Knowledge (XXG)

SU(1,1) interferometry

Source đź“ť

1404:. This is the principle behind noise reduction in an SU(1,1) interferometer. The first parametric amplifier produces two quantum entangled fields that are used for phase sensing and are the input to the second parametric amplifier where the amplification takes place. In a scenario of no internal losses inside the interferometer, the output noise for a destructive quantum interference is still similar to the case of a SU(2) interferometer. Overall, there is an amplification in the signal with no change in the noise (as compared to SU(2) interferometer). This leads to the improvement in phase sensitivity over SU(2) interferometry. 63: 230: 1417:
inferred that an SU(1,1) interferometer is robust against losses due to inefficient detectors because of the disentanglement of states at the second parametric amplifier before the measurements. However, the internal losses in an SU(1,1) interferometer limit its sensitivity below the Heisenberg limit
54:
and precision measurements for achieving sensitivity in measurements beyond what is possible with classical methods and resources. Interferometry is a desired platform for precise estimation of physical quantities because of its ability to sense small phase changes. One of the most prominent examples
1442:
was challenging to realize experimentally due to very low photon numbers expected at the output (for ideal sensitivity) and also the theory did not take into account the internal losses that could affect the phase change sensitivity of the interferometer. Subsequently, modifications to the scheme
1429:
showed that in the presence of any internal losses, an SU(1,1) interferometer could not achieve the Heisenberg limit for configurations with no input fields at both the ports or a coherent state input in one of the ports (this configuration was considered for the Theory section above). For a case
1509:
2. “Truncated” SU(1,1) interferometer with no second parametric amplifier and rather using a photocurrent mixer to realize the superposition of the fields. Such a configuration opens the possibility to implement SU(1,1) interferometry in experiments where fewer optical elements help minimize the
1505:
1. SU(1,1) interferometry with one parametric amplifier and a beam splitter replacing the second amplifier: The signal to noise ratio improvement in this configuration was found to be essentially the same as that of the original SU(1,1) interferometry sensitivity improvement over conventional
1392:
amplification at the second parametric amplifier. Similar amplification could also be implemented in a SU(2) interferometer where both the signal and the noise (vacuum quantum fluctuations) gets amplified. However, the difference comes in the noise performance of an SU(1,1) interferometer.
79:. In this type of interferometry, the input field is split into two by a beam splitter which then propagates along different paths and acquires a relative phase difference (corresponding to a path length difference). Considering one of the beams undergoing a phase change as the 1412:
The reduced sensitivity of an interferometer can be mainly due to two types of losses. One of the sources of losses is the inefficient detection protocol. Another type of loss affecting the sensitivity is the internal loss of an interferometer. Theoretical studies by Marino
87:, the relative phase is estimated after the two beams interfere at another beam splitter. The estimation of the phase difference is done through the detection of the intensity change at the output after the interference at the second beam splitter. 90:
These standard interferometric techniques, based on beam-splitters for the splitting of the beams and linear optical transformations, can be classified as SU(2) interferometers as these interferometric techniques can be naturally characterized by
1443:
were studied taking into account the losses and other experimental imperfections. Some of the initial experiments proving the predicted scaling of the SU(1,1) interferometer and other experiments modifying the scheme are discussed below.
894: 74:
of electromagnetic waves. Although the design and layout for these types of interferometers can vary depending upon the type of application and corresponding suitable scheme, they all can be mapped to an arrangement similar to that of a
1097:
The first feature indicates a high correlation of the output photon numbers (intensities) and the second feature shows that there is an enhancement of the signal strength for a small phase change as compared to SU(2) interferometers.
1353:
of sensitivity in conditions where a SU(2) interferometer approaches the shot-noise limit. It is also shown in Ref. that with no coherent state injection, the SU(1,1) interferometer approaches the Heisenberg limit of sensitivity.
