Knowledge (XXG)

SN2 reaction

Source 📝

271: 310: 401: 234: 427:: nucleophilicity increases with increasing negative charge and decreasing electronegativity. For example, OH is a better nucleophile than water, and I is a better nucleophile than Br (in polar protic solvents). In a polar aprotic solvent, nucleophilicity increases up a column of the periodic table as there is no hydrogen bonding between the solvent and nucleophile; in this case nucleophilicity mirrors basicity. I would therefore be a weaker nucleophile than Br because it is a weaker base. Verdict - A strong/anionic nucleophile always favours S 801: 362: 602: 42: 583: 204: 745:
2 not possible) by Schleyer and co-workers, the use of azide (an excellent nucleophile but very poor leaving group) by Weiner and Sneen, the development of sulfonate leaving groups (non-nucleophilic good leaving groups), and the demonstration of significant experimental problems in the initial claim
715:
Many reactions studied are solvolysis reactions where a solvent molecule (often an alcohol) is the nucleophile. While still a second order reaction mechanistically, the reaction is kinetically first order as the concentration of the nucleophile–the solvent molecule, is effectively constant during
1427:
and because it requires charged reaction products for detection the nucleophile is fitted with an additional sulfonate anionic group, non-reactive and well separated from the other anion. The product ratio of substitution and elimination product can be measured from the intensity their relative
597:
2 reaction in which the leaving group can also act as a nucleophile. In this reaction, the substrate has a halogen atom exchanged with another halogen. As the negative charge is more-or-less stabilized on both halides, the reaction occurs at equilibrium.
1334:
The 2-Adamantyl System, a Standard for Limiting Solvolysis in a Secondary Substrate J. L. Fry, C. J. Lancelot, L. K. M. Lam, J. M Harris, R. C. Bingham, D. J. Raber, R. E. Hill, P. v. R. Schleyer, J. Am. Chem. Soc.,; 1970; 92, pp 1240-42 (Article); doi:
740:
1 mechanism invariably involve the use of bromide (or other good nucleophile) as the leaving group have confused the understanding of alkyl nucleophilic substitution reactions at secondary carbons for 80 years. Work with the 2-adamantyl system
306:. For example, 1-bromo-1-fluoroethane can undergo nucleophilic attack to form 1-fluoroethan-1-ol, with the nucleophile being an HO group. In this case, if the reactant is levorotatory, then the product would be dextrorotatory, and vice versa. 349:
at the central carbon, i.e. those that do not have as much sterically hindering substituents nearby. Methyl and primary substrates react the fastest, followed by secondary substrates. Tertiary substrates do not react via the
723:
2 reaction on a substrate molecule. If the substrate is chiral, this inverts the configuration of the substrate before solvolysis, leading to a racemized product–the product that would be expected from an
388:
between the reaction centre and the adjacent pi system stabilizes the transition state. Because they destabilize the positive charge in the carbocation intermediate, electron-withdrawing groups favor the
1311:
W.A. Cowdrey; E.D. Hughes; C.K. Ingold; S. Masterman; A.D. Scott (1937). "Relation of Steric orientation to Mechanism in Substitution Involving Halogen Atoms and Simple or Substituted Hydroxyl Groups".
