Knowledge (XXG)

Solid oxide fuel cell

Source 📝

3198:
process could work in the production of any part of the cell. The 3D printing process works by combining about 80% ceramic particles with 20% binders and solvents, and then converting that slurry into an ink that can be fed into a 3D printer. Some of the solvent is very volatile, so the ceramic ink solidifies almost immediately. Not all of the solvent evaporates, so the ink maintains some flexibility before it is fired at high temperature to densify it. This flexibility allows the cells to be fired in a circular shape that would increase the surface area over which electrochemical reactions can occur, which increases the efficiency of the cell. Also, the 3D printing technique allows the cell layers to be printed on top of each other instead of having to go through separate manufacturing and stacking steps. The thickness is easy to control, and layers can be made in the exact size and shape that is needed, so waste is minimized.
286:, the fuel processing becomes increasingly complex and, consequently, more expensive. The gasification process, which transforms the raw material into a gaseous state suitable for fuel cells, can generate significant quantities of aromatic compounds. These compounds include smaller molecules like methane and toluene, as well as larger polyaromatic and short-chain hydrocarbon compounds. These substances can lead to carbon buildup in SOFCs. Moreover, the expenses associated with reforming and desulfurization are comparable in magnitude to the cost of the fuel cell itself. These factors become especially critical for systems with lower power output or greater portability requirements. 807:
high temperatures, it must be extremely stable. For this reason, ceramics have been more successful in the long term than metals as interconnect materials. However, these ceramic interconnect materials are very expensive when compared to metals. Nickel- and steel-based alloys are becoming more promising as lower temperature (600–800 Â°C) SOFCs are developed. The material of choice for an interconnect in contact with Y8SZ is a metallic 95Cr-5Fe alloy. Ceramic-metal composites called "cermet" are also under consideration, as they have demonstrated thermal stability at high temperatures and excellent electrical conductivity.
3414:) has been developed as a promising novel concept of a high-temperature energy conversion system. The underlying progress in the development of a coal-based DCFC has been categorized mainly according to the electrolyte materials used, such as solid oxide, molten carbonate, and molten hydroxide, as well as hybrid systems consisting of solid oxide and molten carbonate binary electrolyte or of liquid anode (Fe, Ag, In, Sn, Sb, Pb, Bi, and its alloying and its metal/metal oxide) solid oxide electrolyte. People's research on DCFC with GDC-Li/Na 3315:
requires a temperature above 700 Â°C. Therefore, low-temperature SOFCs are only possible with higher conductivity electrolytes. Various alternatives that could be successful at low temperature include gadolinium-doped ceria (GDC) and erbia-cation-stabilized bismuth (ERB). They have superior ionic conductivity at lower temperatures, but this comes at the expense of lower thermodynamic stability. CeO2 electrolytes become electronically conductive and Bi2O3 electrolytes decompose to metallic Bi under the reducing fuel environment.
794:(TPB) where the electrolyte, air and electrode meet. LSM works well as a cathode at high temperatures, but its performance quickly falls as the operating temperature is lowered below 800 Â°C. In order to increase the reaction zone beyond the TPB, a potential cathode material must be able to conduct both electrons and oxygen ions. Composite cathodes consisting of LSM YSZ have been used to increase this triple phase boundary length. Mixed ionic/electronic conducting (MIEC) ceramics, such as perovskite 505:
YSZ grows larger in grain size, which decreases the surface area for the catalytic reaction. Carbon deposition occurs when carbon atoms, formed by hydrocarbon pyrolysis or CO disproportionation, deposit on the Ni catalytic surface. Carbon deposition becomes important especially when hydrocarbon fuels are used, i.e. methane, syngas. The high operating temperature of SOFC and the oxidizing environment facilitate the oxidation of Ni catalyst through reaction Ni +
790:(LSM) is the cathode material of choice for commercial use because of its compatibility with doped zirconia electrolytes. Mechanically, it has a similar coefficient of thermal expansion to YSZ and thus limits stress buildup because of CTE mismatch. Also, LSM has low levels of chemical reactivity with YSZ which extends the lifetime of the materials. Unfortunately, LSM is a poor ionic conductor, and so the electrochemically active reaction is limited to the 3319:
open-circuit potential (OPC) with two highly conductive electrolytes, that by themselves would not have been sufficiently stable for the application. This bilayer proved to be stable for 1400 hours of testing at 500 Â°C and showed no indication of interfacial phase formation or thermal mismatch. While this makes strides towards lowering the operating temperature of SOFCs, it also opens doors for future research to try and understand this mechanism.
3339:
materials for SOFC applications. This electrolyte was fabricated by dry-pressing powders, which allowed for the production of crack free films thinner than 15 ÎŒm. The implementation of this simple and cost-effective fabrication method may enable significant cost reductions in SOFC fabrication. However, this electrolyte operates at higher temperatures than the bilayered electrolyte model, closer to 600 Â°C rather than 500 Â°C.
193: 3307:
mismatch and easier sealing. Additionally, a lower temperature requires less insulation and therefore has a lower cost. Cost is further lowered due to wider material choices for interconnects and compressive nonglass/ceramic seals. Perhaps most importantly, at a lower temperature, SOFCs can be started more rapidly and with less energy, which lends itself to uses in portable and transportable applications.
3454:
accumulated at the landfills has the potential to be a valuable source of energy since methane is a major constituent. Currently, the majority of the landfills either burn away their gas in flares or combust it in mechanical engines to produce electricity. The issue with mechanical engines is that incomplete combustion of gasses can lead to pollution of the atmosphere and is also highly inefficient.
1487:
conductivity, several methods can be done. Firstly, operating at higher temperatures can significantly decrease these ohmic losses. Substitutional doping methods to further refine the crystal structure and control defect concentrations can also play a significant role in increasing the conductivity. Another way to decrease ohmic resistance is to decrease the thickness of the electrolyte layer.
3523: 3509: 3286:
The push for high-performance ITSOFCs is currently the topic of much research and development. One area of focus is the cathode material. It is thought that the oxygen reduction reaction is responsible for much of the loss in performance so the catalytic activity of the cathode is being studied and enhanced through various techniques, including catalyst impregnation. The research on NdCrO
519:= NiO. The oxidation reaction of Ni reduces the electrocatalytic activity and conductivity. Moreover, the density difference between Ni and NiO causes volume change on the anode surface, which could potentially lead to mechanical failure. Sulfur poisoning arises when fuel such as natural gas, gasoline, or diesel is used. Again, due to the high affinity between sulfur compounds (H 36: 1750:
electrochemical reaction faster than they can diffuse into the porous electrode, and can also be caused by variation in bulk flow composition. The latter is due to the fact that the consumption of reacting species in the reactant flows causes a drop in reactant concentration as it travels along the cell, which causes a drop in the local potential near the tail end of the cell.
77: 131: 375: 1100:
parameters. Moreover, most of the equations used require the addition of numerous factors which are difficult or impossible to determine. It makes very difficult any optimizing process of the SOFC working parameters as well as design architecture configuration selection. Because of those circumstances a few other equations were proposed:
2301:
depends on sample dimensions instead of crack diameter. Failure stresses in SOFCs can also be evaluated using a ring-on ring biaxial stress test. This type of test is generally preferred, as sample edge quality does not significantly impact measurements. The determination of the sample's failure stress is shown in the equation below.
2556: 264:, carbon monoxide or other organic intermediates by oxygen ions thus occurs on the anode side. More recently, proton-conducting SOFCs (PC-SOFC) are being developed which transport protons instead of oxygen ions through the electrolyte with the advantage of being able to be run at lower temperatures than traditional SOFCs. 362:
outside of the tube. The tubular design is advantageous because it is much easier to seal air from the fuel. The performance of the planar design is currently better than the performance of the tubular design, however, because the planar design has a lower resistance comparatively. Other geometries of SOFCs include
3123:
Research is going now in the direction of lower-temperature SOFCs (600 Â°C). Low temperature systems can reduce costs by reducing insulation, materials, start-up and degradation-related costs. With higher operating temperatures, the temperature gradient increases the severity of thermal stresses,
815:
Polarizations, or overpotentials, are losses in voltage due to imperfections in materials, microstructure, and design of the fuel cell. Polarizations result from ohmic resistance of oxygen ions conducting through the electrolyte (iRΩ), electrochemical activation barriers at the anode and cathode, and
638:
If the conductivity for oxygen ions in SOFC can remain high even at lower temperatures (current target in research ~500 Â°C), material choices for SOFC will broaden and many existing problems can potentially be solved. Certain processing techniques such as thin film deposition can help solve this
315:
heavier hydrocarbons, such as gasoline, diesel, jet fuel (JP-8) or biofuels. Such reformates are mixtures of hydrogen, carbon monoxide, carbon dioxide, steam and methane, formed by reacting the hydrocarbon fuels with air or steam in a device upstream of the SOFC anode. SOFC power systems can increase
3285:
SOFCs that operate in an intermediate temperature (IT) range, meaning between 600 and 800 Â°C, are named ITSOFCs. Because of the high degradation rates and materials costs incurred at temperatures in excess of 900 Â°C, it is economically more favorable to operate SOFCs at lower temperatures.
451:
layer must be very porous to allow the fuel to flow towards the electrolyte. Consequently, granular matter is often selected for anode fabrication procedures. Like the cathode, it must conduct electrons, with ionic conductivity a definite asset. The anode is commonly the thickest and strongest layer
2063:
during operation requires high mechanical strength. Additional stresses associated with changes in gas atmosphere, leading to reduction or oxidation also cannot be avoided in prolonged operation. When electrode layers delaminate or crack, conduction pathways are lost, leading to a redistribution of
2058:
Current SOFC research focuses heavily on optimizing cell performance while maintaining acceptable mechanical properties because optimized performance often compromises mechanical properties. Nevertheless, mechanical failure represents a significant problem to SOFC operation. The presence of various
3338:
with Zr to form a solid solution that exhibits proton conductivity, but also chemical and thermal stability over the range of conditions relevant to fuel cell operation. A new specific composition, Ba(Zr0.1Ce0.7Y0.2)O3-ÎŽ (BZCY7) that displays the highest ionic conductivity of all known electrolyte
3314:
This is a materials issue, particularly for the electrolyte in the SOFC. YSZ is the most commonly used electrolyte because of its superior stability, despite not having the highest conductivity. Currently, the thickness of YSZ electrolytes is a minimum of ~10 ÎŒm due to deposition methods, and this
504:
However, there are a few disadvantages associated with YSZ as anode material. Ni coarsening, carbon deposition, reduction-oxidation instability, and sulfur poisoning are the main obstacles limiting the long-term stability of Ni-YSZ. Ni coarsening refers to the evolution of Ni particles in doped in
464:
between the oxygen ions and the hydrogen produces heat as well as water and electricity. If the fuel is a light hydrocarbon, for example, methane, another function of the anode is to act as a catalyst for steam reforming the fuel into hydrogen. This provides another operational benefit to the fuel
3453:
Every household produces waste/garbage on a daily basis. In 2009, Americans produced about 243 million tons of municipal solid waste, which is 4.3 pounds of waste per person per day. All that waste is sent to landfill sites. Landfill gas which is produced from the decomposition of waste that gets
3306:
Low-temperature solid oxide fuel cells (LT-SOFCs), operating lower than 650 Â°C, are of great interest for future research because the high operating temperature is currently what restricts the development and deployment of SOFCs. A low-temperature SOFC is more reliable due to smaller thermal
2700:
However, this equation is not valid for deflections exceeding 1/2h, making it less applicable for thin samples, which are of great interest in SOFCs. Therefore, while this method does not require knowledge of crack or pore size, it must be used with great caution and is more applicable to support
2300:
Thus, porosity must be carefully engineered to maximize reaction kinetics while maintaining an acceptable fracture toughness. Since fracture toughness represents the ability of pre-existing cracks or pores to propagate, a potentially more useful metric is the failure stress of a material, as this
806:
The interconnect can be either a metallic or ceramic layer that sits between each individual cell. Its purpose is to connect each cell in series, so that the electricity each cell generates can be combined. Because the interconnect is exposed to both the oxidizing and reducing side of the cell at
3152:
compounds are removed. These processes add to the cost and complexity of SOFC systems. Work is under way at a number of institutions to improve the stability of anode materials for hydrocarbon oxidation and, therefore, relax the requirements for fuel processing and decrease SOFC balance of plant
361:
geometry is the typical sandwich type geometry employed by most types of fuel cells, where the electrolyte is sandwiched in between the electrodes. SOFCs can also be made in tubular geometries where either air or fuel is passed through the inside of the tube and the other gas is passed along the
3197:
3D printing is being explored as a possible manufacturing technique that could be used to make SOFC manufacturing easier by the Shah Lab at Northwestern University. This manufacturing technique would allow SOFC cell structure to be more flexible, which could lead to more efficient designs. This
2079:
Just as thermal stresses increase as cell performance improves through improved ionic conductivity, the fracture toughness of the material also decreases as cell performance increases. This is because, to increase reaction sites, porous ceramics are preferable. However, as shown in the equation
2049:
The polarization can be modified by microstructural optimization. The Triple Phase Boundary (TPB) length, which is the length where porous, ionic and electronically conducting pathways all meet, directly relates to the electrochemically active length in the cell. The larger the length, the more
1473:
This method was validated and found to be suitable for optimization and sensitivity studies in plant-level modelling of various systems with solid oxide fuel cells. With this mathematical description it is possible to account for different properties of the SOFC. There are many parameters which
3293:
Another area of focus is electrolyte materials. To make SOFCs competitive in the market, ITSOFCs are pushing towards lower operational temperature by use of alternative new materials. However, efficiency and stability of the materials limit their feasibility. One choice for the electrolyte new
602:
The electrolyte is a dense layer of ceramic that conducts oxygen ions. Its electronic conductivity must be kept as low as possible to prevent losses from leakage currents. The high operating temperatures of SOFCs allow the kinetics of oxygen ion transport to be sufficient for good performance.