1501:
Modifications to SU(1,1) interferometers have been proposed and studied with the goal of finding an experimentally ideal scheme with the desired characteristics of SU(1,1) interferometry. Some of the schemes explored include:
45:
is an important technique in the field of optics that have been utilised for fundamental proof of principles experiments and in the development of new technologies. This technique, primarily based on the interference of
559: 151:
is the mean number of particles (photons for electromagnetic waves) entering the input port of the interferometer. The shot noise limit can be overcome by using light that utilizes quantum properties such as
1314: 935: 774: 1021: 733: 642: 1425:
did not take into account the internal losses and for a moderate gain of the parametric amplifier produced a low number of photons which made it difficult for its experimental realization. Marino
1273: 213:. The advantage that comes with the parametric amplifiers is that the input fields can be coherently split and interfere that would be fundamentally quantum in nature. This is attributed to the 475: 394: 1459:
with Rb-85 vapor cells for parametric amplification. The experiment verified the increase in the fringe size due to the amplification of the signal. Later, experiments performed by Hudelist
1430:
with coherent state input at both the input ports, it was shown that the interferometer is robust against internal losses and is one of the ideal schemes for achieving the Heisenberg limit.
1400:
for effective noise cancellation. For an input state with a strong correlation with the internal modes of an amplifier, the quantum noise can be cancelled at the output through destructive
233:
Schematic of a balanced SU(1,1) interferometer with a coherent state injection in one of the input ports and no input (vacuum) in the other port. Parametric amplifiers have gains G,g.
1952:
Gupta, Prasoon; Schmittberger, Bonnie L.; Anderson, Brian E.; Jones, Kevin M.; Lett, Paul D. (8 January 2018). "Optimized phase sensing in a truncated SU(1,1) interferometer".
594: 129: 1144: 312: 277: 1183: 95:(Special Unitary(2)) group. Theoretically, the sensitivity of conventional SU(2) interferometric schemes are limited by the vacuum fluctuation noise, also called the 1491: 1390: 1347: 781: 194: 1072: 1050: 1092: 497: 149: 221:. Theoretically, SU(1,1) interferometers can achieve the Heisenberg limit of sensitivity with fewer optical elements than conventional interferometers. 237:
To briefly understand the benefit of using a parametric amplifier, a balanced SU(1,1) interferometer can be considered. Treating the input fields as
1758:
Kong, Jia; Hudelist, F.; Ou, Z. Y.; Zhang, Weiping (18 July 2013). "Cancellation of Internal Quantum Noise of an Amplifier by Quantum Correlation".
1683:
Ou, Z. Y. (14 February 2012). "Enhancement of the phase-measurement sensitivity beyond the standard quantum limit by a nonlinear interferometer".
502: 1801:
Plick, William N; Dowling, Jonathan P; Agarwal, Girish S (6 August 2010). "Coherent-light-boosted, sub-shot noise, quantum interferometry".
1506:
interferometers. This study showed that the improvement is mainly due to the entangled fields generated at the first parametric amplifier.
1052:
The two output intensities of an SU(1,1) interferometer are in phase whereas in a SU(2) interferometer the two outputs are out of phase.
242: 1723:
Marino, A. M.; Corzo Trejo, N. V.; Lett, P. D. (24 August 2012). "Effect of losses on the performance of an SU(1,1) interferometer".
1278: 899: 738: 76: 943: 649: 599: 1190: 210: 23: 400: 319: 62: 1024: 47: 1534:
Ou, Z. Y.; Li, Xiaoying (1 August 2020). "Quantum SU(1,1) interferometers: Basic principles and applications".
2019: 157: 26:
for splitting and mixing of electromagnetic waves for precise estimation of phase change and achieves the
165: 92: 27: 571: 1971: 1908: 1867: 1820: 1767: 1732: 1692: 1654: 1608: 1553: 1401: 1397: 1030:
This shows two main distinguishing features of an SU(1,1) interferometer from SU(2) interferometers:
238: 153: 102: 1451:
The boost in the photon numbers from a coherent state injection was proposed and studied by Plick
1995: 1961: 1836: 1810: 1569: 1543: 1104: 282: 247: 1149: 889:{\displaystyle I_{2}^{o}=(2G^{2}g^{2}+1)(\left\vert \alpha \right\vert ^{2})(1+\nu \cos \phi )} 1987: 1934: 1783: 1642: 1624: 71: 51: 1979: 1924: 1916: 1875: 1828: 1775: 1740: 1700: 1662: 1616: 1561: 1466: 1365: 1322: 218: 214: 1596: 1362:
The improvement of phase measurement sensitivity in an SU(1,1) interferometer is not by a
1895:
Hudelist, F.; Kong, Jia; Liu, Cunjin; Jing, Jietai; Ou, Z.Y.; Zhang, Weiping (May 2014).