750:
1 mechanism in the solvolysis of optically active 2-bromooctane by Hughes et al. have demonstrated conclusively that secondary substrates go exclusively (except in unusual but predictable cases) by the
1344:
A Clarification of the Mechanism of Solvolysis of 2-Octyl Sulfonates. Stereochemical Considerations; H. Weiner, R. A. Sneen, J. Am. Chem. Soc.,; 1965; 87 pp 287-91; (Article) doi: 10.1021/ja01080a026
645:, furnish a weaker nucleophile. In contrast, polar aprotic solvents can only weakly interact with the nucleophile, and thus, are to a lesser extent able to reduce the strength of the nucleophile. 309: 1353:
A Clarification of the Mechanism of Solvolysis of 2-Octyl Sulfonates. Kinetic Considerations; H. Weiner, R. A. Sneen, J. Am. Chem. Soc.; 1965; 87 pp 292-96; (Article) doi: 10.1021/ja01080a027
613:
The solvent affects the rate of reaction because solvents may or may not surround a nucleophile, thus hindering or not hindering its approach to the carbon atom. Polar aprotic solvents, like
240:
To achieve optimal orbital overlap, the nucleophile attacks 180° relative to the leaving group, resulting in the leaving group being pushed off the opposite side and the product formed with
641:, etc. In parallel, solvation also has a significant impact on the intrinsic strength of the nucleophile, in which strong interactions between solvent and the nucleophile, found for polar 423:, on the other hand, is a strong base, but a poor nucleophile, because of its three methyl groups hindering its approach to the carbon. Nucleophile strength is also affected by charge and 826:
substrate, isopropyl bromide reacts with 55% substitution. In general, gas phase reactions and solution phase reactions of this type follow the same trends, even though in the first,
192:(often denoted X). The formation of the C–Nu bond, due to attack by the nucleophile (denoted Nu), occurs concertedly with the breakage of the C–X bond. The reaction occurs through a 854:. When the chloride ions have sufficient velocity, the initial collision of it with the methyl iodide molecule causes the methyl iodide to spin around once before the actual S 625:
to the nucleophile, hindering it from attacking the carbon with the leaving group. A polar aprotic solvent with low dielectric constant or a hindered dipole end will favour S
1362:
Homogeneous Hydrolysis and Alcoholysis of β-n-Octyl halides, E. D. Hughes, C. K. Ingold, S. Masterman, J. Chem. Soc.; 1937; pp 1196–1201; (Article) doi: 10.1039/JR9370001196
270: 732:
2 rate constant 100-250 times higher than the rate constant for ethanol. Thus, after only a few percent solvolysis of an enantiospecific substrate, it becomes racemic.
1042: 822:
bromide, substitution is disfavored and elimination is the predominant reaction. Other factors favoring elimination are the strength of the base. With the less basic
521:), serve as good anionic leaving groups because electronegativity stabilizes additional electron density; the fluoride exception is due to its strong bond to carbon. 1523: 1970: 779:. This pathway is favored with sterically hindered nucleophiles. Elimination reactions are usually favoured at elevated temperatures because of increased 218:
between the nucleophile and substrate. The reaction occurs only when the occupied lone pair orbital of the nucleophile donates electrons to the unfilled
1301:
1 Involvement in the Solvolysis of Secondary Alkyl Compounds, T. J. Murphy, J. Chem. Educ.; 2009; 86(4) pp 519-24; (Article) doi: 10.1021/ed041p678
800: 338:
2 reaction to occur more quickly, the nucleophile must easily access the sigma antibonding orbital between the central carbon and leaving group.
1071: 1018: 951: 711:
1 reaction. There are two factors which complicate determining the mechanism of nucleophilic substitution reactions at secondary carbons:
1735: 1612: 1569: 1440:
J. Mikosch, S. Trippel, C. Eichhorn, R. Otto, U. Lourderaj, J. X. Zhang, W. L. Hase, M. Weidemüller, and R. Wester Science 11 January
892: 1876: 1516: 150:, is that the displacement of the leaving group, which is the rate-determining step, is separate from the nucleophilic attack in S 882: 416:
anion, for example, is both a strong base and nucleophile because it is a methyl nucleophile, and is thus very much unhindered.
1372: 497:), are good examples because of their positive charge when bonded to the carbon center prior to nucleophilic attack. Halides ( 1784: 1779: 1589: 1249:
Vermeeren, Pascal; Hansen, Thomas; Jansen, Paul; Swart, Marcel; Hamlin, Trevor A.; Bickelhaupt, F. Matthias (December 2020).
887: 728:
1 mechanism. In the case of a bromide leaving group in alcoholic solvent Cowdrey et al. have shown that bromide can have an S
1944: 1484: 226:. Throughout the course of the reaction, a p orbital forms at the reaction center as the result of the transition from the 1949: 1400: 775:: the incoming anion can act as a base rather than as a nucleophile, abstracting a proton and leading to formation of the 703:
It has been shown that except in uncommon (but predictable cases) primary and secondary substrates go exclusively by the S
219: 719:
In reactions where the leaving group is also a good nucleophile (bromide for instance) the leaving group can perform an S
1975: 1509: 354:
2 pathway, as the greater steric hindrance between the nucleophile and nearby groups of the substrate will leave the S
1088:"Nucleophilic Substitution (SN2): Dependence on Nucleophile, Leaving Group, Central Atom, Substituents, and Solvent" 1914: 1604: 448: 447:
that comes from breaking its bond with the carbon center. This leaving group ability trend corresponds well to the
400: 264: 233: 1641: 1541: 127: 1871: 162: 30:"SN2" redirects here. For slush nitrogen, the mixture of solid and liquid nitrogen sometimes abbreviated as SN 1919: 1720: 1424: 872: 417: 393:
2 reaction. Electron-donating groups favor leaving-group displacement and are more likely to react via the S
291: 1674: 1061: 1904: 1836: 1694: 1684: 915: 662: 658: 181: 135: 100: 68:
yielding dimethylsulfonium. Note that the attacking group attacks from the backside of the leaving group
1251:"A Unified Framework for Understanding Nucleophilicity and Protophilicity in the S N 2/E2 Competition" 1145:"Nucleophilic Substitution in Solution: Activation Strain Analysis of Weak and Strong Solvent Effects" 1899: 1627: 877: 772: 590: 241: 119: 45: 361: 1909: 1841: 1826: 1769: 326:
The four factors that affect the rate of the reaction, in the order of decreasing importance, are:
197: 166: 1200:
Hansen, Thomas; Roozee, Jasper C.; Bickelhaupt, F. Matthias; Hamlin, Trevor A. (4 February 2022).
