Knowledge (XXG)

Salem–Spencer set

Source 📝

1149:. If the digits of each number are thought of as coordinates of a vector, this constraint describes a sphere in the resulting vector space, and by convexity the average of two distinct values on this sphere will be interior to the sphere rather than on it. Therefore, if two elements of Behrend's set are the endpoints of an arithmetic progression, the middle value of the progression (their average) will not be in the set. Thus, the resulting set is progression-free. 31: 1526: 1519: 1512: 1505: 1498: 1492: 1196:
proved that there is a single infinite Salem–Spencer sequence achieving the same asymptotic density on every prefix as Behrend's construction. By considering the convex hull of points inside a sphere, rather than the set of points on a sphere, it is possible to improve the construction by a factor of
1702:
chessboard so that all squares of the board are attacked. The set of diagonal squares that remain unoccupied must form a Salem–Spencer set, in which all values have the same parity (all odd or all even). The smallest possible set of queens is the complement of the largest Salem–Spencer subset of the
620:. Therefore, although the sets constructed by Salem, Spencer, and Behrend have sizes that are nearly linear, it is not possible to improve them and find sets whose size is actually linear. This result became a special case of 58:. They have also been called non-averaging sets, but this term has also been used to denote a set of integers none of which can be obtained as the average of any subset of the other numbers. Salem-Spencer sets are named after 717: 787: 409: 558: 885: 2557: 1782: 1225: 618: 1736: 1396:
and problem-specific heuristics to bound the size that can be achieved in any branch of the search tree. One heuristic that they found to be particularly effective was the
1340: 474: 34:
For the set {1, 2, 4, 5, 10, 11, 13, 14}, all midpoints of two elements (the 28 yellow points) land outside the set, so no three elements can form an arithmetic progression
813: 500: 114: 957: 923: 1700: 1625:
Five queens on the main diagonal of a chessboard, attacking all other squares. The vacant squares on the diagonal are in rows 1, 3, and 7, an all-odd Salem–Spencer set.
1366: 2228: 2169: 2053: 1081: 1127: 292: 1441: 1418: 1386: 1297: 1273: 1253: 1190: 1170: 1147: 1101: 1049: 1029: 1009: 989: 433: 339: 319: 194: 174: 154: 134: 1011:
are the first and second members of an arithmetic progression, the third member must have the digit two at the position of the least significant digit where
568: 296: 2484: 2305: 2123: 1990: 268: 239: 207: 1051:
differ. The illustration shows a set of this form, for the three-digit ternary numbers (shifted by one to make the smallest element 1 instead of 0).
1877: 2605: 1129:(so that addition of these numbers has no carries), with the extra constraint that the sum of the squares of the digits is some chosen value 1650: 1738:. This Salem-Spencer subset can be found by doubling and subtracting one from the values in a Salem–Spencer subset of all the numbers in 3069:
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019
1642: 1658: 816: 624:
on the density of sets of integers that avoid longer arithmetic progressions. To distinguish Roth's bound on Salem–Spencer sets from
2383: 887:
was found by computers scientist Kelley and Meka and shortly after an exposition in more familiar mathematical terms was given by
643: 2008:; Lev, V.; Rauzy, G.; Sándor, C.; Sárközy, A. (1999), "Greedy algorithm, arithmetic progressions, subset sums and divisibility", 2983:
Theory of Cryptography: 9th Theory of Cryptography Conference, TCC 2012, Taormina, Sicily, Italy, March 19–21, 2012, Proceedings
2643: 3165: 3109: 2941: 2731:
Bloom, Thomas F.; Sisask, Olof (2023-09-05). "An improvement to the Kelley-Meka bounds on three-term arithmetic progressions".
1808: 722: 1631: 2010: 2710:
Bloom, Thomas F.; Sisask, Olof (2023-02-14). "The Kelley--Meka bounds for sets free of three-term arithmetic progressions".