171: 1975: 1912: 1871: 1832: 1824: 1771: 1736: 1696: 1658: 1612: 1557: 1057: 1035: 1929: 1896: 1077: 565: 482: 229: 134: 42: 31: 1897:"Quantum metrology with parametric amplifier-based photon correlation interferometers" 1074:
The outputs are amplified as compared to that of a SU(2) interferometer when the gain
2013: 1592: 1573: 203: 70:
Conventional interferometers are based on the wave nature of the light and hence the
1999: 1185:
of a SU(2) interferometer is calculated to be (see Ref. for detailed calculation):
1840: 1779: 1854:
Jing, Jietai; Liu, Cunjin; Zhou, Zhifan; Ou, Z. Y.; Zhang, Weiping (4 July 2011).
1319:
This means that the sensitivity in phase measurements is improved by a factor of
1744: 1704: 161: 96: 1620: 209:
in which the beam splitters in conventional interferometers were replaced by
55:
of the application of this property is the detection of gravitational waves (
1645:; Ou, Z. Y. (31 March 2016). "Nonlinear interferometers in quantum optics". 1438:
The originally proposed configuration of an SU(1,1) interferometer by Yurke
1991: 1938: 1787: 554:{\displaystyle \left\vert G\right\vert ^{2}-\left\vert g\right\vert ^{2}=1} 314:, the output quantum fields from a parametric amplifier can be written as: 1628: 1983: 1666: 1493:
with SU(1,1) interferometry over the conventional SU(2) interferometry.
196:
with the change in the mean number of photons entering the input port.
1920: 199: 1880: 1856:"Realization of a nonlinear interferometer with parametric amplifiers" 1855: 1565: 1396:
A quantum amplifier (in this case a parametric amplifier) can utilize
1421:
The original scheme for an SU(1,1) interferometer proposed by Yurke
1146:
for an SU(1,1) interferometer compared to the signal to noise ratio
1966: 1548: 1815: 1463:
showed that there is an enhancement in the signal by a factor of
164:), at the unused input port. In principle, this can achieve the 56: 596:
at the first parametric amplifier with initial input intensity
1309:{\displaystyle \left\vert \alpha \right\vert ^{2}>>1} 930:{\displaystyle \left\vert \alpha \right\vert ^{2}>>1} 769:{\displaystyle \left\vert \alpha \right\vert ^{2}>>1} 1016:{\displaystyle \nu ={\frac {2G^{2}g^{2}}{2G^{2}g^{2}+1}}} 728:{\displaystyle I_{1}^{o}=2G^{2}g^{2}I_{0}(1+\cos \phi )} 637:{\displaystyle I_{0}=\left\vert \alpha \right\vert ^{2}} 66:
Schematic of a conventional Mach-Zehnder interferometer.