692:
2 the nucleophile forces off the leaving group in the limiting step. In other words, the rate of S
1934: 1704: 1533: 1036: 227: 108: 84: 41: 601: 1929: 1924: 1886: 1831: 1750: 1730: 1666: 1280: 1231: 1182: 1164: 1125: 1107: 1067: 1024: 1014: 947: 792: 634: 630: 424: 385: 88: 380:
1, allylic and benzylic carbocations are stabilized by delocalizing the positive charge. In S
1861: 1810: 1764: 1481:
Surprise From SN2 Snapshots Ion velocity measurements unveil additional unforeseen mechanism
1465: 1445: 1408: 1317: 1270: 1262: 1221: 1213: 1172: 1156: 1115: 1099: 982: 815: 444: 303: 299: 193: 1939: 1851: 1800: 973: 827: 614: 334:
The substrate plays the most important part in determining the rate of the reaction. For S
295: 185: 317:
2 mechanism of 1-bromo-1-fluoroethane with one of the carbon atoms being a chiral centre.
1492: 665:
depends on the nucleophile concentration, as well as the concentration of substrate, .
1646: 1635: 1275: 1250: 1226: 1201: 1177: 1144: 1120: 1087: 642: 618: 346: 35: 1143:
Hamlin, Trevor A.; van Beek, Bas; Wolters, Lando P.; Bickelhaupt, F. Matthias (2018).
1964: 1894: 1866: 1774: 1725: 1699: 867: 847: 811: 764: 688:
1 reaction the nucleophile attacks after the rate-limiting step is over, whereas in S
669: 622: 223: 215: 104: 700:
2 reaction rate depends on the concentration of both the substrate and nucleophile.
1846: 1652: 1549: 1397:
Gas Phase Studies of the Competition between Substitution and Elimination Reactions
897: 788: 582: 287: 143: 53: 716:
the reaction. This type of reaction is often called a pseudo first order reaction.
1805: 1740: 1057: 986: 529: 263:. Reactions such as this, with an alkoxide as the nucleophile, are known as the 131: 96: 61: 1028: 968: 525: 248: 1168: 1111: 412:
Like the substrate, steric hindrance affects the nucleophile's strength. The
1856: 1501: 1469: 1449: 1217: 784: 561: 553: 413: 256: 178: 1284: 1266: 1235: 1186: 1160: 1129: 1103: 1008: 203: 1321: 823: 819: 696:
1 reactions depend only on the concentration of the substrate while the S
545: 537: 516: 498: 479: 780: 638: 569: 504: 259:
group as the nucleophile and a halide as the leaving group, forming an
189: 1412: 1373:"Elimination Reactions Are Favored By Heat — Master Organic Chemistry" 783:. This effect can be demonstrated in the gas-phase reaction between a 814:, the reaction product is predominantly the substitution product. As 776: 510: 487: 161:
2 reaction can be considered as an organic-chemistry analogue of the
134:
mechanism, which means both the reacting species are involved in the
1086:
Hamlin, Trevor A.; Swart, Marcel; Bickelhaupt, F. Matthias (2018).
17: 1759: 475: 260: 40: 1063:
Advanced Organic Chemistry: Reactions, Mechanisms, and Structure
736:
The examples in textbooks of secondary substrates going by the S
443:
2 reactions. A good leaving group must be able to stabilize the
1505: 969:"Synthesis of the Bioherbicidal Fungus Metabolite Macrocidin A" 1579: 946:(2nd ed.). Oxford: Oxford University Press. p. 330. 906: 142:
2 from the other major type of nucleophilic substitution, the
188:, stable leaving group attached to it, which is frequently a 103:-hybridised carbon atom via a backside attack, all while the 799: 600: 581: 399: 360: 308: 269: 232: 202: 1464:
John I. Brauman (11 January 2008) Science 319 (5860), 168.