3457:
The issue with using landfill gas to fuel an SOFC system is that landfill gas contains hydrogen sulfide. Any landfill accepting biological waste will contain about 50-60 ppm of hydrogen sulfide and around 1-2 ppm mercaptans. However, construction materials containing reducible sulfur species,
2075:
in mixed ionic-electronic perovskites can be directly related to oxygen vacancy concentration, which is also related to ionic conductivity. Thus, thermal stresses increase in direct correlation with improved cell performance. Additionally, however, the temperature dependence of oxygen vacancy
1753:
The concentration polarization occurs in both the anode and cathode. The anode can be particularly problematic, as the oxidation of the hydrogen produces steam, which further dilutes the fuel stream as it travels along the length of the cell. This polarization can be mitigated by reducing the
390:
active until they reach very high temperature and as a consequence, the stacks have to run at temperatures ranging from 500 to 1,000 Â°C. Reduction of oxygen into oxygen ions occurs at the cathode. These ions can then diffuse through the solid oxide electrolyte to the anode where they can
3318:
To combat this, researchers created a functionally graded ceria/bismuth-oxide bilayered electrolyte where the GDC layer on the anode side protects the ESB layer from decomposing while the ESB on the cathode side blocks the leakage current through the GDC layer. This leads to near-theoretical
1095:
In SOFCs, it is often important to focus on the ohmic and concentration polarizations since high operating temperatures experience little activation polarization. However, as the lower limit of SOFC operating temperature is approached (~600 Â°C), these polarizations do become important.
3139:
Lowering operating temperatures has the added benefit of increased efficiency. Theoretical fuel cell efficiency increases with decreasing temperature. For example, the efficiency of a SOFC using CO as fuel increases from 63% to 81% when decreasing the system temperature from 900 Â°C to
1099:
Above mentioned equation is used for determining the SOFC voltage (in fact for fuel cell voltage in general). This approach results in good agreement with particular experimental data (for which adequate factors were obtained) and poor agreement for other than original experimental working
1486:
Ohmic losses in an SOFC result from ionic conductivity through the electrolyte and electrical resistance offered to the flow of electrons in the external electrical circuit. This is inherently a materials property of the crystal structure and atoms involved. However, to maximize the ionic
558:, Ru, Co, etc. are invented to resist sulfur poisoning, but the improvement is limited due to the rapid initial degradation. Copper-based cerement anode is considered as a solution to carbon deposition because it is inert to carbon and stable under typical SOFC oxygen partial pressures (pO 1762:
The activation polarization is the result of the kinetics involved with the electrochemical reactions. Each reaction has a certain activation barrier that must be overcome in order to proceed and this barrier leads to the polarization. The activation barrier is the result of many complex
386:(hence the name). A single cell consisting of these four layers stacked together is typically only a few millimeters thick. Hundreds of these cells are then connected in series to form what most people refer to as an "SOFC stack". The ceramics used in SOFCs do not become electrically and 1749:
The concentration polarization is the result of practical limitations on mass transport within the cell and represents the voltage loss due to spatial variations in reactant concentration at the chemically active sites. This situation can be caused when the reactants are consumed by the
4822:
Nakajo, Arata; Kuebler, Jakob; Faes, Antonin; Vogt, Ulrich; Schindler, HansjĂŒrgen; Chiang, Lieh-Kwang; Modena, Stefano; Van Herle, Jan (25 January 2012). "Compilation of mechanical properties for the structural analysis of solid oxide fuel cell stacks. Part I. Constitutive materials of
1268: 781: 3342:
Currently, given the state of the field for LT-SOFCs, progress in the electrolyte would reap the most benefits, but research into potential anode and cathode materials would also lead to useful results, and has started to be discussed more frequently in literature.
3458:
principally sulfates found in gypsum-based wallboard, can cause considerably higher levels of sulfides in the hundreds of ppm. At operating temperatures of 750 Â°C hydrogen sulfide concentrations of around 0.05 ppm begin to affect the performance of the SOFCs.
391:
electrochemically oxidize the fuel. In this reaction, a water byproduct is given off as well as two electrons. These electrons then flow through an external circuit where they can do work. The cycle then repeats as those electrons enter the cathode material again.
2844: 2306: 2050:
reactions can occur and thus the less the activation polarization. Optimization of TPB length can be done by processing conditions to affect microstructure or by materials selection to use a mixed ionic/electronic conductor to further increase TPB length.
1474:
impact cell working conditions, e.g. electrolyte material, electrolyte thickness, cell temperature, inlet and outlet gas compositions at anode and cathode, and electrode porosity, just to name some. The flow in these systems is often calculated using the
3310:
As temperature decreases, the maximum theoretical fuel cell efficiency increases, in contrast to the Carnot cycle. For example, the maximum theoretical efficiency of an SOFC using CO as a fuel increases from 63% at 900 Â°C to 81% at 350 Â°C.
3964:
Radenahmad, Nikdalila; Azad, Atia Tasfiah; Saghir, Muhammad; Taweekun, Juntakan; Bakar, Muhammad Saifullah Abu; Reza, Md Sumon; Azad, Abul Kalam (March 2020). "A review on biomass derived syngas for SOFC based combined heat and power application".
1867: 816:
finally concentration polarizations due to inability of gases to diffuse at high rates through the porous anode and cathode (shown as ηA for the anode and ηC for cathode). The cell voltage can be calculated using the following equation:
366:(MPC or MPSOFC), where a wave-like structure replaces the traditional flat configuration of the planar cell. Such designs are highly promising because they share the advantages of both planar cells (low resistance) and tubular cells. 3992:
Xu, Qidong; Guo, Zengjia; Xia, Lingchao; He, Qijiao; Li, Zheng; Temitope Bello, Idris; Zheng, Keqing; Ni, Meng (February 2022). "A comprehensive review of solid oxide fuel cells operating on various promising alternative fuels".
3230:
The high temperature electrochemistry center (HITEC) at the University of Florida, Gainesville is focused on studying ionic transport, electrocatalytic phenomena and microstructural characterization of ion conducting materials.
3851:
Kim, Jun Hyuk; Liu, Mingfei; Chen, Yu; Murphy, Ryan; Choi, YongMan; Liu, Ying; Liu, Meilin (5 November 2021). "Understanding the Impact of Sulfur Poisoning on the Methane-Reforming Activity of a Solid Oxide Fuel Cell Anode".
932: 3143:
Research is also under way to improve the fuel flexibility of SOFCs. While stable operation has been achieved on a variety of hydrocarbon fuels, these cells typically rely on external fuel processing. In the case of
4850:
Ullmann, H.; Trofimenko, N.; Tietz, F.; Stöver, D.; Ahmad-Khanlou, A. (1 December 2000). "Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes".
5433:
Choi, S.; Yoo, S.; Park, S.; Jun, A.; Sengodan, S.; Kim, J.; Shin, J. Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co(2-x)Fe(x)O(5+ÎŽ). Sci. Rep. 2013, 3,
3083:
is therefore of significant importance. Due to the difficulty in mechanically testing SOFCs at high temperatures, and due to the microstructural evolution of SOFCs over the lifetime of operation resulting from
1649: 3189:
onto inexpensive ceramic materials. Rolls-Royce Fuel Cell Systems Ltd is developing an SOFC gas turbine hybrid system fueled by natural gas for power generation applications in the order of a megawatt (e.g.
4630:
Shimada, Hiroyuki; Suzuki, Toshio; Yamaguchi, Toshiaki; Sumi, Hirofumi; Hamamoto, Koichi; Fujishiro, Yoshinobu (January 2016). "Challenge for lowering concentration polarization in solid oxide fuel cells".
3374:
Theoretically, the combination of the SOFC and gas turbine can give result in high overall (electrical and thermal) efficiency. Further combination of the SOFC-GT in a combined cooling, heat and power (or
5350:
Rainer KĂŒngas; Peter Blennow; Thomas Heiredal-Clausen; Tobias Holt; Jeppe Rass-Hansen; SĂžren Primdahl; John BĂžgild Hansen (2017). "eCOs - A Commercial CO2 Electrolysis System Developed by Haldor Topsoe".
231:
Advantages of this class of fuel cells include high combined heat and power efficiency, long-term stability, fuel flexibility, low emissions, and relatively low cost. The largest disadvantage is the high
1106: 289:
Solid oxide fuel cells have a wide variety of applications, from use as auxiliary power units in vehicles to stationary power generation with outputs from 100 W to 2 MW. In 2009, Australian company,
2167: 3156:
Research is also going on in reducing start-up time to be able to implement SOFCs in mobile applications. This can be partially achieved by lowering operating temperatures, which is the case for
3124:
which affects materials cost and life of the system. An intermediate temperature system (650-800 Â°C) would enable the use of cheaper metallic materials with better mechanical properties and
3179:
or diesel as the engine and would keep the air conditioning unit and other necessary electrical systems running while the engine shuts off when not needed (e.g., at a stop light or truck stop).
679: 481:(mixed ionic/electronic conducting ceramics) have been shown to produce a power density of 0.6 W/cm2 at 0.7 V at 800 Â°C which is possible because they have the ability to overcome a larger 3175:
has recently stopped a similar project. A high-temperature SOFC will generate all of the needed electricity to allow the engine to be smaller and more efficient. The SOFC would run on the same
1536: 2904: 2551:{\displaystyle \sigma _{cr}={\frac {3F_{cr}}{2\pi h_{s}^{2}}}+{\Biggl (}(1-\nu ){\frac {D_{sup}^{2}-D_{load}^{2}}{2D_{s}^{2}}}+(1+\nu )\ln \left({\frac {D_{sup}}{D_{load}}}\right){\Biggr )}} 2710: 3128:. New developments in nano-scale electrolyte structures have been shown to bring down operating temperatures to around 350 Â°C, which would enable the use of even cheaper steel and 293:
successfully achieved an efficiency of an SOFC device up to the previously theoretical mark of 60%. The higher operating temperature make SOFCs suitable candidates for application with
5168:
Lamp, P.; Tachtler, J.; Finkenwirth, O.; Mukerjee, S.; Shaffer, S. (November 2003). "Development of an Auxiliary Power Unit with Solid Oxide Fuel Cells for Automotive Applications".
574:, after adding a cobalt co-catalyst. Oxide anodes including zirconia-based fluorite and perovskites are also used to replace Ni-ceramic anodes for carbon resistance. Chromite i.e. La 311:
Because of these high temperatures, light hydrocarbon fuels, such as methane, propane, and butane can be internally reformed within the anode. SOFCs can also be fueled by externally
3111:-based system without additional requirements. Lifetime effects (phase stability, thermal expansion compatibility, element migration, conductivity and aging) must be addressed. The 594:(LSCM) is used as anodes and exhibited comparable performance against Ni–YSZ cermet anodes. LSCM is further improved by impregnating Cu and sputtering Pt as the current collector. 4878:
Radovic, M.; Lara-Curzio, E. (December 2004). "Mechanical properties of tape cast nickel-based anode materials for solid oxide fuel cells before and after reduction in hydrogen".
5507:
Zuo, C.; Zha, S.; Liu, M.; Hatano, M.; Uchiyama, M. Ba(Zr0.1Ce0.7Y0.2)O3-ÎŽ as an Electrolyte for Low-Temperature Solid-Oxide Fuel Cells. Advanced Materials. 2006, 18, 3318-3320
1046: 2990: 4967:
Nakajo, Arata; Kuebler, Jakob; Faes, Antonin; Vogt, Ulrich F.; Schindler, Hans JĂŒrgen; Chiang, Lieh-Kwang; Modena, Stefano; Van herle, Jan; Hocker, Thomas (25 January 2012).
2705:
pose another great problem, as MIEC electrodes often operate at temperatures exceeding half of the melting temperature. As a result, diffusion creep must also be considered.
1089: 3022: 2701:
layers in SOFCs than active layers. In addition to failure stresses and fracture toughness, modern fuel cell designs that favor mixed ionic electronic conductors (MIECs),
2590: 534:
Current research is focused on reducing or replacing Ni content in the anode to improve long-term performance. The modified Ni-YSZ containing other materials including CeO
1679: 477:, help stop the grain growth of nickel. Larger grains of nickel would reduce the contact area that ions can be conducted through, which would lower the cells efficiency. 1763:
electrochemical reaction steps where typically the rate limiting step is responsible for the polarization. The polarization equation shown below is found by solving the
798:, are also being researched for use in intermediate temperature SOFCs as they are more active and can make up for the increase in the activation energy of the reaction. 346:
demands a uniform and well-regulated heating process at startup. SOFC stacks with planar geometry require on the order of an hour to be heated to operating temperature.
1409: 4495: 2239: 1948: 1310: 2295: 1924: 1773: 1579: 1559: 1380: 1345: 967: 4123: 2622: 2201: 282:
poisoning has been widely observed and the sulfur must be removed before entering the cell. For fuels that are of lower quality, such as gasified biomass, coal, or
2651: 2268: 2043: 1467: 1438: 2673: 4727:
M. Santarelli; P. Leone; M. CalĂŹ; G. Orsello (2007). "Experimental evaluation of the sensitivity to fuel utilization and air management on a 100 kW SOFC system".
3932: 3204:
Ltd. has developed a low cost and low temperature (500–600 degrees) SOFC stack using cerium gadolinium oxide (CGO) in place of current industry standard ceramic,
5013: 3066: 3044: 2952: 2926: 2695: 2014: 1992: 1970: 1893: 1739: 1719: 1699: 993: 5544:
L. K. C. Tse; S. Wilkins; N. McGlashan; B. Urban; R. Martinez-Botas (2011). "Solid oxide fuel cell/gas turbine trigeneration system for marine applications".
2064:
current density and local changes in temperature. These local temperature deviations, in turn, lead to increased thermal strains, which propagate cracks and
5579:
Isfahani, SNR; Sedaghat, Ahmad (15 June 2016). "A hybrid micro gas turbine and solid state fuel cell power plant with hydrogen production and CO2 capture".
2068:. Additionally, when electrolytes crack, separation of fuel and air is no longer guaranteed, which further endangers the continuous operation of the cell. 627:(GDC). The electrolyte material has crucial influence on the cell performances. Detrimental reactions between YSZ electrolytes and modern cathodes such as 570:-YSZ exhibits a higher electrochemical oxidation rate over Ni-YSZ when running on CO and syngas, and can achieve even higher performance using CO than H 5443:
Hibini, T.; Hashimoto, A.; Inoue, T.; Tokuno, J.; Yoshida, S.; Sano, M. A Low-Operating-Temperature Solid Oxide Fuel Cell in Hydrocarbon-Air Mixtures.
4509:
Mohan Menon; Kent Kammer; et al. (2007). "Processing of Ce1-xGdxO2-ÎŽ (GDC) thin films from precursors for application in solid oxide fuel cells".