1455:. Such a scheme was experimentally implemented by Jing 1349:
in an SU(1,1) interferometer and hence can achieve the
1469: 1368: 1325: 1281: 1193: 1152: 1107: 1080: 1060: 1038: 946: 902: 784: 741: 652: 602: 574: 505: 485: 403: 322: 285: 250: 174: 137: 105: 1599:(1 June 1986). "SU(2) and SU(1,1) interferometers". 1268:{\displaystyle R_{SU(1,1)}/R_{SU(2)}\approx 2G^{2}} 1485: 1384: 1341: 1308: 1267: 1177: 1138: 1086: 1066: 1044: 1015: 929: 888: 768: 727: 636: 588: 553: 491: 469: 388: 306: 271: 188: 143: 123: 1101:From these properties, the signal to noise ratio 470:{\displaystyle a_{2}^{o}=ga_{1}^{in}+Ga_{2}^{in}} 389:{\displaystyle a_{1}^{o}=Ga_{1}^{in}+ga_{2}^{in}} 30:of sensitivity with fewer optical elements than 1529: 1527: 1525: 1523: 1447:Coherent state boosted SU(1,1) interferometer 8: 583: 217:processes in parametric amplifiers such as 50:, has been widely explored in the field of 1510:error due to experimental imperfections. 1965: 1928: 1879: 1814: 1547: 1477: 1468: 1376: 1367: 1333: 1324: 1294: 1280: 1259: 1231: 1222: 1198: 1192: 1157: 1151: 1112: 1106: 1079: 1059: 1037: 998: 988: 973: 963: 953: 945: 915: 901: 853: 823: 813: 794: 789: 783: 754: 740: 698: 688: 678: 662: 657: 651: 628: 607: 601: 575: 573: 539: 518: 504: 484: 458: 453: 434: 429: 413: 408: 402: 377: 372: 353: 348: 332: 327: 321: 295: 290: 284: 260: 255: 249: 178: 173: 136: 114: 109: 104: 228: 61: 1587: 1585: 1583: 1519: 202:interferometers were first proposed by 32:conventional interferometric techniques 1718: 1716: 1714: 1418:during its physical implementation. 7: 1678: 1676: 644:, the output intensities will be: 14: 1647:Advances in Optics and Photonics 1497:Modified SU(1,1) interferometers 589:{\displaystyle |\alpha \rangle } 168:of sensitivity which scales as 1780:10.1103/PhysRevLett.111.033608 1244: 1238: 1217: 1205: 1170: 1164: 1131: 1119: 883: 862: 859: 838: 835: 803: 722: 704: 576: 1: 1833:10.1088/1367-2630/12/8/083014 211:optical parametric amplifiers 124:{\displaystyle 1/{\sqrt {N}}} 1139:{\displaystyle R_{SU(1,1)}} 77:Mach-Zehnder interferometer 2036: 1745:10.1103/PhysRevA.86.023844 1705:10.1103/PhysRevA.85.023815 499:is the amplitude gain and 307:{\displaystyle a_{2}^{in}} 272:{\displaystyle a_{1}^{in}} 83:and the other beam as the 1178:{\displaystyle R_{SU(2)}} 22:is a technique that uses 1621:10.1103/PhysRevA.33.4033 24:parametric amplification 16:Interferometry technique 1860:Applied Physics Letters 1760:Physical Review Letters 1803:New Journal of Physics 1487: 1486:{\displaystyle 2G^{2}} 1386: 1385:{\displaystyle 2G^{2}} 1343: 1342:{\displaystyle 2G^{2}} 1310: 1269: 1179: 1140: 1088: 1068: 1046: 1017: 931: 890: 770: 729: 638: 590: 555: 493: 471: 390: 308: 273: 234: 190: 145: 