353:doi 1349:549 1306:doi 1302:118 1249:hdl 1239:doi 1197:hdl 1189:doi 1134:doi 1086:doi 1038:doi 991:doi 936:doi 889:doi 885:107 842:doi 787:doi 740:doi 701:doi 689:128 652:PMC 642:doi 603:doi 568:doi 533:doi 477:doi 436:PMC 420:doi 379:doi 87:kDa 3362:: 3304:US 3297:UK 2374:XS 2181:CT 1888:. 1878:. 1870:. 1858:12 1856:. 1852:. 1828:. 1820:. 1808:. 1804:. 1781:. 1773:. 1765:. 1755:22 1753:. 1749:. 1725:. 1717:. 1705:. 1701:. 1678:. 1670:. 1660:. 1648:. 1644:. 1621:. 1613:. 1603:. 1591:32 1589:. 1585:. 1561:. 1551:. 1543:. 1535:. 1525:50 1523:. 1519:. 1496:. 1488:. 1476:. 1472:. 1445:. 1441:. 1418:. 1408:. 1400:. 1386:. 1382:. 1359:. 1347:. 1343:. 1320:. 1312:. 1300:. 1296:. 1273:. 1265:. 1257:. 1247:. 1233:. 1229:. 1205:. 1195:. 1185:99 1183:. 1179:. 1156:. 1148:. 1140:. 1130:14 1128:. 1124:. 1100:. 1092:. 1082:13 1080:. 1076:. 1052:. 1044:. 1034:21 1032:. 1028:. 1005:. 997:. 989:. 979:12 977:. 973:. 950:. 942:. 934:. 924:14 922:. 918:. 895:. 883:. 879:. 856:. 848:. 840:. 830:51 828:. 824:. 801:. 793:. 783:19 781:. 777:. 754:. 746:. 738:. 728:52 726:. 722:. 699:. 687:. 683:. 660:. 650:. 638:54 636:. 632:. 609:. 599:27 597:. 574:. 564:33 562:. 539:. 529:70 527:. 491:. 483:. 471:. 467:. 444:. 434:. 426:. 416:51 414:. 410:. 387:. 375:40 373:. 369:. 340:. 336:. 227:, 146:. 118:, 64:nm 2445:e 2438:t 2431:v 1969:e 1962:t 1955:v 1921:. 1896:. 1864:: 1836:. 1816:: 1810:8 1789:. 1761:: 1733:. 1721:: 1713:: 1707:4 1686:. 1664:: 1656:: 1629:. 1607:: 1597:: 1569:. 1539:: 1531:: 1504:. 1484:: 1478:6 1457:. 1453:: 1426:. 1394:: 1388:8 1367:. 1355:: 1328:. 1308:: 1281:. 1251:: 1241:: 1235:8 1213:. 1199:: 1191:: 1164:. 1136:: 1108:. 1088:: 1060:. 1040:: 1013:. 993:: 985:: 958:. 938:: 930:: 903:. 891:: 864:. 844:: 836:: 809:. 789:: 762:. 742:: 734:: 707:. 703:: 695:: 668:. 644:: 617:. 605:: 582:. 570:: 547:. 535:: 499:. 479:: 473:1 452:. 422:: 395:. 381:: 33:( 20:)

Index

SAXS
small-angle scattering
nanoparticle
macromolecules
elastic
small-angle neutron scattering
X-rays
nm
X-ray scattering techniques
proteins
crystallography
Nuclear magnetic resonance spectroscopy
kDa
lamellae
fractal
colloids
micelles
liposomes
polymersomes
polymers
proteins
pharmaceuticals
X-ray
synchrotron light
flux
resonant absorption edge
resonant inelastic X-ray scattering
monochromatic
beam
divergent

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