3879:
Boldrin, Paul; Ruiz-Trejo, Enrique; Mermelstein, Joshua; BermĂșdez MenĂ©ndez, JosĂ© Miguel; Ramı́rez Reina, TomĂĄs; Brandon, Nigel P. (23 November 2016).
3234:
SiEnergy Systems, a Harvard spin-off company, has demonstrated the first macro-scale thin-film solid-oxide fuel cell that can operate at 500 degrees.
4795:
Mahato, N; Banerjee, A; Gupta, A; Omar, S; Balani, K (1 July 2015). "Progress in material selection for solid oxide fuel cell technology: A review".
152: 139: 3294:
materials is the ceria-salt ceramic composites (CSCs). The two-phase CSC electrolytes GDC (gadolinium-doped ceria) and SDC (samaria-doped ceria)-MCO
531:
S) and the metal catalyst, even the smallest impurities of sulfur compounds in the feed stream could deactivate the Ni catalyst on the YSZ surface.
343: 4969:"Compilation of mechanical properties for the structural analysis of solid oxide fuel cell stacks. Constitutive materials of anode-supported cells" 822: 337: 3612:
Singh, Mandeep; Zappa, Dario; Comini, Elisabetta (August 2021). "Solid oxide fuel cell: Decade of progress, future perspectives and challenges".
3223:
Solid Cell Inc. has developed a unique, low-cost cell architecture that combines properties of planar and tubular designs, along with a Cr-free
49: 5723: 5046: 4257: 5805: 473:
mixed with the ceramic material that is used for the electrolyte in that particular cell, typically YSZ (yttria stabilized zirconia). These
5832: 3781:
Wang, Qi; Fan, Hui; Xiao, Yanfei; Zhang, Yihe (November 2022). "Applications and recent advances of rare earth in solid oxide fuel cells".
3411: 3323: 3290:
proves it to be a potential cathode material for the cathode of ITSOFC since it is thermochemically stable within the temperature range.
5385:
Nithya, M., and M. Rajasekhar. "Preparation and Characterization of NdCrO3 Cathode for Intermediate Temperature Fuel Cell Application."
5318: 3816:
Hagen, Anke; Rasmussen, Jens F.B.; Thydén, Karl (September 2011). "Durability of solid oxide fuel cells using sulfur containing fuels".
3583: 5757: 4700:
Milewski J, Miller A (2006). "Influences of the Type and Thickness of Electrolyte on Solid Oxide Fuel Cell Hybrid System Performance".
1590: 452:
in each individual cell, because it has the smallest polarization losses, and is often the layer that provides the mechanical support.
267:
They operate at very high temperatures, typically between 600 and 1,000 Â°C. At these temperatures, SOFCs do not require expensive
87: 5870: 4915:"Standard Test Method for Monotonic Equibiaxial Flexural Strength of Advanced Ceramics at Ambient Temperature, ASTM Standard C1499-04" 3157: 3096: 628: 275: 4658:
Hai-Bo Huo; Xin-Jian Zhu; Guang-Yi Cao (2006). "Nonlinear modeling of a SOFC stack based on a least squares support vector machine".
3654:
Boldrin, Paul; Brandon, Nigel P. (11 July 2019). "Progress and outlook for solid oxide fuel cells for transportation applications".
3100: 1263:{\displaystyle E_{SOFC}={\frac {E_{max}-i_{max}\cdot \eta _{f}\cdot r_{1}}{{\frac {r_{1}}{r_{2}}}\cdot \left(1-\eta _{f}\right)+1}}} 177: 112: 63: 607:
the electrolyte begins to have large ionic transport resistances and affect the performance. Popular electrolyte materials include
1754:
reactant utilization fraction or increasing the electrode porosity, but these approaches each have significant design trade-offs.
5732: 2072: 1767:
in the high current density regime (where the cell typically operates), and can be used to estimate the activation polarization:
5249: 652:
building composite possessing large interfacial areas as interfaces have been shown to have extraordinary electrical properties.
6013: 3881:"Strategies for Carbon and Sulfur Tolerant Solid Oxide Fuel Cell Materials, Incorporating Lessons from Heterogeneous Catalysis" 465:
cell stack because the reforming reaction is endothermic, which cools the stack internally. The most common material used is a
5968: 5740: 1495:
An ionic specific resistance of the electrolyte as a function of temperature can be described by the following relationship:
378:
Cross section of three ceramic layers of a tubular SOFC. From inner to outer: porous cathode, dense electrolyte, porous anode
3112: 776:{\displaystyle {\frac {1}{2}}\mathrm {O_{2}(g)} +2\mathrm {e'} +{V}_{o}^{\bullet \bullet }\longrightarrow {O}_{o}^{\times }} 643:
reducing the traveling distance of oxygen ions and electrolyte resistance as resistance is proportional to conductor length;
5195:
Gardner, F.J; Day, M.J; Brandon, N.P; Pashley, M.N; Cassidy, M (March 2000). "SOFC technology development at Rolls-Royce".
3929: 6008: 5771: 5304: 5009: 3563: 3243: 787: 5614:
Giddey, S; Badwal, SPS; Kulkarni, A; Munnings, C (2012). "A comprehensive review of direct carbon fuel cell technology".
5891: 316:
efficiency by using the heat given off by the exothermic electrochemical oxidation within the fuel cell for endothermic
3355:
system is one which comprises a solid oxide fuel cell combined with a gas turbine. Such systems have been evaluated by
2839:{\displaystyle {\dot {\epsilon }}_{eq}^{creep}={\frac {{\tilde {k}}_{0}D}{T}}{\frac {\sigma _{eq}^{m}}{d_{grain}^{n}}}} 1475: 6061: 5978: 5921: 4176:; Han, Minfang; Barnett, Scott A. (2016). "Hydrogen Oxidation Mechanisms on Perovskite Solid Oxide Fuel Cell Anodes". 3553: 3391: 2085: 1501: 474: 363: 5715: 2853: 1764: 562:). Cu-Co bimetallic anodes in particular show a great resistivity of carbon deposition after the exposure to pure CH 347: 5998: 5860: 5779: 5116:
Spivey, B. (2012). "Dynamic modeling, simulation, and MIMO predictive control of a tubular solid oxide fuel cell".
2076:
concentration means that the CTE is not a linear property, which further complicates measurements and predictions.
669:, is a thin porous layer on the electrolyte where oxygen reduction takes place. The overall reaction is written in 608: 55: 3434:
as cathode shows good performance. The highest power density of 48 mW*cm can be reached at 500 Â°C with O
3069: 144: 5988: 5906: 5865: 2071:
Since SOFCs require materials with high oxygen conductivity, thermal stresses provide a significant problem. The
456:
speaking, the anode's job is to use the oxygen ions that diffuse through the electrolyte to oxidize the hydrogen
424: 400: 4030:
Sammes, N.M.; et al. (2005). "Design and fabrication of a 100 W anode supported micro-tubular SOFC stack".
5993: 5901: 5825: 5749: 649:
controlling the microstructural nano-crystalline fine grains to achieve "fine-tuning" of electrical properties;
4409:
Nigel Sammes; Alevtina Smirnova; Oleksandr Vasylyev (2005). "Fuel Cell Technologies: State and Perspectives".
996: 3483:
Using the standard heat of formation and entropy ΔG at room temperature (298 K) came out to be 45.904 kJ/mol
420: 358: 5983: 5916: 5896: 3493:
at 1023 K is 1.44 x 10. Hence theoretically we need 3.4% hydrogen to prevent the formation of NiS at 5 ppm H
3407: 670: 432: 301: 6003: 5942: 3247: 624: 478: 4929: 5911: 5791: 5750:
Assessment of Solid Oxide Fuel Cells in Building Applications Phase 1: Modeling and Preliminary Analyses
4489: 3558: 3251: 791: 312: 268: 233: 5926: 5279: 4364:"Comparison of the performance of Cu–CeO2–YSZ and Ni–YSZ composite SOFC anodes with H2, CO, and syngas" 1004: 3442:
as oxidant and the whole system is stable within the temperature range of 500 Â°C to 600 Â°C.
2959: 5654: 5553: 5466: 5408: 5360: 5074: 4887: 4736: 4667: 4453: 4418: 4375: 4363: 4286: 4204: 4173: 4138: 4078: 4039: 3825: 3536: 3356: 3125: 1053: 416: 5065:
Wachsman, Eric; Lee, Kang (18 November 2011). "Lowering the Temperature of Solid Oxide Fuel Cells".
6082: 5947: 5818: 5720: 3541: 2702: 3298:(M=Li, Na, K, single or mixture of carbonates) can reach the power density of 300-800 mW*cm. 3171:
are developing an SOFC that will power auxiliary units in automobiles and tractor-trailers, while
2997: 2565: 5855: 5596: 5490: 5098: 4968: 4612: 4565: 4522: 4477: 4344: 4316: 4237: 4154: 3798: 3763: 3722: 3681: 3629: 3547: 3514: 3406:
For the direct use of solid coal fuel without additional gasification and reforming processes, a
3168: 1657: 408: 290: 1862:{\displaystyle {\eta }_{act}={\frac {RT}{{\beta }zF}}\times ln\left({\frac {i}{{i}_{0}}}\right)} 5399:
Zhu, Bin (2003). "Functional ceria–salt-composite materials for advanced ITSOFC applications".
4518: 1387: 5678: 5670: 5517:
S.H. Chan; H.K. Ho; Y. Tian (2003). "Multi-level modeling of SOFC-gas turbine hybrid system".
5482: 5333: 5090: 5042: 5038: 4949: 4604: 4557: 4469: 4391: 4336: 4253: 4104: 3912: 3701:"A comprehensive review of recent progresses in cathode materials for Proton-conducting SOFCs" 3104: 2208: 1931: 1279: 482: 428: 4584: 3595: 3364: 3352: 1900: 1564: 1544: 1352: 1317: 943: 6048: 6043: 6038: 6033: 5662: 5623: 5588: 5561: 5526: 5474: 5416: 5368: 5231: 5204: 5177: 5125: 5082: 5030: 4980: 4941: 4895: 4860: 4832: 4804: 4775: 4744: 4709: 4675: 4640: 4596: 4549: 4514: 4461: 4426: 4383: 4328: 4294: 4274: 4245: 4244:. NATO Advanced Study Institutes Series. Dordrecht: Springer Netherlands. pp. 209–227. 4212: 4185: 4146: 4094: 4086: 4047: 4010: 4002: 3974: 3902: 3892: 3861: 3833: 3790: 3753: 3712: 3671: 3663: 3621: 2597: 2176: 970: 453: 436: 209: 5697: 3699:
Gao, Yang; Zhang, Mingming; Fu, Min; Hu, Wenjing; Tong, Hua; Tao, Zetian (September 2023).
3367:
systems typically include anodic and/or cathodic atmosphere recirculation, thus increasing
2629: 2246: 2021: 1445: 1416: 5795: 5783: 5761: 5744: 5727: 5143: 5017: 4067:"Micro-tubular solid oxide fuel cell based on a porous yttria-stabilized zirconia support" 3936: 3360: 3217: 3186: 3182: 3164:, and this makes SOFCs interesting as auxiliary power units (APU) in refrigerated trucks. 3088:
and coarsening, the actual creep behavior of SOFCs is currently not completely understood
2658: 612: 317: 305: 297: 278:, and are not vulnerable to carbon monoxide catalyst poisoning. However, vulnerability to 5754: 5457:
Wachsman, E.; Lee, Kang T. (2011). "Lowering the Temperature of Solid Oxide Fuel Cells".
3930:
Ceramic fuel cells achieves world-best 60% efficiency for its electricity generator units
236:
which results in longer start-up times and mechanical and chemical compatibility issues.
5658: 5557: 5470: 5412: 5364: 5078: 4891: 4740: 4671: 4540:
Charpentier, P (2000). "Preparation of thin film SOFCs working at reduced temperature".
4457: 4422: 4379: 4290: 4142: 4082: 4043: 3952:
Electricity from wood through the combination of gasification and solid oxide fuel cells
3829: 3363:
as a means to achieve higher operating efficiencies by running the SOFC under pressure.
2275: 5699:
Effect of Hydrogen Sulfide in Landfill Gas on Anode Poisoning of Solid Oxide Fuel Cells
4945: 4099: 4066: 3080: 3051: 3029: 2937: 2911: 2680: 2060: 1999: 1977: 1955: 1878: 1724: 1704: 1684: 978: 5530: 5420: 5235: 5208: 4864: 4553: 3330:
Researchers at the Georgia Institute of Technology dealt with the instability of BaCeO
192: 6076: 5963: 5600: 5494: 5257: 5102: 5031: 4616: 4124:"A micromechanical model for effective conductivity in granular electrode structures" 3802: 3767: 3726: 3685: 3633: 3528: 3376: 603:
However, as the operating temperature approaches the lower limit for SOFCs at around
404: 244:
Solid oxide fuel cells are a class of fuel cells characterized by the use of a solid
4930:"Large-Deflection Solution of the Coaxial-Ring-Circular-Glass-Plate Flexure Problem" 4569: 4526: 4348: 4158: 3951: 3758: 3741: 646:
producing grain structures that are less resistive such as columnar grain structure;
5973: 5592: 5565: 5129: 4984: 4836: 4748: 4679: 4644: 4481: 4387: 4051: 4006: 3954:, Ph.D. Thesis by Florian Nagel, Swiss Federal Institute of Technology Zurich, 2008 3837: 3625: 3447: 3263: 3085: 2065: 329: 5737: 5317:
Anne Hauch; SĂžren HĂžjgaard Jensen; Sune Dalgaard Ebbesen; Mogens Mogensen (2009).
4899: 4808: 4205:"Chapter Two - Catalytic Conversion of Biogas to Syngas via Dry Reforming Process" 3383:) also has the potential to yield even higher thermal efficiencies in some cases. 350:
geometries promise much faster start up times, typically in the order of minutes.
4249: 3398:
emission and high energy efficiency make the power plant performance noteworthy.
4216: 3897: 3880: 3717: 3700: 3259: 3201: 3161: 3145: 3073: 412: 294: 249: 5800: 5627: 3978: 3508: 3474:
This can be prevented by having background hydrogen which is calculated below.