125: 99:limit which scales as 72:classical interference 67: 20:SU(1,1) interferometry 1901:Nature Communications 1595:; McCall, Samuel L.; 1488: 1387: 1344: 1311: 1270: 1180: 1141: 1089: 1069: 1047: 1018: 932: 891: 771: 730: 639: 591: 556: 494: 472: 391: 309: 274: 232: 191: 146: 126: 65: 48:electromagnetic waves 1984:10.1364/OE.26.000391 1667:10.1364/AOP.8.000104 1467: 1402:quantum interference 1398:quantum entanglement 1366: 1351:sub-shot noise limit 1323: 1279: 1191: 1150: 1105: 1078: 1058: 1036: 944: 900: 782: 739: 650: 600: 572: 503: 483: 401: 320: 283: 248: 172: 154:quantum entanglement 135: 103: 1976:2018OExpr..26..391G 1913:2014NatCo...5.3049H 1872:2011ApPhL..99a1110J 1825:2010NJPh...12h3014P 1772:2013PhRvL.111c3608K 1737:2012PhRvA..86b3844M 1697:2012PhRvA..85b3815O 1659:2016AdOP....8..104C 1613:1986PhRvA..33.4033Y 1558:2020APLP....5h0902O 799: 667: 466: 442: 418: 385: 361: 337: 303: 268: 189:{\displaystyle 1/N} 1921:10.1038/ncomms4049 1483: 1382: 1339: 1306: 1265: 1175: 1136: 1084: 1067:{\displaystyle 2.} 1064: 1045:{\displaystyle 1.} 1042: 1013: 927: 886: 785: 766: 725: 653: 634: 586: 551: 489: 467: 449: 425: 404: 386: 368: 344: 323: 304: 286: 269: 251: 235: 186: 141: 121: 68: 1881:10.1063/1.3606549 1725:Physical Review A 1685:Physical Review A 1601:Physical Review A 1566:10.1063/5.0004873 1358:Noise performance 1087:{\displaystyle G} 1011: 492:{\displaystyle G} 144:{\displaystyle N} 119: 52:quantum metrology 2027: 2004: 2003: 1969: 1949: 1943: 1942: 1932: 1892: 1886: 1885: 1883: 1851: 1845: 1844: 1818: 1798: 1792: 1791: 1755: 1749: 1748: 1720: 1709: 1708: 1680: 1671: 1670: 1639: 1633: 1632: 1607:(6): 4033–4054. 1597:Klauder, John R. 1589: 1578: 1577: 1551: 1531: 1492: 1490: 1489: 1484: 1482: 1481: 1408:Effect of losses 1391: 1389: 1388: 1383: 1381: 1380: 1348: 1346: 1345: 1340: 1338: 1337: 1315: 1313: 1312: 1307: 1299: 1298: 1293: 1274: 1272: 1271: 1266: 1264: 1263: 1248: 1247: 1226: 1221: 1220: 1184: 1182: 1181: 1176: 1174: 1173: 1145: 1143: 1142: 1137: 1135: 1134: 1093: 1091: 1090: 1085: 1073: 1071: 1070: 1065: 1051: 1049: 1048: 1043: 1022: 1020: 1019: 1014: 1012: 1010: 1003: 1002: 993: 992: 979: 978: 977: 968: 967: 954: 936: 934: 933: 928: 920: 919: 914: 895: 893: 892: 887: 858: 857: 852: 828: 827: 818: 817: 798: 793: 775: 773: 772: 767: 759: 758: 753: 734: 732: 731: 726: 703: 702: 693: 692: 683: 682: 666: 661: 643: 641: 640: 635: 633: 632: 627: 612: 611: 595: 593: 592: 587: 579: 560: 558: 557: 552: 544: 543: 538: 523: 522: 517: 498: 496: 495: 490: 476: 474: 473: 468: 465: 457: 441: 433: 417: 412: 395: 393: 392: 387: 384: 376: 360: 352: 336: 331: 313: 311: 310: 305: 302: 294: 278: 276: 275: 270: 267: 259: 219:four-wave mixing 195: 193: 192: 187: 182: 