846:
observed in a gas-phase reaction between chloride ions and
524:
Leaving group reactivity of alcohols can be increased with
1202:"How Solvation Influences the S N 2 versus E2 Competition" 629:
2 manner of nucleophilic substitution reaction. Examples:
942:
Clayden, Jonathan; Greeves, Nick; Warren, Stuart (2012).
368:
Substrates with adjacent pi C=C systems can favor both S
838:
A development attracting attention in 2008 concerns a S
251:, involves an intramolecular ring closing step via an S 1007:
CURTIS, CLIFF. MURGATROYD, JASON. SCOTT, DAVE (2019).
1493:
http://pubsapp.acs.org/cen/news/86/i02/8602notw1.html
967:
Hasse, Robert; Schobert, Rainer (November 28, 2016).
439:
Good leaving groups on the substrate lead to faster S
247:
For example, the synthesis of macrocidin A, a fungal
1010:
Edexcel international a level chemistry student book
345:
2 occurs more quickly with substrates that are more
1885: 1819: 1793: 1749: 1713: 1665: 1626: 1603: 1540: 818:around the electrophilic center increases, as with 617:, are better solvents for this reaction than polar 707:2 mechanism while tertiary substrates go via the S 471:value, the faster the leaving group is displaced. 1066:(6th ed.), New York: Wiley-Interscience, 937: 935: 933: 931: 1517: 244:of tetrahedral geometry at the central atom. 8: 1041:: CS1 maint: multiple names: authors list ( 230:of the reactants to those of the products. 1524: 1510: 1502: 1438:Imaging Nucleophilic Substitution Dynamics 322:Factors affecting the rate of the reaction 1274: 1225: 1176: 1119: 804:Competition experiment between SN2 and E2 474:Leaving groups that are neutral, such as 575: 493: 457:of the leaving group's conjugate acid (p 431:2 manner of nucleophillic substitution. 927: 107:detaches from the reaction center in a 1550:Unimolecular nucleophilic substitution 1034: 858:2 displacement mechanism takes place. 676:This is a key difference between the S 1560:Bimolecular nucleophilic substitution 1462:PERSPECTIVES CHEMISTRY: Not So Simple 282:If the substrate that is undergoing S 177:The reaction most often occurs at an 73:Bimolecular nucleophilic substitution 7: 1971:Nucleophilic substitution reactions 1613:Electrophilic aromatic substitution 621:because polar protic solvents will 222:between the central carbon and the 126:" indicates that the reaction is a 1580:Nucleophilic internal substitution 1570:Nucleophilic aromatic substitution 893:Nucleophilic aromatic substitution 25: 1407:; 36(11) pp 848 - 857; (Article) 200:and approximately sp-hybridised. 130:, and "2" that it proceeds via a 1206:The Journal of Organic Chemistry 883:Neighbouring group participation 850:with a special technique called 302:) may occur; this is called the 196:in which the reaction center is 1736:Lindemann–Hinshelwood mechanism 1485:Chemical & Engineering News 552:). Poor leaving groups include 274:Synthesis of macrocidin A via S 1785:Outer sphere electron transfer 1780:Inner sphere electron transfer 1590:Nucleophilic acyl substitution 1377:www.masterorganicchemistry.com 1255:Chemistry – A European Journal 1149:Chemistry – A European Journal 888:Nucleophilic acyl substitution 852:crossed molecular beam imaging 214:2 reaction can be viewed as a 1: 1950:Diffusion-controlled reaction 1401:Accounts of Chemical Research 111:(i.e. simultaneous) fashion. 