3322: 252:. SOFCs use a solid oxide electrolyte to conduct negative oxygen ions from the 224:
are characterized by their electrolyte material; the SOFC has a solid oxide or
4780: 4763: 4150: 3794: 3667: 3504: 3368: 5674: 4953: 4608: 4561: 4395: 4340: 3865: 786:
Cathode materials must be, at a minimum, electrically conductive. Currently,
5841: 5478: 5086: 4444:
Steele, B.C.H., Heinzel, A. (2001). "Materials for fuel-cell technologies".
4430: 3522: 3191: 3160:(PEMFCs). Due to their fuel flexibility, they may run on partially reformed 3129: 2929: 927:{\displaystyle {V}={E}_{0}-{iR}_{\omega }-{\eta }_{cathode}-{\eta }_{anode}} 666: 354: 221: 213: 5666: 5486: 5372: 5181: 5094: 4600: 4473: 4332: 4108: 3916: 3907: 3676: 130: 4317:"Solid Oxide Fuel Cell Anode Materials for Direct Hydrocarbon Utilization" 6025: 4189: 3742:"Technological Challenges and Advancement in Proton Conductors: A Review" 3386:
Another feature of the introduced hybrid system is on the gain of 100% CO
3209: 3176: 271: 261: 5776: 4585:"Comparison of Different Perovskite Cathodes in Solid Oxide Fuel Cells" 4203:
Bao, Zhenghong; Yu, Fei (1 January 2018), Li, Yebo; Ge, Xumeng (eds.),
4015: 3255: 3133: 3115:
2008 (interim) target for overall degradation per 1,000 hours is 4.0%.
662: 631:(LSCF) have been found, and can be prevented by thin (<100 nm) 383: 325: 253: 225: 5682: 5642: 5319:"Durability of solid oxide electrolysis cells for hydrogen production" 4997: 4713: 4298: 4090: 382:
A solid oxide fuel cell is made up of four layers, three of which are
4914: 4695: 4693: 4691: 4689: 4465: 3224: 3205: 3149: 470: 466: 333: 283: 279: 274:, as is currently necessary for lower temperature fuel cells such as 4764:"Investigation of SOFC material properties for plant-level modeling" 4362:
Costa-Nunes, Olga; Gorte, Raymond J.; Vohs, John M. (1 March 2005).
3326:
Comparison of ionic conductivity of various solid oxide electrolytes
999:
resistance value of the electrically conducting portions of the cell
17: 5766: 374: 5307:. Technologyreview.com. 20 April 2011. Retrieved 27 November 2011. 3321: 632: 461: 448: 373: 257: 245: 191: 86:
may be in need of reorganization to comply with Knowledge (XXG)'s
4315:
Ge, Xiao-Ming; Chan, Siew-Hwa; Liu, Qing-Lin; Sun, Qiang (2012).
2697:= diameter (sup = support ring, load = loading ring, s = sample) 1644:{\displaystyle \sigma =\sigma _{0}\cdot e^{\frac {-E}{R\cdot T}}} 1584:
The ionic conductivity of the solid oxide is defined as follows:
5789:
Solid Oxide Fuel Cells Canada (SOFCC) Strategic Research Network
3380: 3273:
to produce CO and oxygen or even co-electrolysis of water and CO
3108: 795: 457: 321: 217: 5814: 5222:"Northwestern group invent inks to make SOFCs by 3D printing". 3584:"Review of Progress in High Temperature Solid Oxide Fuel Cells" 3471:
The above reaction controls the effect of sulfur on the anode.
3148:, the fuel is either externally or internally reformed and the 5012:. www.energy.gov (24 March 2009). Retrieved 27 November 2011. 3947: 3945: 3213: 3172: 435:
and fans. Internal reforming leads to a large decrease in the
387: 124: 70: 29: 5810: 5788: 611:(YSZ) (often the 8% form 8YSZ), scandia stabilized zirconia ( 5643:"A High Performance Low Temperature Direct Carbon Fuel Cell" 5283: 3334:
differently. They replaced a desired fraction of Ce in BaCeO
5641:
Wu, Wei; Ding, Dong; Fan, Maohong; He, Ting (30 May 2017).
2080:
below, fracture toughness decreases as porosity increases.
212:
conversion device that produces electricity directly from
3550:
Ltd – Australian company producing solid oxide fuel cells
3103:
and greater than 5,000 hours for transportation systems (
1972:= electrons associated with the electrochemical reaction 4928:
Kao, Robert; Perrone, Nicholas; Capps, Webster (1971).
4411:
NATO Science Series, Mathematics, Physics and Chemistry
94: 5721:
National Energy Technology Laboratory website on SOFCs
5010:
Fuel Cell Stacks Still Going Strong After 5,000 Hours
3054: 3032: 3000: 2962: 2940: 2914: 2856: 2713: 2683: 2661: 2632: 2600: 2568: 2309: 2278: 2249: 2211: 2179: 2088: 2024: 2002: 1980: 1958: 1934: 1903: 1881: 1776: 1727: 1707: 1687: 1660: 1593: 1567: 1547: 1504: 1448: 1419: 1390: 1355: 1320: 1282: 1109: 1056: 1007: 981: 946: 825: 682: 3099:
target requirements are 40,000 hours of service for
6024: 5956: 5935: 5884: 5848: 3079:To properly model creep strain rates, knowledge of 3060: 3038: 3016: 2984: 2946: 2920: 2898: 2838: 2689: 2667: 2645: 2616: 2584: 2550: 2289: 2262: 2233: 2195: 2161: 2037: 2008: 1986: 1964: 1942: 1918: 1887: 1861: 1733: 1713: 1693: 1673: 1643: 1573: 1553: 1530: 1469:= electric specific resistance of the electrolyte. 1461: 1432: 1403: 1374: 1339: 1304: 1262: 1083: 1040: 987: 961: 926: 775: 27:Fuel cell that produces electricity by oxidization 3185:is developing solid-oxide fuel cells produced by 2543: 2376: 2241:= fracture toughness of the non-porous structure 4122:Ott, J; Gan, Y; McMeeking, R; Kamlah, M (2013). 3486:On extrapolation to 1023 K, ΔG is -1.229 kJ/mol 3107:) at a factory cost of $ 40/kW for a 10 kW 2162:{\displaystyle K_{IC}=K_{IC,0}\exp {(-b_{k}p')}} 1531:{\displaystyle r_{1}={\frac {\delta }{\sigma }}} 5777:Materials & Systems Research, Inc.'s (MSRI) 3477:At 453 K the equilibrium constant is 7.39 x 10 3269:SOECs can also be used to do electrolysis of CO 2899:{\displaystyle {\dot {\epsilon }}_{eq}^{creep}} 1382:= maximum current density (for given fuel flow) 5738:Illinois Institute of Technology page on SOFCs 3939:. Ceramic Fuel Cells Limited. 19 February 2009 1440:= ionic specific resistance of the electrolyte 1347:= maximum voltage given by the Nernst equation 399:Most of the downtime of a SOFC stems from the 338:integrated gasification fuel cell power cycles 97:to make improvements to the overall structure. 5826: 5806:Solid State Energy Conversion Alliance (SECA) 5060: 5058: 4762:Kupecki J.; Milewski J.; Jewulski J. (2013). 3649: 3647: 3645: 3643: 1701:– factors depended on electrolyte materials, 8: 4494:: CS1 maint: multiple names: authors list ( 5033:Perovskite Oxide for Solid Oxide Fuel Cells 5000:. www.osti.gov. Retrieved 19 February 2019. 4702:Journal of Fuel Cell Science and Technology 3607: 3605: 320:process. Additionally, solid fuels such as 64:Learn how and when to remove these messages 5833: 5819: 5811: 5387:International Journal of Applied Chemistry 3588:Journal of the Australian Ceramics Society 2592:= failure stress of the small deformation 357:, SOFCs can have multiple geometries. The 5616:Progress in Energy and Combustion Science 4779: 4275:"H2S Poisoning of Solid Oxide Fuel Cells" 4211:, vol. 3, Elsevier, pp. 43–76, 4098: 4014: 3906: 3896: 3757: 3716: 3675: 3480:ΔG calculated at 453 K was 35.833 kJ/mol 3246:(SOEC) is a solid oxide fuel cell set in 3053: 3031: 3005: 2999: 2976: 2965: 2964: 2961: 2939: 2913: 2878: 2870: 2859: 2858: 2855: 2828: 2811: 2801: 2793: 2787: 2772: 2761: 2760: 2756: 2735: 2727: 2716: 2715: 2712: 2682: 2660: 2637: 2631: 2605: 2599: 2573: 2567: 2542: 2541: 2520: 2504: 2498: 2461: 2456: 2441: 2427: 2414: 2403: 2396: 2375: 2374: 2362: 2357: 2336: 2326: 2314: 2308: 2277: 2254: 2248: 2216: 2210: 2184: 2178: 2141: 2130: 2109: 2093: 2087: 2029: 2023: 2001: 1979: 1957: 1935: 1933: 1910: 1905: 1902: 1880: 1847: 1842: 1836: 1809: 1798: 1783: 1778: 1775: 1726: 1706: 1686: 1665: 1659: 1617: 1604: 1592: 1566: 1546: 1518: 1509: 1503: 1453: 1447: 1424: 1418: 1395: 1389: 1360: 1354: 1325: 1319: 1287: 1281: 1240: 1214: 1204: 1198: 1190: 1177: 1158: 1139: 1132: 1114: 1108: 1063: 1058: 1055: 1014: 1009: 1006: 980: 953: 948: 945: 906: 901: 873: 868: 858: 850: 840: 835: 826: 824: 767: 762: 757: 744: 739: 734: 720: 698: 693: 683: 681: 178:Learn how and when to remove this message 113:Learn how and when to remove this message 5581:International Journal of Hydrogen Energy 5519:International Journal of Hydrogen Energy 4519:10.4028/www.scientific.net/AMR.15-17.293 3967:Renewable and Sustainable Energy Reviews 3614:International Journal of Hydrogen Energy 155:of all important aspects of the article. 4934:Journal of the American Ceramic Society 3740:Vignesh, D.; Rout, Ela (2 March 2023). 3574: 3544:– SOFC product from an American company 336:which is suitable for fueling SOFCs in 260:. The electrochemical oxidation of the 5702:(Thesis). Youngstown State University. 4487: 4279:Journal of the Electrochemical Society 4178:Journal of the Electrochemical Society 3113:Solid State Energy Conversion Alliance 151:Please consider expanding the lead to 5716:US Department of Energy page on SOFCs 4768:Central European Journal of Chemistry 4310: 4308: 3024:= equivalent stress (e.g. von Mises) 2270:= experimentally determined constant 7: 1048:= polarization losses in the cathode 639:problem with existing materials by: 5305:Cooling Down Solid-Oxide Fuel Cells 5282:. Hitec.mse.ufl.edu. Archived from 5871:Proton-exchange membrane fuel cell 5801:SOFC Dynamics and Control Research 5733:An article in Encyclopedia at YCES 4946:10.1111/j.1151-2916.1971.tb12209.x 4240:. In Figueiredo, JosĂ© LuĂ­s (ed.). 4172:Zhu, Tenglong; Fowler, Daniel E.; 3158:proton-exchange membrane fuel cell 3046:= creep stress exponential factor 1091:= polarization losses in the anode 722: 707: 695: 629:lanthanum strontium cobalt ferrite 439:costs in designing a full system. 304:, which further increases overall 25: 4242:Progress in Catalyst Deactivation 3101:stationary fuel cell applications 1041:{\displaystyle {\eta }_{cathode}} 364:modified planar fuel cell designs 196:Scheme of a solid-oxide fuel cell 45:This article has multiple issues. 4583:Shen, F.; Lu, K. (August 2018). 4065:Panthi, D.; et al. (2014). 3995:Energy Conversion and Management 3521: 3507: 3068:= particle size exponent (2 for 2985:{\displaystyle {\tilde {k}}_{0}} 2073:Coefficient of thermal expansion 129: 75: 34: 6014:Unitized regenerative fuel cell 5696:Khan, Feroze (1 January 2012). 