2757: 2425: 2344: 1673: 967:
A simple construction for a Salem–Spencer set (of size considerably smaller than Behrend's bound) is to choose the
2803: 1641:
Salem–Spencer sets have also been used in theoretical computer science. They have been used in the design of the
640:. After several additional improvements to Roth's theorem, the size of a Salem–Spencer set has been proven to be 629: 435:, so the sets found by Salem and Spencer have a size that is nearly linear. This bound disproved a conjecture of 344: 1307:
Gasarch, Glenn, and Kruskal have performed a comparison of different computational methods for large subsets of
621: 288: 2869:(1961), "XXIV: Sets of integers containing not more than a given number of terms in arithmetical progression", 1669: 509: 39: 3150: 822: 2558:"To cheer you up in difficult times 7: Bloom and Sisask just broke the logarithm barrier for Roth's theorem!" 971:
that use only the digits 0 and 1, not 2. Such a set must be progression-free, because if two of its elements
2866: 3063:; Hermelin, Danny; Shabtay, Dvir (2019), "SETH-based lower bounds for subset sum and bicriteria path", in 2914:, Colloq. Math. Soc. János Bolyai, vol. 18, Amsterdam and New York: North-Holland, pp. 939–945, 1342:
with no arithmetic progression. Using these methods they found the exact size of the largest such set for
968: 47: 1941: 2430: 1646: 251: 1741: 1200: 574: 2178: 2062: 1635: 66:, who showed in 1942 that Salem–Spencer sets can have nearly-linear size. However a later theorem of 2254:
Bloom, Thomas; Sisask, Olaf (2019), "Logarithmic bounds for Roth's theorem via almost-periodicity",
2815: 2811: 1706: 1310: 446: 792: 479: 81: 3090: 3072: 3042: 3016: 3007: 2886: 2849: 2823: 2766: 2732: 2711: 2674: 2622: 2583: 2541: 2519: 2493: 2482:
Bloom, T. F. (2016), "A quantitative improvement for Roth's theorem on arithmetic progressions",
2465: 2439: 2408: 2283: 2265: 2167:(December 1946), "On sets of integers which contain no three terms in arithmetical progression", 2051:(December 1942), "On Sets of Integers Which Contain No Three Terms in Arithmetical Progression", 1835: 1662: 1393: 928: 2907: 2580:
2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)-Conference Proceedings
2339: 1192:
as the most frequently-occurring sum of squares of digits, Behrend achieves his bound. In 1953,
894: 1911:
Abbott, H. L. (1976), "On a conjecture of Erdős and Straus on non-averaging sets of integers",
1679: 1345: 2692: 2601: 2300: 2256: 2206: 2090: 2048: 625: 63: 3118: 3082: 3026: 2986: 2979:"Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments" 2950: 2878: 2871:
Proceedings of the Royal Society of Edinburgh, Section A: Mathematical and Physical Sciences
2833: 2820:
Additive number theory: Festschrift in honor of the sixtieth birthday of Melvyn B. Nathanson
2776: 2684: 2593: 2503: 2449: 2392: 2353: 2314: 2275: 2196: 2186: 2132: 2080: 2070: 2044: 2019: 1953: 1886: 1817: 1389: 633: 226: 225:
This example is shifted by adding one to the elements of an infinite Salem–Spencer set, the
59: 3130: 3038: 2964: 2919: 2845: 2790: 2515: 2461: 2404: 2365: 2326: 2241: 2144: 2031: 1967: 1920: 1898: 1831: 3126: 3064: 3034: 2960: 2936: 2932: 2915: 2841: 2786: 2511: 2457: 2400: 2361: 2322: 2237: 2140: 2027: 1963: 1916: 1915:, Congressus Numerantium, vol. XV, Winnipeg, Manitoba: Utilitas Math., pp. 1–4, 1913:
Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975)
1894: 1857: 1827: 1057: 2111: 1106: 440: 3107:
Cockayne, E. J.; Hedetniemi, S. T. (1986), "On the diagonal queens domination problem",
2182: 2066: 1423: 3060: 2201: 2085: 1403: 1371: 1282: 1258: 1238: 1175: 1155: 1132: 1086: 1034: 1014: 994: 974: 418: 412: 324: 304: 276: 255: 247: 179: 159: 139: 119: 2955: 2023: 3159: 3122: 3046: 2903: 2890: 2378: 2287: 2164: 2107: 2005: 1861: 1839: 1654: 503: 436: 254:
first infinite Salem–Spencer set. Another infinite Salem–Spencer set is given by the
3094: 2853: 2523: 2469: 888: 2412: 1865: 30: 3005:
Abboud, Amir; Bodwin, Greg (2017), "The 4/3 additive spanner exponent is tight",
2991: 2985:, Lecture Notes in Computer Science, vol. 7194, Springer, pp. 169–189, 2597: 2575: 2453: 301:
In 1942, Salem and Spencer published a proof that the integers in the range from
17: 2837: 1980: 1083:. His set consists of the numbers whose digits are restricted to the range from 891:
and Sisask who have since also improved the exponent of the Kelly-Meka bound to
2318: 2136: 1890: 293:
Erdős conjecture on arithmetic progressions § Progress and related results
3086: 2882: 2807: 2781: 2621:
Kelley, Zander; Meka, Raghu (2023-02-10). "Strong Bounds for 3-Progressions".
2223: 2115: 564: 67: 2696: 2538:
Breaking the logarithmic barrier in Roth's theorem on arithmetic progressions
3146: 2755:
Elkin, Michael (2011), "An improved construction of progression-free sets",
2663:"The Kelley–Meka bounds for sets free of three-term arithmetic progressions" 2553: 1803: 1193: 2210: 2191: 2094: 2075: 1822: 1275:
elements form an arithmetic progression if and only if they are all equal.