166:Heisenberg limit 150: 148: 147: 142: 130: 128: 127: 122: 120: 115: 113: 28:Heisenberg limit 2035: 2034: 2030: 2029: 2028: 2026: 2025: 2024: 2010: 2009: 2008: 2007: 1951: 1950: 1946: 1894: 1893: 1889: 1853: 1852: 1848: 1800: 1799: 1795: 1757: 1756: 1752: 1722: 1721: 1712: 1682: 1681: 1674: 1643:Chekhova, M. V. 1641: 1640: 1636: 1591: 1590: 1581: 1533: 1532: 1521: 1516: 1499: 1473: 1465: 1464: 1449: 1436: 1410: 1372: 1364: 1363: 1360: 1329: 1321: 1320: 1283: 1282: 1277: 1276: 1255: 1227: 1194: 1189: 1188: 1153: 1148: 1147: 1108: 1103: 1102: 1076: 1075: 1056: 1055: 1034: 1033: 994: 984: 980: 969: 959: 955: 942: 941: 904: 903: 898: 897: 842: 841: 819: 809: 780: 779: 743: 742: 737: 736: 694: 684: 674: 648: 647: 617: 616: 603: 598: 597: 570: 569: 528: 527: 507: 506: 501: 500: 481: 480: 399: 398: 318: 317: 281: 280: 246: 245: 227: 170: 169: 158:squeezed states 133: 132: 101: 100: 40: 17: 12: 11: 5: 2033: 2031: 2023: 2022: 2020:Interferometry 2012: 2011: 2006: 2005: 1960:(1): 391–401. 1954:Optics Express 1944: 1887: 1846: 1793: 1750: 1710: 1672: 1653:(1): 104–155. 1634: 1593:Yurke, Bernard 1579: 1518: 1517: 1515: 1512: 1498: 1495: 1480: 1476: 1472: 1448: 1445: 1435: 1432: 1409: 1406: 1379: 1375: 1371: 1359: 1356: 1336: 1332: 1328: 1305: 1302: 1297: 1292: 1289: 1286: 1262: 1258: 1254: 1251: 1246: 1243: 1240: 1237: 1234: 1230: 1225: 1219: 1216: 1213: 1210: 1207: 1204: 1201: 1197: 1172: 1169: 1166: 1163: 1160: 1156: 1133: 1130: 1127: 1124: 1121: 1118: 1115: 1111: 1083: 1063: 1041: 1009: 1006: 1001: 997: 991: 987: 983: 976: 972: 966: 962: 958: 952: 949: 926: 923: 918: 913: 910: 907: 885: 882: 879: 876: 873: 870: 867: 864: 861: 856: 851: 848: 845: 840: 837: 834: 831: 826: 822: 816: 812: 808: 805: 802: 797: 792: 788: 765: 762: 757: 752: 749: 746: 724: 721: 718: 715: 712: 709: 706: 701: 697: 691: 687: 681: 677: 673: 670: 665: 660: 656: 631: 626: 623: 620: 615: 610: 606: 585: 582: 578: 566:coherent state 550: 547: 542: 537: 534: 531: 526: 521: 516: 513: 510: 488: 464: 461: 456: 452: 448: 445: 440: 437: 432: 428: 424: 421: 416: 411: 407: 383: 380: 375: 371: 367: 364: 359: 356: 351: 347: 343: 340: 335: 330: 326: 301: 298: 293: 289: 266: 263: 258: 254: 239:quantum fields 226: 223: 185: 181: 177: 140: 118: 112: 108: 43:Interferometry 39: 36: 15: 13: 10: 9: 6: 4: 3: 2: 2032: 2021: 2018: 2017: 2015: 2001: 1997: 1993: 1989: 1985: 1981: 1977: 1973: 1968: 1963: 1959: 1955: 1948: 1945: 1940: 1936: 1931: 1926: 1922: 1918: 1914: 1910: 1906: 1902: 1898: 1891: 1888: 1882: 1877: 1873: 1869: 1866:(1): 011110. 1865: 1861: 1857: 1850: 1847: 1842: 1838: 1834: 1830: 1826: 1822: 1817: 1812: 1809:(8): 083014. 1808: 1804: 1797: 1794: 1789: 1785: 1781: 1777: 1773: 1769: 1766:(3): 033608. 