4998:SECA Coal-Based Systems – LGFCS 4273:Sasaki, K.; Susuki, K. (2006). 4236:Rostrup-Nielsen, J. R. (1982). 3759:10.1021/acs.energyfuels.2c03926 1950:= electron transfer coefficient 1721:– electrolyte temperature, and 1084:{\displaystyle {\eta }_{anode}} 143:may be too short to adequately 53:or discuss these issues on the 5593:10.1016/j.ijhydene.2016.04.065 5566:10.1016/j.jpowsour.2010.11.099 5130:10.1016/j.jprocont.2012.01.015 4985:10.1016/j.ceramint.2012.01.043 4837:10.1016/j.ceramint.2012.01.043 4749:10.1016/j.jpowsour.2006.12.032 4680:10.1016/j.jpowsour.2006.07.031 4645:10.1016/j.jpowsour.2015.10.024 4511:Advanced Materials Engineering 4388:10.1016/j.jpowsour.2004.09.022 4052:10.1016/j.jpowsour.2005.01.079 4007:10.1016/j.enconman.2021.115175 3838:10.1016/j.jpowsour.2011.02.053 3626:10.1016/j.ijhydene.2021.06.020 3277:to produce syngas and oxygen. 2970: 2766: 2485: 2473: 2393: 2381: 2155: 2131: 753: 710: 704: 615:) (usually 9 mol% Sc 348:Micro-tubular fuel cell design 153:provide an accessible overview 1: 6009:Solid oxide electrolyzer cell 5531:10.1016/S0360-3199(02)00160-X 5421:10.1016/s0378-7753(02)00592-x 5256:. Ceres Power. Archived from 5236:10.1016/S1464-2859(15)70024-6 5209:10.1016/S0378-7753(99)00428-0 4900:10.1016/j.actamat.2004.08.023 4865:10.1016/S0167-2738(00)00770-0 4809:10.1016/j.pmatsci.2015.01.001 4797:Progress in Materials Science 4554:10.1016/S0167-2738(00)00472-0 3564:Micro combined heat and power 3394:. These features like zero CO 3390:capturing at comparable high 3244:solid oxide electrolyser cell 1561:– electrolyte thickness, and 788:lanthanum strontium manganite 5892:Direct borohydride fuel cell 4250:10.1007/978-94-009-7597-2_11 3017:{\displaystyle \sigma _{eq}} 2585:{\displaystyle \sigma _{cr}} 475:nanomaterial-based catalysts 5979:Membrane electrode assembly 5922:Reformed methanol fuel cell 5772:Refractory Specialties Inc. 4217:10.1016/bs.aibe.2018.02.002 3898:10.1021/acs.chemrev.6b00284 3718:10.1016/j.enrev.2023.100038 3554:Glossary of fuel cell terms 3216:), which allows the use of 1674:{\displaystyle \sigma _{0}} 425:electrical balance of plant 401:mechanical balance of plant 353:Unlike most other types of 6099: 5999:Protonic ceramic fuel cell 5969:Electro-galvanic fuel cell 5861:Molten carbonate fuel cell 5767:SOFC glass-ceramic sealing 5628:10.1016/j.pecs.2012.01.003 5389:13, no. 4 (2017): 879-886. 5118:Journal of Process Control 5029:Ishihara, Tatsumi (2009). 3979:10.1016/j.rser.2019.109560 2906:= equivalent creep strain 2045:= exchange current density 1745:Concentration polarization 609:yttria-stabilized zirconia 6057: 5989:Photoelectrochemical cell 5907:Direct methanol fuel cell 5866:Phosphoric acid fuel cell 5332:: 327–338. Archived from 4781:10.2478/s11532-013-0211-x 4321:Advanced Energy Materials 4151:10.1007/s10409-013-0070-x 3795:10.1016/j.jre.2021.09.003 3668:10.1038/s41929-019-0310-y 3169:Delphi Automotive Systems 2624:= critical applied force 1411:= fuel utilization factor 1404:{\displaystyle \eta _{f}} 5994:Proton-exchange membrane 5902:Direct-ethanol fuel cell 5782:16 February 2007 at the 5743:18 February 2008 at the 5546:Journal of Power Sources 5401:Journal of Power Sources 5197:Journal of Power Sources 4823:anode-supported cells". 4729:Journal of Power Sources 4660:Journal of Power Sources 4633:Journal of Power Sources 4452:(15 November): 345–352. 4368:Journal of Power Sources 4174:Poeppelmeier, Kenneth R. 4032:Journal of Power Sources 3866:10.1021/acscatal.1c02470 3818:Journal of Power Sources 3220:to support the ceramic. 2234:{\displaystyle K_{IC,0}} 1943:{\displaystyle {\beta }} 1305:{\displaystyle E_{SOFC}} 5984:Membraneless Fuel Cells 5917:Metal hydride fuel cell 5897:Direct carbon fuel cell 5760:5 November 2014 at the 5479:10.1126/science.1204090 5447:. 2000. 288, 2031-2033. 5087:10.1126/science.1204090 4431:10.1007/1-4020-3498-9_3 3408:direct carbon fuel cell 3254:with a solid oxide, or 2653:= height of the sample 1926:= operating temperature 1919:{\displaystyle {T}_{0}} 1758:Activation polarization 1574:{\displaystyle \sigma } 1554:{\displaystyle \delta } 1476:Navier–Stokes equations 1375:{\displaystyle i_{max}} 1340:{\displaystyle E_{max}} 962:{\displaystyle {E}_{0}} 433:hydrogen sulfide sensor 421:anode tail gas oxidizer 359:planar fuel cell design 302:combined heat and power 6004:Regenerative fuel cell 5943:Enzymatic biofuel cell 5667:10.1149/07801.2519ecst 5373:10.1149/07801.2879ecst 5182:10.1002/fuce.200332107 5144:"Fuel Cell Comparison" 5016:8 October 2009 at the 4973:Ceramics International 4825:Ceramics International 4601:10.1002/fuce.201800044 4333:10.1002/aenm.201200342 3783:Journal of Rare Earths 3422:as the electrolyte, Sm 3327: 3262:to produce oxygen and 3062: 3040: 3018: 2986: 2948: 2922: 2900: 2840: 2691: 2669: 2647: 2618: 2617:{\displaystyle F_{cr}} 2586: 2552: 2291: 2264: 2235: 2197: 2196:{\displaystyle K_{IC}} 2163: 2039: 2010: 1988: 1966: 1944: 1920: 1889: 1863: 1765:Butler–Volmer equation 1741:– ideal gas constant. 1735: 1715: 1695: 1675: 1645: 1581:– ionic conductivity. 1575: 1555: 1532: 1463: 1434: 1405: 1376: 1341: 1306: 1264: 1085: 1042: 989: 963: 928: 777: 625:gadolinium doped ceria 379: 197: 5912:Formic acid fuel cell 5876:Solid oxide fuel cell 5794:30 April 2021 at the 5755:CSA Overview of SOFCs 5726:15 April 2016 at the 4209:Advances in Bioenergy 4131:Acta Mechanica Sinica 3559:Hydrogen technologies 3379:) configuration (via 3325: 3252:electrolysis of water 3070:Nabarro–Herring creep 3063: 3041: 3019: 2987: 2949: 2923: 2901: 2841: 2692: 2670: 2648: 2646:{\displaystyle h_{s}} 2619: 2587: 2553: 2292: 2265: 2263:{\displaystyle b_{k}} 2236: 2203:= fracture toughness 2198: 2164: 2054:Mechanical Properties 2040: 2038:{\displaystyle i_{0}} 2011: 1989: 1967: 1945: 1921: 1890: 1864: 1736: 1716: 1696: 1676: 1646: 1576: 1556: 1533: 1464: 1462:{\displaystyle r_{2}} 1435: 1433:{\displaystyle r_{1}} 1406: 1377: 1342: 1307: 1265: 1086: 1043: 990: 964: 929: 792:triple phase boundary 778: 377: 269:platinum group metals 234:operating temperature 202:solid oxide fuel cell 195: 5037:. Springer. p.  4190:10.1149/2.1321608jes 3598:on 29 November 2014. 3537:Auxiliary power unit 3357:Siemens Westinghouse 3126:thermal conductivity 3052: 3030: 2998: 2960: 2938: 2912: 2854: 2711: 2681: 2668:{\displaystyle \nu } 2659: 2630: 2598: 2566: 2307: 2276: 2247: 2209: 2177: 2086: 2022: 2000: 1994:= Faraday's constant 1978: 1956: 1932: 1901: 1879: 1774: 1725: 1705: 1685: 1658: 1591: 1565: 1545: 1502: 1446: 1417: 1388: 1353: 1318: 1280: 1107: 1054: 1005: 979: 944: 823: 680: 671:Kröger-Vink Notation 635:diffusion barriers. 479:Perovskite materials 417:water heat exchanger 5948:Microbial fuel cell 5659:2017ECSTr..78a2519W 5558:2011JPS...196.3149T 5471:2011Sci...334..935W 5413:2003JPS...114....1Z 5365:2017ECSTr..78a2879K 5286:on 12 December 2013 5260:on 13 December 2013 5224:Fuel Cells Bulletin 5079:2011Sci...334..935W 4892:2004AcMat..52.5747R 4741:2007JPS...171..155S 4672:2006JPS...162.1220H 4458:2001Natur.414..345S 4423:2005fcts.conf.....S 4380:2005JPS...141..241C 4291:2006JElS..153A2023S 4143:2013AcMSn..29..682O 4083:2014NatSR...4E5754P 4044:2005JPS...145..428S 3935:3 June 2014 at the 3891:(22): 13633–13684. 3860:(21): 13556–13566. 3830:2011JPS...196.7271H 3620:(54): 27643–27674. 3594:(1). Archived from 3542:Bloom Energy Server 2992:= kinetic constant 2895: 2833: 2806: 2752: 2703:Creep (deformation) 2466: 2446: 2419: 2367: 2016:= operating current 997:ThĂ©venin equivalent 772: 752: 566:at 800C. And Cu-CeO 489:Chemical Reaction: 95:editing the article 5856:Alkaline fuel cell 4853:Solid State Ionics 4542:Solid State Ionics 4513:. 15–17: 293–298. 4238:"Sulfur Poisoning" 4071:Scientific Reports 3746:Energy & Fuels 3548:Ceramic Fuel Cells 3515:Electronics portal 3489:On substitution, K 3328: 3105:fuel cell vehicles 3058: 3036: 3014: 2982: 2944: 2918: 2896: 2857: 2836: 2807: 2789: 2714: 2687: 2675:= Poisson's ratio 2665: 2643: 2614: 2582: 2548: 2452: 2423: 2399: 2353: 2290:{\displaystyle p'} 2287: 2260: 2231: 2193: 2159: 2059:kinds of load and 2035: 2006: 1984: 1962: 1940: 1916: 1885: 1859: 1731: 1711: 1691: 1671: 1641: 1571: 1551: 1528: 1491:Ionic conductivity 1482:Ohmic polarization 1459: 1430: 1401: 1372: 1337: 1302: 1260: 1081: 1038: 985: 959: 924: 773: 756: 733: 462:oxidation reaction 380: 291:Ceramic Fuel Cells 198: 6070: 6069: 5587:(22): 9490–9499. 5465:(6058): 935–939. 5048:978-0-387-77708-5 4886:(20): 5747–5756. 4714:10.1115/1.2349519 4327:(10): 1156–1181. 4299:10.1149/1.2336075 4259:978-94-009-7597-2 4091:10.1038/srep05754 3824:(17): 7271–7276. 3789:(11): 1668–1681. 3446:SOFC operated on 3392:energy efficiency 3248:regenerative mode 3061:{\displaystyle n} 3039:{\displaystyle m} 2973: 2947:{\displaystyle T} 2921:{\displaystyle D} 2867: 2834: 2785: 2769: 2724: 2690:{\displaystyle D} 2535: 2468: 2369: 2009:{\displaystyle i} 1987:{\displaystyle F} 1965:{\displaystyle z} 1888:{\displaystyle R} 1853: 1821: 1734:{\displaystyle R} 1714:{\displaystyle T} 1694:{\displaystyle E} 1638: 1526: 1258: 1220: 988:{\displaystyle R} 691: 483:activation energy 454:Electrochemically 429:power electronics 344:Thermal expansion 188: 187: 180: 170: 169: 123: 122: 115: 88:layout guidelines 68: 16:(Redirected from 6090: 5927:Zinc–air battery 5835: 5828: 5821: 5812: 5704: 5703: 5693: 5687: 5686: 5653:(1): 2519–2526. 5647:ECS Transactions 5638: 5632: 5631: 5611: 5605: 5604: 5576: 5570: 5569: 5552:(6): 3149–3162. 5541: 5535: 5534: 5514: 5508: 5505: 5499: 5498: 5454: 5448: 5441: 5435: 5431: 5425: 5424: 5396: 5390: 5383: 5377: 5376: 5359:(1): 2879–2884. 5347: 5341: 5340: 5339:on 11 July 2009. 5338: 5323: 5314: 5308: 5302: 5296: 5295: 5293: 5291: 5276: 5270: 5269: 5267: 5265: 5250:"The Ceres Cell" 5246: 5240: 5239: 5219: 5213: 5212: 5203:(1–2): 122–129. 