46:Ball-and-stick representation 1605:Electrophilic substitutions 987:10.1021/acs.orglett.6b03240 358:1 reaction to occur first. 1992: 1915:Energy profile (chemistry) 1877:More O'Ferrall–Jencks plot 1542:Nucleophilic substitutions 265:Williamson ether synthesis 29: 27:Organic chemistry reaction 1945:Michaelis–Menten kinetics 1491:Volume 86, Number 2 p. 9 128:nucleophilic substitution 1872:Potential energy surface 1751:Electron/Proton transfer 1636:Unimolecular elimination 515:, with the exception of 163:associative substitution 1920:Transition state theory 1721:Intramolecular reaction 1647:Bimolecular elimination 1470:10.1126/science.1152387 1450:10.1126/science.1150238 1425:electrospray ionization 1218:10.1021/acs.joc.1c02354 873:Christopher Kelk Ingold 99:forms a new bond to an 1714:Unimolecular reactions 1675:Electrophilic addition 1423:The technique used is 1267:10.1002/chem.202003831 1161:10.1002/chem.201706075 1104:10.1002/cphc.201701363 805: 791:taking place inside a 684:2 mechanisms. In the S 605: 586: 404: 365: 318: 279: 237: 220:σ* antibonding orbital 207: 184:carbon center with an 138:. What distinguishes S 69: 1905:Rate-determining step 1837:Reactive intermediate 1695:Free-radical addition 1685:Nucleophilic addition 1628:Elimination reactions 1013:. : EDEXCEL Limited. 916:Substitution reaction 803: 663:rate-determining step 604: 585: 403: 364: 347:sterically accessible 312: 273: 236: 216:HOMO–LUMO interaction 206: 136:rate-determining step 122:of the mechanism: "S 95:2 reaction, a strong 44: 1900:Equilibrium constant 1322:10.1039/JR9370001252 878:Finkelstein reaction 844:roundabout mechanism 834:Roundabout mechanism 591:Finkelstein reaction 290:, then inversion of 120:Hughes-Ingold symbol 1976:Reaction mechanisms 1910:Reaction coordinate 1842:Radical (chemistry) 1827:Elementary reaction 1770:Grotthuss mechanism 1534:reaction mechanisms 1335:10.1021/ja00478a031 1261:(67): 15538–15548. 1056:Smith, Michael B.; 767:taking place with S 167:inorganic chemistry 1935:Arrhenius equation 1705:Oxidative addition 1667:Addition reactions 806: 606: 587: 464:); the lower its p 405: 366: 319: 280: 255:2 reaction with a 238: 228:molecular orbitals 208: 173:Reaction mechanism 165:from the field of 87:that is common in 85:reaction mechanism 70: 1958: 1957: 1930:Activated complex 1925:Activation energy 1887:Chemical kinetics 1832:Reaction dynamics 1731:Photodissociation 1413:10.1021/ar020042n 1155:(22): 5927–5938. 1098:(11): 1315–1330. 1073:978-0-471-72091-1 1020:978-1-292-24472-3 981:(24): 6352–6355. 953:978-0-19-927029-3 944:Organic chemistry 793:mass spectrometer 649:Reaction kinetics 635:dimethylformamide 631:dimethylsulfoxide 425:electronegativity 376:2 reactions. In S 286:2 reaction has a 278:2 etherification. 89:organic chemistry 16:(Redirected from 1983: 1862:Collision theory 1811:Matrix isolation 1765:Harpoon reaction 1642:E1cB-elimination 1526: 1519: 1512: 1503: 1496: 1495:, video included 1478: 1472: 1459: 1453: 1435: 1429: 1421: 1415: 1394: 1388: 1387: 1385: 1383: 1369: 1363: 1360: 1354: 1351: 1345: 1342: 1336: 1332: 1326: 1325: 1308: 1302: 1295: 1289: 1288: 1278: 1246: 1240: 1239: 1229: 1212:(3): 1805–1813. 