1765: 1761: 1754: 1751: 1746: 1742: 1738: 1734: 1731:(2): 023844. 1730: 1726: 1719: 1717: 1715: 1711: 1706: 1702: 1698: 1694: 1691:(2): 023815. 1690: 1686: 1679: 1677: 1673: 1668: 1664: 1660: 1656: 1652: 1648: 1644: 1638: 1635: 1630: 1626: 1622: 1618: 1614: 1610: 1606: 1602: 1598: 1594: 1588: 1586: 1584: 1580: 1575: 1571: 1567: 1563: 1559: 1555: 1550: 1545: 1542:(8): 080902. 1541: 1537: 1536:APL Photonics 1530: 1528: 1526: 1524: 1520: 1513: 1511: 1507: 1503: 1496: 1494: 1478: 1474: 1470: 1462: 1458: 1454: 1446: 1444: 1441: 1433: 1431: 1428: 1424: 1419: 1416: 1407: 1405: 1403: 1399: 1394: 1377: 1373: 1369: 1357: 1355: 1352: 1334: 1330: 1326: 1317: 1303: 1300: 1295: 1290: 1287: 1284: 1260: 1256: 1252: 1249: 1241: 1235: 1232: 1228: 1223: 1214: 1211: 1208: 1202: 1199: 1195: 1186: 1167: 1161: 1158: 1154: 1128: 1125: 1122: 1116: 1113: 1109: 1099: 1095: 1081: 1061: 1053: 1039: 1031: 1028: 1026: 1007: 1004: 999: 995: 989: 985: 981: 974: 970: 964: 960: 956: 950: 947: 938: 924: 921: 916: 911: 908: 905: 880: 877: 874: 871: 868: 865: 854: 849: 846: 843: 832: 829: 824: 820: 814: 810: 806: 800: 795: 790: 786: 777: 763: 760: 755: 750: 747: 744: 719: 716: 713: 710: 707: 699: 695: 689: 685: 679: 675: 671: 668: 663: 658: 654: 645: 629: 624: 621: 618: 613: 608: 604: 580: 567: 562: 548: 545: 540: 535: 532: 529: 524: 519: 514: 511: 508: 486: 477: 462: 459: 454: 450: 446: 443: 438: 435: 430: 426: 422: 419: 414: 409: 405: 396: 381: 378: 373: 369: 365: 362: 357: 354: 349: 345: 341: 338: 333: 328: 324: 315: 299: 296: 291: 287: 264: 261: 256: 252: 244: 241:described by 240: 231: 224: 222: 220: 216: 212: 208: 205: 201: 197: 183: 179: 175: 167: 163: 159: 155: 138: 116: 110: 106: 98: 94: 88: 86: 82: 78: 73: 64: 60: 58: 53: 49: 44: 37: 35: 33: 29: 25: 21: 1957: 1953: 1947: 1904: 1900: 1890: 1863: 1859: 1849: 1806: 1802: 1796: 1763: 1759: 1753: 1728: 1724: 1688: 1684: 1650: 1646: 1637: 1604: 1600: 1539: 1535: 1508: 1504: 1500: 1460: 1456: 1452: 1450: 1439: 1437: 1426: 1422: 1420: 1414: 1411: 1395: 1361: 1350: 1318: 1187: 1100: 1096: 1054: 1032: 1029: 939: 778: 646: 563: 478: 397: 316: 236: 206: 198: 89: 84: 80: 69: 41: 38:Introduction 19: 18: 1907:(1): 3049. 1434:Experiments 162:NOON states 1967:1802.04314 1549:2004.12469 1514:References 1094:is large. 1025:visibility 97:shot-noise 1816:0911.5714 1574:216553469 1288:α 1250:≈ 948:ν 909:α 881:ϕ 878:⁡ 872:ν 847:α 748:α 720:ϕ 717:⁡ 622:α 584:⟩ 581:α 525:− 243:operators 215:nonlinear 85:reference 2014:Category 2000:25337227 1992:29328316 1939:24476950 1788:23909323 1301:>> 922:>> 761:>> 131:, where 1972:Bibcode 1930:3916837 1909:Bibcode 1868:Bibcode 1841:4980455 1821:Bibcode 1768:Bibcode 1733:Bibcode 1693:Bibcode 1655:Bibcode 1629:9897145 1609:Bibcode 1554:Bibcode 1023:is