5192: 5186: 5185: 5165: 5159: 5158: 5156: 5154: 5140: 5134: 5133: 5124:(8): 1502–1520. 5113: 5107: 5106: 5062: 5053: 5052: 5036: 5026: 5020: 5007: 5001: 4995: 4989: 4988: 4979:(5): 3907–3927. 4964: 4958: 4957: 4925: 4919: 4918: 4910: 4904: 4903: 4875: 4869: 4868: 4847: 4841: 4840: 4819: 4813: 4812: 4792: 4786: 4785: 4783: 4759: 4753: 4752: 4724: 4718: 4717: 4697: 4684: 4683: 4666:(2): 1220–1225. 4655: 4649: 4648: 4627: 4621: 4620: 4580: 4574: 4573: 4548:(1–4): 373–380. 4537: 4531: 4530: 4506: 4500: 4499: 4493: 4485: 4466:10.1038/35104620 4441: 4435: 4434: 4406: 4400: 4399: 4359: 4353: 4352: 4312: 4303: 4302: 4270: 4264: 4263: 4233: 4227: 4226: 4225: 4223: 4200: 4194: 4193: 4184:(8): F952–F961. 4169: 4163: 4162: 4128: 4119: 4113: 4112: 4102: 4062: 4056: 4055: 4027: 4021: 4020: 4018: 3989: 3983: 3982: 3961: 3955: 3949: 3940: 3927: 3921: 3920: 3910: 3900: 3885:Chemical Reviews 3876: 3870: 3869: 3848: 3842: 3841: 3813: 3807: 3806: 3778: 3772: 3771: 3761: 3752:(5): 3428–3469. 3737: 3731: 3730: 3720: 3696: 3690: 3689: 3679: 3656:Nature Catalysis 3651: 3638: 3637: 3609: 3600: 3599: 3579: 3531: 3526: 3525: 3517: 3512: 3511: 3067: 3065: 3064: 3059: 3045: 3043: 3042: 3037: 3023: 3021: 3020: 3015: 3013: 3012: 2991: 2989: 2988: 2983: 2981: 2980: 2975: 2974: 2966: 2953: 2951: 2950: 2945: 2927: 2925: 2924: 2919: 2905: 2903: 2902: 2897: 2894: 2877: 2869: 2868: 2860: 2845: 2843: 2842: 2837: 2835: 2832: 2827: 2805: 2800: 2788: 2786: 2781: 2777: 2776: 2771: 2770: 2762: 2757: 2751: 2734: 2726: 2725: 2717: 2696: 2694: 2693: 2688: 2674: 2672: 2671: 2666: 2652: 2650: 2649: 2644: 2642: 2641: 2623: 2621: 2620: 2615: 2613: 2612: 2591: 2589: 2588: 2583: 2581: 2580: 2557: 2555: 2554: 2549: 2547: 2546: 2540: 2536: 2534: 2533: 2515: 2514: 2499: 2469: 2467: 2465: 2460: 2447: 2445: 2440: 2418: 2413: 2397: 2380: 2379: 2370: 2368: 2366: 2361: 2345: 2344: 2343: 2327: 2322: 2321: 2296: 2294: 2293: 2288: 2286: 2269: 2267: 2266: 2261: 2259: 2258: 2240: 2238: 2237: 2232: 2230: 2229: 2202: 2200: 2199: 2194: 2192: 2191: 2168: 2166: 2165: 2160: 2158: 2154: 2146: 2145: 2123: 2122: 2101: 2100: 2044: 2042: 2041: 2036: 2034: 2033: 2015: 2013: 2012: 2007: 1993: 1991: 1990: 1985: 1971: 1969: 1968: 1963: 1949: 1947: 1946: 1941: 1939: 1925: 1923: 1922: 1917: 1915: 1914: 1909: 1894: 1892: 1891: 1886: 1868: 1866: 1865: 1860: 1858: 1854: 1852: 1851: 1846: 1837: 1822: 1820: 1813: 1807: 1799: 1794: 1793: 1782: 1740: 1738: 1737: 1732: 1720: 1718: 1717: 1712: 1700: 1698: 1697: 1692: 1680: 1678: 1677: 1672: 1670: 1669: 1650: 1648: 1647: 1642: 1640: 1639: 1637: 1626: 1618: 1609: 1608: 1580: 1578: 1577: 1572: 1560: 1558: 1557: 1552: 1537: 1535: 1534: 1529: 1527: 1519: 1514: 1513: 1468: 1466: 1465: 1460: 1458: 1457: 1439: 1437: 1436: 1431: 1429: 1428: 1410: 1408: 1407: 1402: 1400: 1399: 1381: 1379: 1378: 1373: 1371: 1370: 1346: 1344: 1343: 1338: 1336: 1335: 1311: 1309: 1308: 1303: 1301: 1300: 1269: 1267: 1266: 1261: 1259: 1257: 1250: 1246: 1245: 1244: 1221: 1219: 1218: 1209: 1208: 1199: 1196: 1195: 1194: 1182: 1181: 1169: 1168: 1150: 1149: 1133: 1128: 1127: 1090: 1088: 1087: 1082: 1080: 1079: 1062: 1047: 1045: 1044: 1039: 1037: 1036: 1013: 994: 992: 991: 986: 973:of the reactants 971:Nernst potential 968: 966: 965: 960: 958: 957: 952: 933: 931: 930: 925: 923: 922: 905: 896: 895: 872: 863: 862: 857: 845: 844: 839: 830: 782: 780: 779: 774: 771: 766: 761: 751: 743: 738: 729: 728: 713: 703: 702: 692: 684: 606: 514: 513: 509: 437:balance of plant 395:Balance of plant 248:material as the 183: 176: 165: 162: 156: 133: 125: 118: 111: 107: 104: 98: 79: 78: 71: 60: 38: 37: 30: 21: 6098: 6097: 6093: 6092: 6091: 6089: 6088: 6087: 6073: 6072: 6071: 6066: 6053: 6020: 5952: 5931: 5880: 5844: 5839: 5796:Wayback Machine 5784:Wayback Machine 5762:Wayback Machine 5745:Wayback Machine 5728:Wayback Machine 5712: 5707: 5695: 5694: 5690: 5640: 5639: 5635: 5613: 5612: 5608: 5578: 5577: 5573: 5543: 5542: 5538: 5516: 5515: 5511: 5506: 5502: 5456: 5455: 5451: 5442: 5438: 5432: 5428: 5398: 5397: 5393: 5384: 5380: 5349: 5348: 5344: 5336: 5321: 5316: 5315: 5311: 5303: 5299: 5289: 5287: 5278: 5277: 5273: 5263: 5261: 5254:Company Website 5248: 5247: 5243: 5221: 5220: 5216: 5194: 5193: 5189: 5167: 5166: 5162: 5152: 5150: 5142: 5141: 5137: 5115: 5114: 5110: 5073:(6058): 935–9. 5064: 5063: 5056: 5049: 5028: 5027: 5023: 5018:Wayback Machine 5008: 5004: 4996: 4992: 4966: 4965: 4961: 4940:(11): 566–571. 4927: 4926: 4922: 4912: 4911: 4907: 4880:Acta Materialia 4877: 4876: 4872: 4849: 4848: 4844: 4821: 4820: 4816: 4794: 4793: 4789: 4761: 4760: 4756: 4726: 4725: 4721: 4699: 4698: 4687: 4657: 4656: 4652: 4629: 4628: 4624: 4582: 4581: 4577: 4539: 4538: 4534: 4508: 4507: 4503: 4486: 4443: 4442: 4438: 4408: 4407: 4403: 4361: 4360: 4356: 4314: 4313: 4306: 4272: 4271: 4267: 4260: 4235: 4234: 4230: 4221: 4219: 4202: 4201: 4197: 4171: 4170: 4166: 4126: 4121: 4120: 4116: 4064: 4063: 4059: 4029: 4028: 4024: 3991: 3990: 3986: 3963: 3962: 3958: 3950: 3943: 3937:Wayback Machine 3928: 3924: 3878: 3877: 3873: 3850: 3849: 3845: 3815: 3814: 3810: 3780: 3779: 3775: 3739: 3738: 3734: 3698: 3697: 3693: 3653: 3652: 3641: 3611: 3610: 3603: 3581: 3580: 3576: 3572: 3527: 3520: 3513: 3506: 3503: 3496: 3492: 3468: 3464: 3441: 3437: 3433: 3429: 3425: 3421: 3417: 3404: 3397: 3389: 3349: 3337: 3333: 3304: 3297: 3289: 3283: 3276: 3272: 3240: 3218:stainless steel 3187:screen printing 3121: 3094: 3050: 3049: 3028: 3027: 3001: 2996: 2995: 2963: 2958: 2957: 2936: 2935: 2910: 2909: 2852: 2851: 2759: 2758: 2709: 2708: 2679: 2678: 2657: 2656: 2633: 2628: 2627: 2601: 2596: 2595: 2569: 2564: 2563: 2516: 2500: 2494: 2448: 2398: 2346: 2332: 2328: 2310: 2305: 2304: 2279: 2274: 2273: 2250: 2245: 2244: 2212: 2207: 2206: 2180: 2175: 2174: 2147: 2137: 2105: 2089: 2084: 2083: 2056: 2025: 2020: 2019: 1998: 1997: 1976: 1975: 1954: 1953: 1930: 1929: 1904: 1899: 1898: 1877: 1876: 1841: 1832: 1808: 1800: 1777: 1772: 1771: 1760: 1747: 1723: 1722: 1703: 1702: 1683: 1682: 1661: 1656: 1655: 1627: 1619: 1613: 1600: 1589: 1588: 1563: 1562: 1543: 1542: 1505: 1500: 1499: 1493: 1484: 1449: 1444: 1443: 1420: 1415: 1414: 1391: 1386: 1385: 1356: 1351: 1350: 1321: 1316: 1315: 1283: 1278: 1277: 1236: 1229: 1225: 1210: 1200: 1197: 1186: 1173: 1154: 1135: 1134: 1110: 1105: 1104: 1057: 1052: 1051: 1008: 1003: 1002: 977: 976: 947: 942: 941: 900: 867: 849: 834: 821: 820: 813: 804: 721: 694: 678: 677: 659: 622: 618: 604: 600: 593: 589: 585: 581: 577: 573: 569: 565: 561: 557: 553: 549: 545: 541: 537: 530: 526: 522: 518: 511: 507: 506: 500: 496: 445: 397: 372: 318:steam reforming 306:fuel efficiency 298:energy recovery 242: 210:electrochemical 184: 173: 172: 171: 166: 160: 157: 150: 138:This article's 134: 119: 108: 102: 99: 93:Please help by 92: 80: 76: 39: 35: 28: 23: 22: 15: 12: 11: 5: 6096: 6094: 6086: 6085: 6075: 6074: 6068: 6067: 6065: 6064: 6058: 6055: 6054: 6052: 6051: 6046: 6041: 6036: 6030: 6028: 6022: 6021: 6019: 6018: 6017: 6016: 6011: 6001: 5996: 5991: 5986: 5981: 5976: 5971: 5966: 5960: 5958: 5954: 5953: 5951: 5950: 5945: 5939: 5937: 5933: 5932: 5930: 5929: 5924: 5919: 5914: 5909: 5904: 5899: 5894: 5888: 5886: 5882: 5881: 5879: 5878: 5873: 5868: 5863: 5858: 5852: 5850: 5849:By electrolyte 5846: 5845: 5840: 5838: 5837: 5830: 5823: 5815: 5809: 5808: 5803: 5798: 5786: 5774: 5769: 5764: 5752: 5747: 5735: 5730: 5718: 5711: 5710:External links 5708: 5706: 5705: 5688: 5633: 5622:(3): 360–399. 5606: 5571: 5536: 5525:(8): 889–900. 5509: 5500: 5449: 5436: 5426: 5391: 5378: 5342: 5309: 5297: 5271: 5241: 5214: 5187: 5176:(3): 146–152. 5160: 5135: 5108: 5054: 5047: 5021: 5002: 4990: 4959: 4920: 4905: 4870: 4859:(1–2): 79–90. 4842: 4814: 4787: 4774:(5): 664–671. 4754: 4735:(2): 155–168. 4719: 4708:(4): 396–402. 4685: 4650: 4622: 4595:(4): 457–465. 4575: 4532: 4501: 4436: 4401: 4374:(2): 241–249. 4354: 4304: 4265: 4258: 4228: 4195: 4164: 4137:(5): 682–698. 4114: 4057: 4038:(2): 428–434. 4022: 3984: 3956: 3941: 3922: 3871: 3843: 3808: 3773: 3732: 3705:Energy Reviews 3691: 3662:(7): 571–577. 3639: 3601: 3573: 3571: 3568: 3567: 3566: 3561: 3556: 3551: 3545: 3539: 3533: 3532: 3518: 3502: 3499: 3494: 3490: 3466: 3462: 3439: 3435: 3431: 3427: 3423: 3419: 3415: 3403: 3400: 3395: 3387: 3348: 3345: 3335: 3331: 3303: 3300: 3295: 3287: 3282: 3279: 3274: 3270: 3239: 3236: 3227:interconnect. 3167:Specifically, 3120: 3117: 3093: 3090: 3081:Microstructure 3057: 3035: 3011: 3008: 3004: 2979: 2972: 2969: 2954:= temperature 2943: 2917: 2893: 2890: 2887: 2884: 2881: 2876: 2873: 2866: 2863: 2831: 2826: 2823: 2820: 2817: 2814: 2810: 2804: 2799: 2796: 2792: 2784: 2780: 2775: 2768: 2765: 2755: 2750: 2747: 2744: 2741: 2738: 2733: 2730: 2723: 2720: 2686: 2664: 2640: 2636: 2611: 2608: 2604: 2579: 2576: 2572: 2545: 2539: 2532: 2529: 2526: 2523: 2519: 2513: 2510: 2507: 2503: 2497: 2493: 2490: 2487: 2484: 2481: 2478: 2475: 2472: 2464: 2459: 2455: 2451: 2444: 2439: 2436: 2433: 2430: 2426: 2422: 2417: 2412: 2409: 2406: 2402: 2395: 2392: 2389: 2386: 2383: 2378: 2373: 2365: 2360: 2356: 2352: 2349: 2342: 2339: 2335: 2331: 2325: 2320: 2317: 2313: 2285: 2282: 2257: 2253: 2228: 2225: 2222: 2219: 2215: 2190: 2187: 2183: 2157: 2153: 2150: 2144: 2140: 2136: 2133: 2129: 2126: 2121: 2118: 2115: 2112: 2108: 2104: 2099: 2096: 2092: 2061:Thermal stress 2055: 2052: 2047: 2046: 2032: 2028: 2017: 2005: 1995: 1983: 1973: 1961: 1951: 1938: 1927: 1913: 1908: 1896: 1895:= gas constant 1884: 1870: 1869: 1857: 1850: 1845: 1840: 1835: 1831: 1828: 1825: 1819: 1816: 1812: 1806: 1803: 1797: 1792: 1789: 1786: 1781: 1759: 1756: 1746: 1743: 1730: 1710: 1690: 1668: 1664: 1652: 1651: 1636: 1633: 1630: 1625: 1622: 1616: 1612: 1607: 1603: 1599: 1596: 1570: 1550: 1539: 1538: 1525: 1522: 1517: 1512: 1508: 1492: 1489: 1483: 1480: 1471: 1470: 1456: 1452: 1441: 1427: 1423: 1412: 1398: 1394: 1383: 1369: 1366: 1363: 1359: 1348: 1334: 1331: 1328: 1324: 1313: 