1197: 1191: 1190: 1180: 1140: 1134: 1133: 1123: 1083: 1077: 1076: 1053: 1047: 1046: 1040: 1032: 1004: 998: 997: 995: 993: 964: 958: 957: 939: 830:are eliminated. 816:steric hindrance 653:The rate of an S 578: 567: 559: 551: 543: 535: 519: 513: 507: 501: 496: 485: 445:electron density 384:2, however, the 304:Walden inversion 300:optical activity 194:transition state 118:2 refers to the 21: 1991: 1990: 1986: 1985: 1984: 1982: 1981: 1980: 1961: 1960: 1959: 1954: 1940:Eyring equation 1881: 1852:Stereochemistry 1815: 1801:Solvent effects 1789: 1745: 1709: 1690: 1680: 1661: 1656: 1622: 1618: 1599: 1595: 1585: 1575: 1565: 1555: 1536: 1530: 1500: 1499: 1479: 1475: 1460: 1456: 1436: 1432: 1428:molecular ions. 1422: 1418: 1395: 1391: 1381: 1379: 1371: 1370: 1366: 1361: 1357: 1352: 1348: 1343: 1339: 1333: 1329: 1310: 1309: 1305: 1300: 1296: 1292: 1248: 1247: 1243: 1199: 1198: 1194: 1142: 1141: 1137: 1085: 1084: 1080: 1074: 1055: 1054: 1050: 1033: 1021: 1006: 1005: 1001: 991: 989: 974:Organic Letters 966: 965: 961: 954: 941: 940: 929: 924: 910: 901: 864: 857: 841: 836: 828:solvent effects 771:2 reactions is 770: 761: 754: 749: 744: 739: 731: 727: 722: 710: 706: 699: 695: 691: 687: 683: 679: 656: 651: 643:protic solvents 628: 619:protic solvents 615:tetrahydrofuran 611: 596: 577: 573: 565: 557: 549: 541: 533: 517: 511: 505: 499: 495: 491: 483: 470: 463: 455: 442: 437: 430: 410: 396: 392: 383: 379: 375: 371: 357: 353: 344: 337: 332: 324: 316: 296:stereochemistry 285: 277: 254: 213: 198:pentacoordinate 186:electronegative 175: 160: 153: 147: 141: 125: 117: 94: 83:) is a type of 80: 65: 57: 51: 39: 33: 28: 23: 22: 15: 12: 11: 5: 1989: 1987: 1979: 1978: 1973: 1963: 1962: 1956: 1955: 1953: 1952: 1947: 1942: 1937: 1932: 1927: 1922: 1917: 1912: 1907: 1902: 1897: 1891: 1889: 1883: 1882: 1880: 1879: 1874: 1869: 1864: 1859: 1854: 1849: 1844: 1839: 1834: 1829: 1823: 1821: 1820:Related topics 1817: 1816: 1814: 1813: 1808: 1803: 1797: 1795: 1794:Medium effects 1791: 1790: 1788: 1787: 1782: 1777: 1772: 1767: 1762: 1756: 1754: 1747: 1746: 1744: 1743: 1738: 1733: 1728: 1723: 1717: 1715: 1711: 1710: 1708: 1707: 1702: 1697: 1692: 1688: 1682: 1678: 1671: 1669: 1663: 1662: 1660: 1659: 1654: 1650: 1644: 1639: 1632: 1630: 1624: 1623: 1621: 1620: 1616: 1609: 1607: 1601: 1600: 1598: 1597: 1593: 1587: 1583: 1577: 1573: 1567: 1563: 1557: 1553: 1546: 1544: 1538: 1537: 1531: 1529: 1528: 1521: 1514: 1506: 1498: 1497: 1473: 1454: 1430: 1416: 1399:Scott Gronert 1389: 1364: 1355: 1346: 1337: 1327: 1303: 1298: 1290: 1241: 1192: 1135: 1078: 1072: 1048: 1019: 999: 959: 952: 926: 925: 923: 920: 919: 918: 913: 908: 904: 899: 895: 890: 885: 880: 875: 870: 863: 860: 855: 839: 835: 832: 808: 807: 773:E2 elimination 768: 760: 759:E2 competition 757: 752: 747: 742: 737: 734: 733: 729: 725: 720: 717: 708: 704: 697: 693: 689: 685: 681: 677: 674: 673: 657:2 reaction is 654: 650: 647: 626: 610: 607: 594: 468: 461: 453: 440: 436: 433: 428: 409: 406: 394: 390: 381: 377: 373: 369: 355: 351: 342: 335: 331: 328: 323: 320: 314: 283: 275: 252: 211: 174: 171: 158: 151: 145: 139: 123: 115: 92: 78: 63: 55: 52:2 reaction of 49: 36:slush nitrogen 31: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1988: 1977: 1974: 1972: 1969: 1968: 1966: 1951: 1948: 1946: 1943: 1941: 1938: 1936: 1933: 1931: 1928: 1926: 1923: 1921: 1918: 1916: 1913: 1911: 