the 200:SU(1,1) 1998:  1990:  1937:  1927:  1839:  1786:  1627:  1572:  1461:et al. 1457:et al. 1453:et al. 1440:et al. 1427:et al. 1423:et al. 1415:et al. 940:where 568:input 564:For a 479:where 225:Theory 207:et al. 156:(e.g. 1996:S2CID 1962:arXiv 1837:S2CID 1811:arXiv 1570:S2CID 1544:arXiv 1275:(for 896:(for 735:(for 204:Yurke 93:SU(2) 81:probe 1988:PMID 1935:PMID 1784:PMID 1625:PMID 57:LIGO 1980:doi 1925:PMC 1917:doi 1876:doi 1829:doi 1776:doi 1764:111 1741:doi 1701:doi 1663:doi 1617:doi 1562:doi 875:cos 714:cos 561:. 59:). 2016:: 1994:. 1986:. 1978:. 1970:. 1958:26 1956:. 1933:. 1923:. 1915:. 1903:. 1899:. 1874:. 1864:99 1862:. 1858:. 1835:. 1827:. 1819:. 1807:12 1805:. 1782:. 1774:. 1762:. 1739:. 1729:86 1727:. 1713:^ 1699:. 1689:85 1687:. 1675:^ 1661:. 1649:. 1623:. 1615:. 1605:33 1603:. 1582:^ 1568:. 1560:. 1552:. 1538:. 1522:^ 1316:) 1062:2. 1040:1. 1027:. 937:) 776:) 160:, 34:. 2002:. 1982:: 1974:: 1964:: 1941:. 1919:: 1911:: 1905:5 1884:. 1878:: 1870:: 1843:. 1831:: 1823:: 1813:: 1790:. 1778:: 1770:: 1747:. 1743:: 1735:: 1707:. 1703:: 1695:: 1669:. 1665:: 1657:: 1651:8 1631:. 1619:: 1611:: 1576:. 1564:: 1556:: 1546:: 1540:5 1479:2 1475:G 1471:2 1378:2 1374:G 1370:2 1335:2 1331:G 1327:2 1304:1 1296:2 1291:| 1285:| 1261:2 1257:G 1253:2 1245:) 1242:2 1239:( 1236:U 1233:S 1229:R 1224:/ 1218:) 1215:1 1212:, 1209:1 1206:( 1203:U 1200:S 1196:R 1171:) 1168:2 1165:( 1162:U 1159:S 1155:R 1132:) 1129:1 1126:, 1123:1 1120:( 1117:U 1114:S 1110:R 1082:G 1008:1 1005:+ 1000:2 996:g 990:2 986:G 982:2 975:2 971:g 965:2 961:G 957:2 951:= 925:1 917:2 912:| 906:| 884:) 869:+ 866:1 863:( 860:) 855:2 850:| 844:| 839:( 836:) 833:1 830:+ 825:2 821:g 815:2 811:G 807:2 804:( 801:= 796:o 791:2 787:I 764:1 756:2 751:| 745:| 723:) 711:+ 708:1 705:( 700:0 696:I 690:2 686:g 680:2 676:G 672:2 669:= 664:o 659:1 655:I 630:2 625:| 619:| 614:= 609:0 605:I 577:| 549:1 546:= 541:2 536:| 533:g 530:| 520:2 515:| 512:G 509:| 487:G 463:n 460:i 455:2 451:a 447:G 444:+ 439:n 436:i 431:1 427:a 423:g 420:= 415:o 410:2 406:a 382:n 379:i 374:2 370:a 366:g 363:+ 358:n 355:i 350:1 346:a 342:G 339:= 334:o 329:1 325:a 300:n 297:i 292:2 288:a 279:, 265:n 262:i 257:1 253:a 184:N 180:/ 176:1 139:N 117:N 111:/ 107:1

Index

parametric amplification
Heisenberg limit
conventional interferometric techniques
Interferometry
electromagnetic waves
quantum metrology
LIGO

classical interference
Mach-Zehnder interferometer
SU(2)
shot-noise
quantum entanglement
squeezed states
NOON states
Heisenberg limit
SU(1,1)
Yurke
optical parametric amplifiers
nonlinear
four-wave mixing

quantum fields
operators
coherent state
visibility
quantum entanglement
quantum interference

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