1312:= cell voltage 1299: 1296: 1293: 1290: 1286: 1271: 1270: 1256: 1253: 1249: 1243: 1239: 1235: 1232: 1228: 1224: 1217: 1213: 1207: 1203: 1193: 1189: 1185: 1180: 1176: 1172: 1167: 1164: 1161: 1157: 1153: 1148: 1145: 1142: 1138: 1131: 1126: 1123: 1120: 1117: 1113: 1093: 1092: 1078: 1075: 1072: 1069: 1066: 1061: 1049: 1035: 1032: 1029: 1026: 1023: 1020: 1017: 1012: 1000: 984: 974: 956: 951: 935: 934: 921: 918: 915: 912: 909: 904: 899: 894: 891: 888: 885: 882: 879: 876: 871: 866: 861: 856: 853: 848: 843: 838: 833: 829: 812: 809: 803: 800: 784: 783: 770: 765: 760: 755: 750: 747: 742: 737: 732: 727: 724: 719: 716: 712: 709: 706: 701: 697: 690: 687: 658: 655: 654: 653: 650: 647: 644: 620: 616: 599: 596: 591: 587: 583: 579: 575: 571: 567: 563: 559: 555: 551: 547: 543: 539: 535: 528: 524: 520: 516: 498: 494: 444: 441: 396: 393: 371: 368: 241: 238: 186: 185: 168: 167: 147:the key points 137: 135: 128: 121: 120: 83: 81: 74: 69: 43: 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 6095: 6084: 6081: 6080: 6078: 6063: 6060: 6059: 6056: 6050: 6047: 6045: 6042: 6040: 6037: 6035: 6032: 6031: 6029: 6027: 6023: 6015: 6012: 6010: 6007: 6006: 6005: 6002: 6000: 5997: 5995: 5992: 5990: 5987: 5985: 5982: 5980: 5977: 5975: 5972: 5970: 5967: 5965: 5962: 5961: 5959: 5955: 5949: 5946: 5944: 5941: 5940: 5938: 5936:Biofuel cells 5934: 5928: 5925: 5923: 5920: 5918: 5915: 5913: 5910: 5908: 5905: 5903: 5900: 5898: 5895: 5893: 5890: 5889: 5887: 5883: 5877: 5874: 5872: 5869: 5867: 5864: 5862: 5859: 5857: 5854: 5853: 5851: 5847: 5843: 5836: 5831: 5829: 5824: 5822: 5817: 5816: 5813: 5807: 5804: 5802: 5799: 5797: 5793: 5790: 5787: 5785: 5781: 5778: 5775: 5773: 5770: 5768: 5765: 5763: 5759: 5756: 5753: 5751: 5748: 5746: 5742: 5739: 5736: 5734: 5731: 5729: 5725: 5722: 5719: 5717: 5714: 5713: 5709: 5701: 5700: 5692: 5689: 5684: 5680: 5676: 5672: 5668: 5664: 5660: 5656: 5652: 5648: 5644: 5637: 5634: 5629: 5625: 5621: 5617: 5610: 5607: 5602: 5598: 5594: 5590: 5586: 5582: 5575: 5572: 5567: 5563: 5559: 5555: 5551: 5547: 5540: 5537: 5532: 5528: 5524: 5520: 5513: 5510: 5504: 5501: 5496: 5492: 5488: 5484: 5480: 5476: 5472: 5468: 5464: 5460: 5453: 5450: 5446: 5440: 5437: 5430: 5427: 5422: 5418: 5414: 5410: 5406: 5402: 5395: 5392: 5388: 5382: 5379: 5374: 5370: 5366: 5362: 5358: 5354: 5346: 5343: 5335: 5331: 5327: 5326:Risoe Reports 5320: 5313: 5310: 5306: 5301: 5298: 5285: 5281: 5275: 5272: 5259: 5255: 5251: 5245: 5242: 5237: 5233: 5229: 5225: 5218: 5215: 5210: 5206: 5202: 5198: 5191: 5188: 5183: 5179: 5175: 5171: 5164: 5161: 5149: 5145: 5139: 5136: 5131: 5127: 5123: 5119: 5112: 5109: 5104: 5100: 5096: 5092: 5088: 5084: 5080: 5076: 5072: 5068: 5061: 5059: 5055: 5050: 5044: 5040: 5035: 5034: 5025: 5022: 5019: 5015: 5011: 5006: 5003: 4999: 4994: 4991: 4986: 4982: 4978: 4974: 4970: 4963: 4960: 4955: 4951: 4947: 4943: 4939: 4935: 4931: 4924: 4921: 4916: 4909: 4906: 4901: 4897: 4893: 4889: 4885: 4881: 4874: 4871: 4866: 4862: 4858: 4854: 4846: 4843: 4838: 4834: 4831:: 3907–3927. 4830: 4826: 4818: 4815: 4810: 4806: 4802: 4798: 4791: 4788: 4782: 4777: 4773: 4769: 4765: 4758: 4755: 4750: 4746: 4742: 4738: 4734: 4730: 4723: 4720: 4715: 4711: 4707: 4703: 4696: 4694: 4692: 4690: 4686: 4681: 4677: 4673: 4669: 4665: 4661: 4654: 4651: 4646: 4642: 4638: 4634: 4626: 4623: 4618: 4614: 4610: 4606: 4602: 4598: 4594: 4590: 4586: 4579: 4576: 4571: 4567: 4563: 4559: 4555: 4551: 4547: 4543: 4536: 4533: 4528: 4524: 4520: 4516: 4512: 4505: 4502: 4497: 4491: 4483: 4479: 4475: 4471: 4467: 4463: 4459: 4455: 4451: 4447: 4440: 4437: 4432: 4428: 4424: 4420: 4416: 4412: 4405: 4402: 4397: 4393: 4389: 4385: 4381: 4377: 4373: 4369: 4365: 4358: 4355: 4350: 4346: 4342: 4338: 4334: 4330: 4326: 4322: 4318: 4311: 4309: 4305: 4300: 4296: 4292: 4288: 4284: 4280: 4276: 4269: 4266: 4261: 4255: 4251: 4247: 4243: 4239: 4232: 4229: 4218: 4214: 4210: 4206: 4199: 4196: 4191: 4187: 4183: 4179: 4175: 4168: 4165: 4160: 4156: 4152: 4148: 4144: 4140: 4136: 4132: 4125: 4118: 4115: 4110: 4106: 4101: 4096: 4092: 4088: 4084: 4080: 4076: 4072: 4068: 4061: 4058: 4053: 4049: 4045: 4041: 4037: 4033: 4026: 4023: 4017: 4012: 4008: 4004: 4000: 3996: 3988: 3985: 3980: 3976: 3972: 3968: 3960: 3957: 3953: 3948: 3946: 3942: 3938: 3934: 3931: 3926: 3923: 3918: 3914: 3909: 3908:10044/1/41491 3904: 3899: 3894: 3890: 3886: 3882: 3875: 3872: 3867: 3863: 3859: 3855: 3854:ACS Catalysis 3847: 3844: 3839: 3835: 3831: 3827: 3823: 3819: 3812: 3809: 3804: 3800: 3796: 3792: 3788: 3784: 3777: 3774: 3769: 3765: 3760: 3755: 3751: 3747: 3743: 3736: 3733: 3728: 3724: 3719: 3714: 3711:(3): 100038. 3710: 3706: 3702: 3695: 3692: 3687: 3683: 3678: 3677:10044/1/73325 3673: 3669: 3665: 3661: 3657: 3650: 3648: 3646: 3644: 3640: 3635: 3631: 3627: 3623: 3619: 3615: 3608: 3606: 3602: 3597: 3593: 3589: 3585: 3582:Badwal, SPS. 3578: 3575: 3569: 3565: 3562: 3560: 3557: 3555: 3552: 3549: 3546: 3543: 3540: 3538: 3535: 3534: 3530: 3529:Energy portal 3524: 3519: 3516: 3510: 3505: 3500: 3498: 3487: 3484: 3481: 3478: 3475: 3472: 3469: 3459: 3455: 3451: 3450: 3449: 3443: 3413: 3409: 3401: 3399: 3393: 3384: 3382: 3378: 3377:trigeneration 3372: 3370: 3366: 3362: 3358: 3354: 3346: 3344: 3340: 3324: 3320: 3316: 3312: 3308: 3301: 3299: 3291: 3280: 3278: 3267: 3265: 3261: 3257: 3253: 3249: 3245: 3237: 3235: 3232: 3228: 3226: 3221: 3219: 3215: 3211: 3207: 3203: 3199: 3195: 3193: 3188: 3184: 3180: 3178: 3174: 3170: 3165: 3163: 3159: 3154: 3151: 3147: 3141: 3140:350 Â°C. 3137: 3135: 3131: 3127: 3118: 3116: 3114: 3110: 3106: 3102: 3098: 3091: 3089: 3087: 3082: 3077: 3075: 3071: 3055: 3047: 3033: 3025: 3009: 3006: 3002: 2993: 2977: 2967: 2955: 2941: 2933: 2931: 2915: 2907: 2891: 2888: 2885: 2882: 2879: 2874: 2871: 2864: 2861: 2849: 2846: 2829: 2824: 2821: 2818: 2815: 2812: 2808: 2802: 2797: 2794: 2790: 2782: 2778: 2773: 2763: 2753: 2748: 2745: 2742: 2739: 2736: 2731: 2728: 2721: 2718: 2706: 2704: 2698: 2684: 2676: 2662: 2654: 2638: 2634: 2625: 2609: 2606: 2602: 2593: 2577: 2574: 2570: 2561: 2558: 2537: 2530: 2527: 2524: 2521: 2517: 2511: 2508: 2505: 2501: 2495: 2491: 2488: 2482: 2479: 2476: 2470: 2462: 2457: 2453: 2449: 2442: 2437: 2434: 2431: 2428: 2424: 2420: 2415: 2410: 2407: 2404: 2400: 2390: 2387: 2384: 2371: 2363: 2358: 2354: 2350: 2347: 2340: 2337: 2333: 2329: 2323: 2318: 2315: 2311: 2302: 2298: 2283: 2280: 2271: 2255: 2251: 2242: 2226: 2223: 2220: 2217: 2213: 2204: 2188: 2185: 2181: 2172: 2169: 2151: 2148: 2142: 2138: 2134: 2127: 2124: 2119: 2116: 2113: 2110: 2106: 2102: 2097: 2094: 2090: 2081: 2077: 2074: 2069: 2067: 2062: 2053: 2051: 2030: 2026: 2018: 2003: 1996: 1981: 1974: 1959: 1952: 1936: 1928: 1911: 1906: 1897: 1882: 1875: 1874: 1873: 1855: 1848: 1843: 1838: 1833: 1829: 1826: 1823: 1817: 1814: 1810: 1804: 1801: 1795: 1790: 1787: 1784: 1779: 1770: 1769: 1768: 1766: 1757: 1755: 1751: 1744: 1742: 1728: 1708: 1688: 1666: 1662: 1634: 1631: 1628: 1623: 1620: 1614: 1610: 1605: 1601: 1597: 1594: 1587: 1586: 1585: 1582: 1568: 1548: 1523: 1520: 1515: 1510: 1506: 1498: 1497: 1496: 1490: 1488: 1481: 1479: 1477: 1454: 1450: 1442: 1425: 1421: 1413: 1396: 1392: 1384: 1367: 1364: 1361: 1357: 1349: 1332: 1329: 1326: 1322: 1314: 1297: 1294: 1291: 1288: 1284: 1276: 1275: 1274: 1254: 1251: 1247: 1241: 1237: 1233: 1230: 1226: 1222: 1215: 1211: 1205: 1201: 1191: 1187: 1183: 1178: 1174: 1170: 1165: 1162: 1159: 1155: 1151: 1146: 1143: 1140: 1136: 1129: 1124: 1121: 1118: 1115: 1111: 1103: 1102: 1101: 1097: 1076: 1073: 1070: 1067: 1064: 1059: 1050: 1033: 1030: 1027: 1024: 1021: 1018: 1015: 1010: 1001: 998: 982: 975: 972: 954: 949: 940: 939: 938: 919: 916: 913: 910: 907: 902: 897: 892: 889: 886: 883: 880: 877: 874: 869: 864: 859: 854: 851: 846: 841: 836: 831: 827: 819: 818: 817: 811:Polarizations 810: 808: 801: 799: 797: 793: 789: 768: 763: 758: 748: 745: 740: 735: 730: 725: 717: 714: 699: 688: 685: 676: 675: 674: 672: 668: 664: 656: 651: 648: 645: 642: 641: 640: 636: 634: 630: 626: 623:– 9ScSZ) and 614: 610: 597: 595: 532: 502: 491: 490: 486: 484: 480: 476: 472: 468: 463: 459: 455: 450: 442: 440: 438: 434: 430: 426: 422: 418: 414: 410: 406: 405:air preheater 402: 394: 392: 389: 385: 376: 369: 367: 365: 360: 356: 351: 349: 345: 341: 339: 335: 331: 327: 323: 319: 314: 309: 307: 303: 299: 296: 292: 287: 285: 281: 277: 273: 270: 265: 263: 259: 255: 251: 247: 239: 237: 235: 229: 228:electrolyte. 227: 223: 219: 215: 211: 207: 203: 194: 190: 182: 179: 164: 161:February 2022 154: 148: 146: 141: 136: 132: 127: 126: 117: 114: 106: 103:December 2020 96: 90: 89: 84:This article 82: 73: 72: 67: 65: 58: 57: 52: 51: 46: 41: 32: 31: 19: 5974:Flow battery 5875: 5698: 5691: 5650: 5646: 5636: 5619: 5615: 5609: 5584: 5580: 5574: 5549: 5545: 5539: 5522: 5518: 5512: 5503: 5462: 5458: 5452: 5444: 5439: 5429: 5404: 5400: 5394: 5386: 5381: 5356: 5352: 5345: 5334:the original 5329: 5325: 5312: 5300: 5288:. Retrieved 5284:the original 5274: 5262:. Retrieved 5258:the original 5253: 5244: 5230:: 11. 2015. 5227: 5223: 5217: 5200: 5196: 5190: 5173: 5169: 5163: 5151:. Retrieved 5147: 5138: 5121: 5117: 5111: 5070: 5066: 5032: 5024: 5005: 4993: 4976: 4972: 4962: 4937: 4933: 4923: 4908: 4883: 4879: 4873: 4856: 4852: 4845: 4828: 4824: 4817: 4800: 4796: 4790: 4771: 4767: 4757: 4732: 4728: 4722: 4705: 4701: 4663: 4659: 4653: 4636: 4632: 4625: 4592: 4588: 4578: 4545: 4541: 4535: 4510: 4504: 4490:cite journal 4449: 4445: 4439: 4414: 4410: 4404: 4371: 4367: 4357: 4324: 4320: 4282: 4278: 4268: 4241: 4231: 4220:, retrieved 4208: 4198: 4181: 4177: 4167: 4134: 4130: 4117: 4074: 4070: 4060: 4035: 4031: 4025: 3998: 3994: 3987: 3970: 3966: 3959: 3925: 3888: 3884: 3874: 3857: 3853: 3846: 3821: 3817: 3811: 3786: 3782: 3776: 3749: 3745: 3735: 3708: 3704: 3694: 3659: 3655: 3617: 3613: 3596:the original 3591: 3587: 3577: 3488: 3485: 3482: 3479: 3476: 3473: 3470: 3460: 3456: 3452: 3448:landfill gas 3445: 3444: 3405: 3385: 3373: 3350: 3341: 3329: 3317: 3313: 3309: 3305: 3292: 3284: 3268: 3264:hydrogen gas 3241: 3233: 3229: 3222: 3200: 3196: 3181: 3166: 3155: 3142: 3138: 3136:components. 