1908: 1906: 1903: 1901: 1898: 1896: 1895:Rate equation 1893: 1892: 1890: 1888: 1884: 1878: 1875: 1873: 1870: 1868: 1867:Arrow pushing 1865: 1863: 1860: 1858: 1855: 1853: 1850: 1848: 1845: 1843: 1840: 1838: 1835: 1833: 1830: 1828: 1825: 1824: 1822: 1818: 1812: 1809: 1807: 1804: 1802: 1799: 1798: 1796: 1792: 1786: 1783: 1781: 1778: 1776: 1775:Marcus theory 1773: 1771: 1768: 1766: 1763: 1761: 1758: 1757: 1755: 1752: 1748: 1742: 1739: 1737: 1734: 1732: 1729: 1727: 1726:Isomerization 1724: 1722: 1719: 1718: 1716: 1712: 1706: 1703: 1701: 1700:Cycloaddition 1698: 1696: 1693: 1686: 1683: 1676: 1673: 1672: 1670: 1668: 1664: 1658: 1651: 1648: 1645: 1643: 1640: 1637: 1634: 1633: 1631: 1629: 1625: 1614: 1611: 1610: 1608: 1606: 1602: 1591: 1588: 1581: 1578: 1571: 1568: 1561: 1558: 1551: 1548: 1547: 1545: 1543: 1539: 1535: 1527: 1522: 1520: 1515: 1513: 1508: 1507: 1504: 1494: 1490: 1486: 1483:Carmen Drahl 1482: 1477: 1474: 1471: 1467: 1463: 1458: 1455: 1451: 1447: 1444:319: 183-186 1443: 1439: 1434: 1431: 1426: 1420: 1417: 1414: 1410: 1406: 1402: 1398: 1393: 1390: 1378: 1374: 1368: 1365: 1359: 1356: 1350: 1347: 1341: 1338: 1331: 1328: 1323: 1319: 1316:: 1252–1271. 1315: 1314:J. Chem. Soc. 1307: 1304: 1294: 1291: 1286: 1282: 1277: 1272: 1268: 1264: 1260: 1256: 1252: 1245: 1242: 1237: 1233: 1228: 1223: 1219: 1215: 1211: 1207: 1203: 1196: 1193: 1188: 1184: 1179: 1174: 1170: 1166: 1162: 1158: 1154: 1150: 1146: 1139: 1136: 1131: 1127: 1122: 1117: 1113: 1109: 1105: 1101: 1097: 1093: 1089: 1082: 1079: 1075: 1069: 1065: 1064: 1059: 1052: 1049: 1044: 1038: 1030: 1026: 1022: 1016: 1012: 1011: 1003: 1000: 988: 984: 980: 976: 975: 970: 963: 960: 955: 949: 945: 938: 936: 934: 932: 928: 921: 917: 914: 912: 905: 903: 896: 894: 891: 889: 886: 884: 881: 879: 876: 874: 871: 869: 868:Arrow pushing 866: 865: 861: 859: 853: 849: 848:methyl iodide 845: 833: 831: 829: 825: 821: 817: 813: 812:ethyl bromide 802: 798: 797: 796: 794: 790: 789:alkyl bromide 787:and a simple 786: 782: 778: 774: 766: 765:side reaction 758: 756: 755:2 mechanism. 718: 714: 713: 712: 701: 671: 668: 667: 666: 664: 660: 648: 646: 644: 640: 636: 632: 624: 623:hydrogen bond 620: 616: 608: 603: 599: 592: 584: 580: 571: 563: 555: 547: 539: 531: 527: 522: 520: 514: 508: 502: 489: 481: 477: 472: 467: 460: 456: 452: 446: 435:Leaving group 434: 432: 426: 422: 420: 415: 407: 402: 398: 387: 363: 359: 348: 339: 329: 327: 321: 311: 307: 305: 301: 297: 293: 292:configuration 289: 288:chiral centre 272: 268: 266: 262: 258: 250: 245: 243: 235: 231: 229: 225: 224:leaving group 221: 217: 205: 201: 199: 195: 191: 187: 183: 180: 172: 170: 168: 164: 155: 149: 137: 133: 129: 121: 112: 110: 106: 105:leaving group 102: 98: 90: 86: 82: 74: 67: 59: 47: 43: 37: 19: 1847:Molecularity 1559: 1488: 1487:January 14, 1480: 1476: 1461: 1457: 1452:(in Reports) 1441: 1437: 1433: 1419: 1404: 1396: 1392: 1380:. Retrieved 1376: 1367: 1358: 1349: 1340: 1330: 1313: 1306: 1297:Absence of S 1293: 1258: 1254: 1244: 1209: 1205: 1195: 1152: 1148: 1138: 1095: 1092:ChemPhysChem 1091: 1081: 1062: 1058:March, Jerry 1051: 1009: 1002: 992:December 30, 990:. Retrieved 978: 972: 962: 943: 851: 843: 837: 809: 762: 735: 702: 675: 659:second order 652: 612: 588: 523: 473: 465: 458: 450: 438: 418: 411: 367: 340: 333: 325: 281: 246: 239: 209: 176: 156: 113: 76: 72: 71: 1806:Cage effect 1741:RRKM theory 1657:elimination 408:Nucleophile 397:1 pathway. 386:conjugation 132:bimolecular 97:nucleophile 1965:Categories 1029:1084791738 922:References 902:1 reaction 528:, such as 526:sulfonates 249:metabolite 148:1 reaction 114:The name S 91:. In the S 1857:Catalysis 1753:reactions 1169:1521-3765 1112:1439-7641 1037:cite book 785:phenolate 763:A common 661:, as the 562:alkoxides 554:hydroxide 421:-Butoxide 414:methoxide 330:Substrate 257:phenoxide 242:inversion 179:aliphatic 109:concerted 1382:13 April 1285:32866336 1236:34932346 1187:29457865 1130:29542853 1060:(2007), 862:See also 824:benzoate 820:isobutyl 593:is one S 546:mesylate 538:triflate 530:tosylate 480:alcohols 48:of the S 1276:7756690 1227:8822482 1178:5947303 1121:6001448 781:entropy 746:of an S 680:1 and S 639:acetone 609:Solvent 568:), and 544:), and 486:), and 372:1 and S 190:halogen 1532:Basic 1283:  1273:  1234:  1224:  1185:  1175:  1167:  1128:  1118:  1110:  1070:  1027:  1017:  950:  777:alkene 570:amides 509:, and 488:amines 34:, see 1760:Redox 1596:Acyl) 810:With 476:water 261:ether 210:The S 157:The S 60:with 1649:(E2) 1638:(E1) 1489:2008 1442:2008 1405:2003 1384:2018 1281:PMID 1232:PMID 1183:PMID 1165:ISSN 1126:PMID 1108:ISSN 1068:ISBN 1043:link 1025:OCLC 1015:ISBN 994:2023 948:ISBN 589:The 492:R−NH 484:R−OH 419:tert 298:and 1619:Ar) 1576:Ar) 1466:doi 1446:doi 1409:doi 1318:doi 1271:PMC 1263:doi 1222:PMC 1214:doi 1173:PMC 1157:doi 1116:PMC 1100:doi 983:doi 672:= k 579:). 560:), 550:OMs 542:OTf 536:), 534:OTs 154:1. 18:SN2 1967:: 1687:(A 1677:(A 1615:(S 1592:(S 1586:i) 1582:(S 1572:(S 1566:2) 1562:(S 1556:1) 1552:(S 1403:; 1375:. 1279:. 1269:. 1259:26 1257:. 1253:. 1230:. 1220:. 1210:87 1208:. 1204:. 1181:. 1171:. 1163:. 1153:24 1151:. 1147:. 1124:. 1114:. 1106:. 1096:19 1094:. 1090:. 1039:}} 1035:{{ 1023:. 979:18 977:. 971:. 930:^ 842:2 795:: 741:(S 637:, 633:, 574:NR 566:OR 558:OH 506:Br 503:, 500:Cl 478:, 469:aH 462:aH 267:. 182:sp 169:. 101:sp 62:CH 58:SH 54:CH 1691:) 1689:N 1681:) 1679:E 1655:i 1653:E 1617:E 1594:N 1584:N 1574:N 1564:N 1554:N 1525:e 1518:t 1511:v 1468:: 1448:: 1411:: 1386:. 1324:. 1320:: 1299:N 1287:. 1265:: 1238:. 1216:: 1189:. 1159:: 1132:. 1102:: 1045:) 1031:. 996:. 985:: 956:. 911:i 909:N 907:S 900:N 898:S 856:N 840:N 769:N 753:N 751:S 748:N 743:N 738:N 730:N 726:N 724:S 721:N 709:N 705:N 698:N 694:N 690:N 686:N 682:N 678:N 670:r 655:N 627:N 595:N 576:2 572:( 564:( 556:( 548:( 540:( 532:( 518:F 512:I 494:2 490:( 482:( 466:K 459:K 454:a 451:K 449:p 441:N 429:N 395:N 391:N 389:S 382:N 378:N 374:N 370:N 356:N 352:N 350:S 343:N 341:S 336:N 315:N 313:S 294:( 284:N 276:N 253:N 212:N 159:N 152:N 146:N 144:S 140:N 124:N 116:N 93:N 81:2 79:N 77:S 75:( 66:I 64:3 56:3 50:N 38:. 32:2 20:)

Index

SN2
slush nitrogen

Ball-and-stick representation
CH3SH
CH3I
reaction mechanism
organic chemistry
nucleophile
sp
leaving group
concerted
Hughes-Ingold symbol
nucleophilic substitution
bimolecular
rate-determining step
SN1 reaction
associative substitution
inorganic chemistry
aliphatic
sp
electronegative
halogen
transition state
pentacoordinate

HOMO–LUMO interaction
σ* antibonding orbital
leaving group
molecular orbitals

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.