3122: 3095: 3086:Grain growth 3078: 3048: 3026: 2994: 2956: 2934: 2932:coefficient 2908: 2850: 2847: 2707: 2699: 2677: 2655: 2626: 2594: 2562: 2559: 2303: 2299: 2272: 2243: 2205: 2173: 2170: 2082: 2078: 2070: 2066:Delamination 2057: 2048: 1871: 1761: 1752: 1748: 1653: 1583: 1540: 1494: 1485: 1472: 1272: 1098: 1094: 936: 814: 805: 802:Interconnect 785: 673:as follows: 660: 637: 601: 533: 503: 492: 488: 487: 447:The ceramic 446: 398: 381: 352: 342: 310: 288: 266: 243: 240:Introduction 230: 205: 201: 199: 189: 174: 158: 142: 140:lead section 109: 100: 85: 61: 54: 48: 47:Please help 44: 5964:Blue energy 5264:30 November 4803:: 141–337. 4222:14 November 4016:10397/97578 3465:S → NiS + H 3361:Rolls-Royce 3260:electrolyte 3208:stabilized 3202:Ceres Power 3183:Rolls-Royce 3146:natural gas 3130:elastomeric 3074:Coble creep 2297:= porosity 598:Electrolyte 497:+O ——> H 469:made up of 413:afterburner 409:prereformer 300:devices or 295:heat engine 250:electrolyte 6083:Fuel cells 5842:Fuel cells 5434:2426-2428. 5407:(1): 1–9. 5290:8 December 5170:Fuel Cells 5153:6 November 4589:Fuel Cells 4285:(11): 11. 4001:: 115175. 3973:: 109560. 3570:References 3369:efficiency 554:, MgO, TiO 355:fuel cells 222:Fuel cells 50:improve it 5675:1938-6737 5601:100859434 5495:206533328 5353:ECS Trans 5103:206533328 4954:0002-7820 4639:: 53–60. 4617:104669264 4609:1615-6846 4562:0167-2738 4417:: 19–34. 4396:0378-7753 4341:1614-6840 3803:240563264 3768:256964689 3727:259652830 3686:199179410 3634:237909427 3192:Futuregen 3134:polymeric 3003:σ 2971:~ 2930:Diffusion 2865:˙ 2862:ϵ 2791:σ 2767:~ 2722:˙ 2719:ϵ 2663:ν 2571:σ 2492:⁡ 2483:ν 2421:− 2391:ν 2388:− 2351:π 2312:σ 2135:− 2128:⁡ 1937:β 1824:× 1811:β 1780:η 1663:σ 1632:⋅ 1621:− 1611:⋅ 1602:σ 1595:σ 1569:σ 1549:δ 1524:σ 1521:δ 1393:η 1238:η 1234:− 1223:⋅ 1184:⋅ 1175:η 1171:⋅ 1152:− 1060:η 1011:η 903:η 898:− 870:η 865:− 860:ω 847:− 769:× 754:⟶ 749:∙ 746:∙ 667:electrode 665:, or air 388:ionically 370:Operation 313:reforming 214:oxidizing 145:summarize 56:talk page 6077:Category 6062:Glossary 6026:Hydrogen 5792:Archived 5780:Archived 5758:Archived 5741:Archived 5724:Archived 5487:22096189 5148:Nedstack 5095:22096189 5014:Archived 4570:95598314 4527:98044813 4474:11713541 4349:95175720 4159:51915676 4109:25169166 4077:: 5754. 3933:Archived 3917:27933769 3501:See also 3250:for the 3210:zirconia 3177:gasoline 3119:Research 3072:, 3 for 2284:′ 2152:′ 1273:where: 726:′ 384:ceramics 332:to form 330:gasified 272:catalyst 262:hydrogen 208:) is an 6049:Vehicle 6044:Storage 6039:Station 6034:Economy 5885:By fuel 5683:1414432 5655:Bibcode 5554:Bibcode 5467:Bibcode 5459:Science 5445:Science 5409:Bibcode 5361:Bibcode 5280:"HITEC" 5075:Bibcode 5067:Science 4888:Bibcode 4737:Bibcode 4668:Bibcode 4482:4405856 4454:Bibcode 4419:Bibcode 4376:Bibcode 4287:Bibcode 4139:Bibcode 4100:4148670 4079:Bibcode 4040:Bibcode 3826:Bibcode 3365:SOFC-GT 3353:SOFC-GT 3347:SOFC-GT 3302:LT-SOFC 3256:ceramic 3153:costs. 2848:Where: 2560:Where: 2171:Where: 1872:where: 1654:where: 1541:where: 937:where: 663:cathode 657:Cathode 605:600 °C, 510:⁄ 328:may be 326:biomass 256:to the 254:cathode 226:ceramic 5957:Others 5681:  5673:  5599:  5493:  5485:  5101:  5093:  5045:  4952:  4913:ASTM. 4615:  4607:  4568:  4560:  4525:  4480:  4472:  4446:Nature 4394:  4347:  4339:  4256:  4157:  4107:  4097:  3915:  3801:  3766:  3725:  3684:  3632:  3461:Ni + H 3438:and CO 3281:ITSOFC 3225:cermet 3206:yttria 3162:diesel 3150:sulfur 3092:Target 523:S, (CH 471:nickel 467:cermet 460:. The 423:, and 403:, the 334:syngas 284:biogas 280:sulfur 276:PEMFCs 5597:S2CID 5491:S2CID 5337:(PDF) 5322:(PDF) 5099:S2CID 4613:S2CID 4566:S2CID 4523:S2CID 4478:S2CID 4345:S2CID 4155:S2CID 4127:(PDF) 3799:S2CID 3764:S2CID 3723:S2CID 3682:S2CID 3630:S2CID 633:ceria 501:O+2e 449:anode 443:Anode 258:anode 246:oxide 5679:OSTI 5671:ISSN 5483:PMID 5330:1608 5292:2013 5266:2009 5228:2015 5155:2016 5091:PMID 5043:ISBN 4950:ISSN 4605:ISSN 4558:ISSN 4496:link 4470:PMID 4392:ISSN 4337:ISSN 4254:ISBN 4224:2020 4105:PMID 3913:PMID 3412:DCFC 3402:DCFC 3381:HVAC 3359:and 3238:SOEC 3109:coal 1681:and 796:LSCF 661:The 613:ScSZ 546:, La 458:fuel 324:and 322:coal 218:fuel 206:SOFC 204:(or 18:SOFC 5663:doi 5624:doi 5589:doi 5562:doi 5550:196 5527:doi 5475:doi 5463:334 5417:doi 5405:114 5369:doi 5232:doi 5205:doi 5178:doi 5126:doi 5083:doi 5071:334 4981:doi 4942:doi 4896:doi 4861:doi 4857:138 4833:doi 4805:doi 4776:doi 4745:doi 4733:171 4710:doi 4676:doi 4664:162 4641:doi 4637:302 4597:doi 4550:doi 4546:135 4515:doi 4462:doi 4450:414 4427:doi 4415:202 4384:doi 4372:141 4329:doi 4295:doi 4283:153 4246:doi 4213:doi 4186:doi 4182:163 4147:doi 4095:PMC 4087:doi 4048:doi 4036:145 4011:hdl 4003:doi 3999:253 3975:doi 3971:119 3903:hdl 3893:doi 3889:116 3862:doi 3834:doi 3822:196 3791:doi 3754:doi 3713:doi 3672:hdl 3664:doi 3622:doi 3497:S. 3430:CoO 3428:0.5 3424:0.5 3351:An 3214:YSZ 3194:). 3173:BMW 3097:DOE 2125:exp 588:0.5 584:0.5 580:0.2 576:0.8 538:, Y 6079:: 5677:. 5669:. 5661:. 5651:78 5649:. 5645:. 5620:38 5618:. 5595:. 5585:41 5583:. 5560:. 5548:. 5523:28 5521:. 5489:. 5481:. 5473:. 5461:. 5415:. 5403:. 5367:. 5357:78 5355:. 5328:. 5324:. 5252:. 5226:. 5201:86 5199:. 5172:. 5146:. 5122:22 5120:. 5097:. 5089:. 5081:. 5069:. 5057:^ 5041:. 5039:19 4977:38 4975:. 4971:. 4948:. 4938:54 4936:. 4932:. 4894:. 4884:52 4882:. 4855:. 4829:38 4827:. 4801:72 4799:. 4772:11 4770:. 4766:. 4743:. 4731:. 4704:. 4688:^ 4674:. 4662:. 4635:. 4611:. 4603:. 4593:18 4591:. 4587:. 4564:. 4556:. 4544:. 4521:. 4492:}} 4488:{{ 4476:. 4468:. 4460:. 4448:. 4425:. 4413:. 4390:. 4382:. 4370:. 4366:. 4343:. 4335:. 4323:. 4319:. 4307:^ 4293:. 4281:. 4277:. 4252:. 4207:, 4180:. 4153:. 4145:. 4135:29 4133:. 4129:. 4103:. 4093:. 4085:. 4073:. 4069:. 4046:. 4034:. 4009:. 3997:. 3969:. 3944:^ 3911:. 3901:. 3887:. 3883:. 3858:11 3856:. 3832:. 3820:. 3797:. 3787:40 3785:. 3762:. 3750:37 3748:. 3744:. 3721:. 3707:. 3703:. 3680:. 3670:. 3658:. 3642:^ 3628:. 3618:46 3616:. 3604:^ 3592:50 3590:. 3586:. 3491:eq 3426:Sr 3418:CO 3371:. 3266:. 3258:, 3242:A 3076:) 2928:= 2489:ln 1478:. 995:= 969:= 586:Mn 582:Cr 578:Sr 485:. 431:, 427:, 419:, 415:, 411:, 407:, 340:. 308:. 220:. 216:a 200:A 59:. 5834:e 5827:t 5820:v 5685:. 5665:: 5657:: 5630:. 5626:: 5603:. 5591:: 5568:. 5564:: 5556:: 5533:. 5529:: 5497:. 5477:: 5469:: 5423:. 5419:: 5411:: 5375:. 5371:: 5363:: 5294:. 5268:. 5238:. 5234:: 5211:. 5207:: 5184:. 5180:: 5174:3 5157:. 5132:. 5128:: 5105:. 5085:: 5077:: 5051:. 4987:. 4983:: 4956:. 4944:: 4917:. 4902:. 4898:: 4890:: 4867:. 4863:: 4839:. 4835:: 4811:. 4807:: 4784:. 4778:: 4751:. 4747:: 4739:: 4716:. 4712:: 4706:3 4682:. 4678:: 4670:: 4647:. 4643:: 4619:. 4599:: 4572:. 4552:: 4529:. 4517:: 4498:) 4484:. 4464:: 4456:: 4433:. 4429:: 4421:: 4398:. 4386:: 4378:: 4351:. 4331:: 4325:2 4301:. 4297:: 4289:: 4262:. 4248:: 4215:: 4192:. 4188:: 4161:. 4149:: 4141:: 4111:. 4089:: 4081:: 4075:4 4054:. 4050:: 4042:: 4019:. 4013:: 4005:: 3981:. 3977:: 3919:. 3905:: 3895:: 3868:. 3864:: 3840:. 3836:: 3828:: 3805:. 3793:: 3770:. 3756:: 3729:. 3715:: 3709:2 3688:. 3674:: 3666:: 3660:2 3636:. 3624:: 3495:2 3467:2 3463:2 3440:2 3436:2 3432:3 3420:3 3416:2 3410:( 3396:2 3388:2 3336:3 3332:3 3296:3 3288:3 3275:2 3271:2 3212:( 3132:/ 3056:n 3034:m 3010:q 3007:e 2978:0 2968:k 2942:T 2916:D 2892:p 2889:e 2886:e 2883:r 2880:c 2875:q 2872:e 2830:n 2825:n 2822:i 2819:a 2816:r 2813:g 2809:d 2803:m 2798:q 2795:e 2783:T 2779:D 2774:0 2764:k 2754:= 2749:p 2746:e 2743:e 2740:r 2737:c 2732:q 2729:e 2685:D 2639:s 2635:h 2610:r 2607:c 2603:F 2578:r 2575:c 2544:) 2538:) 2531:d 2528:a 2525:o 2522:l 2518:D 2512:p 2509:u 2506:s 2502:D 2496:( 2486:) 2480:+ 2477:1 2474:( 2471:+ 2463:2 2458:s 2454:D 2450:2 2443:2 2438:d 2435:a 2432:o 2429:l 2425:D 2416:2 2411:p 2408:u 2405:s 2401:D 2394:) 2385:1 2382:( 2377:( 2372:+ 2364:2 2359:s 2355:h 2348:2 2341:r 2338:c 2334:F 2330:3 2324:= 2319:r 2316:c 2281:p 2256:k 2252:b 2227:0 2224:, 2221:C 2218:I 2214:K 2189:C 2186:I 2182:K 2156:) 2149:p 2143:k 2139:b 2132:( 2120:0 2117:, 2114:C 2111:I 2107:K 2103:= 2098:C 2095:I 2091:K 2031:0 2027:i 2004:i 1982:F 1960:z 1912:0 1907:T 1883:R 1856:) 1849:0 1844:i 1839:i 1834:( 1830:n 1827:l 1818:F 1815:z 1805:T 1802:R 1796:= 1791:t 1788:c 1785:a 1729:R 1709:T 1689:E 1667:0 1635:T 1629:R 1624:E 1615:e 1606:0 1598:= 1516:= 1511:1 1507:r 1455:2 1451:r 1426:1 1422:r 1397:f 1368:x 1365:a 1362:m 1358:i 1333:x 1330:a 1327:m 1323:E 1298:C 1295:F 1292:O 1289:S 1285:E 1255:1 1252:+ 1248:) 1242:f 1231:1 1227:( 1216:2 1212:r 1206:1 1202:r 1192:1 1188:r 1179:f 1166:x 1163:a 1160:m 1156:i 1147:x 1144:a 1141:m 1137:E 1130:= 1125:C 1122:F 1119:O 1116:S 1112:E 1077:e 1074:d 1071:o 1068:n 1065:a 1034:e 1031:d 1028:o 1025:h 1022:t 1019:a 1016:c 983:R 955:0 950:E 920:e 917:d 914:o 911:n 908:a 893:e 890:d 887:o 884:h 881:t 878:a 875:c 855:R 852:i 842:0 837:E 832:= 828:V 764:o 759:O 741:o 736:V 731:+ 723:e 718:2 715:+ 711:) 708:g 705:( 700:2 696:O 689:2 686:1 621:3 619:O 617:2 592:3 590:O 572:2 568:2 564:4 560:2 556:2 552:3 550:O 548:2 544:3 542:O 540:2 536:2 529:2 527:) 525:3 521:2 517:2 515:O 512:2 508:1 499:2 495:2 493:H 181:) 175:( 163:) 159:( 149:. 116:) 110:( 105:) 101:( 91:. 66:) 62:( 20:)

Index

SOFC
improve it
talk page
Learn how and when to remove these messages
layout guidelines
editing the article
Learn how and when to remove this message

lead section
summarize
provide an accessible overview
Learn how and when to remove this message

electrochemical
oxidizing
fuel
Fuel cells
ceramic
operating temperature
oxide
electrolyte
cathode
anode
hydrogen
platinum group metals
catalyst
PEMFCs
sulfur
biogas
Ceramic Fuel Cells

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