2688: 2507: 2396: 2662: 1227:. However, this does not affect the size bound in the form stated above. 232:
0, 1, 3, 4, 9, 10, 12, 13, 27, 28, 30, 31, 36, 37, 39, 40, ... (sequence
2912:
Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. II
2357: 1634:, Salem–Spencer sets have been used to construct dense graphs in which 1235:
The notion of Salem–Spencer sets (3-AP-free set) can be generalized to
2910:(1978), "Triple systems with no six points carrying three triangles", 2810:(2010), "A note on Elkin's improvement of Behrend's construction", in 819:
computed) was announced in 2020 in a preprint. In 2023 a new bound of
2279: 2270: 3030: 1368:. Their results include several new bounds for different values of 3077: 3021: 2737: 2716: 2679: 2627: 2588: 2546: 1054:
Behrend's construction uses a similar idea, for a larger odd radix
3071:, Society for Industrial and Applied Mathematics, pp. 41–57, 2978: 2828: 2771: 2498: 2444: 1958: 29: 297:
Roth's theorem on arithmetic progressions § Improving Bounds
200:
1, 2, 4, 5, 9, 11, 13, 14, 20, 24, 26, 30, 32, 36, ... (sequence
1676:
of placing as few queens as possible on the main diagonal of an
214:
For instance, among the numbers from 1 to 14, the eight numbers
2342:(1990), "Integer sets containing no arithmetic progressions", 2303:(1987), "Integer sets containing no arithmetic progressions", 1653:. Recently, they have been used to show size lower bounds for 261:
0, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, ... (sequence
2939:(1990), "Matrix multiplication via arithmetic progressions", 712:{\displaystyle O{\bigl (}n(\log \log n)^{4}/\log n{\bigr )}} 1984: 263: 234: 202: 571:
establishing that the size of a Salem-Spencer set must be
1400:, in which two shifted copies of a Salem–Spencer set for 782:{\displaystyle O{\bigl (}n/(\log n)^{1+\delta }{\bigr )}} 1942:"Sequences containing no 3-term arithmetic progressions" 502:. The construction of Salem and Spencer was improved by 2644:"Surprise Computer Science Proof Stuns Mathematicians" 1744: 1709: 1682: 1426: 1420:
are placed in the first and last thirds of a set for
1406: 1374: 1348: 1313: 1285: 1261: 1241: 1203: 1178: 1158: 1135: 1109: 1089: 1060: 1037: 1017: 997: 977: 931: 897: 825: 795: 725: 646: 577: 512: 482: 449: 421: 347: 327: 307: 182: 162: 142: 122: 84: 250:, use only the digits 0 and 1. This sequence is the 279:that no three cubes are in arithmetic progression. 1776: 1730: 1694: 1435: 1412: 1380: 1360: 1334: 1291: 1267: 1247: 1219: 1184: 1164: 1141: 1121: 1095: 1075: 1043: 1023: 1003: 983: 951: 917: 879: 807: 781: 711: 612: 552: 494: 468: 427: 403: 333: 313: 188: 168: 148: 128: 108: 2381:(1999), "On triples in arithmetic progression", 1452: 70:shows that the size is always less than linear. 2170:Proceedings of the National Academy of Sciences 2054:Proceedings of the National Academy of Sciences 289:Szemerédi's theorem § Quantitative bounds 46:is a set of numbers no three of which form an 2661:Bloom, Thomas F.; Sisask, Olof (2023-12-31). 2428:(2011), "On Roth's theorem on progressions", 1806:(1953), "On non-averaging sets of integers", 774: 731: 704: 652: 443:that the size of such a set could be at most 8: 2226:(1952), "Sur quelques ensembles d'entiers", 1768: 1745: 1725: 1710: 1329: 1314: 404:{\displaystyle n/e^{O(\log n/\log \log n)}} 222:form the unique largest Salem-Spencer set. 2574:Kelley, Zander; Meka, Raghu (2023-11-06). 2485:Journal of the London Mathematical Society 2306:Journal of the London Mathematical Society 2124:Journal of the London Mathematical Society 415:, and grows more slowly than any power of 411:. The denominator of this expression uses 3076: 3020: 2990: 2954: 2827: 2780: 2770: 2736: 2715: 2678: 2626: 2587: 2545: 2497: 2443: 2269: 2229:Comptes rendus de l'Académie des Sciences 2200: 2190: 2084: 2074: 1991:On-Line Encyclopedia of Integer Sequences 1957: 1866:"Finding large 3-free sets. I. The small 1821: 1760: 1743: 1708: 1681: 1425: 1405: 1373: 1347: 1312: 1284: 1260: 1240: 1204: 1202: 1177: 1157: 1134: 1108: 1088: 1059: 1036: 1016: 996: 976: 941: 930: 907: 896: 861: 857: 824: 794: 773: 772: 760: 739: 730: 729: 724: 703: 702: 688: 682: 651: 650: 645: 638:Roth's theorem on arithmetic progressions 587: 576: 553:{\displaystyle n/e^{O({\sqrt {\log n}})}} 532: 525: 516: 511: 481: 454: 448: 420: 376: 360: 351: 346: 326: 306: 181: 161: 141: 121: 83: 2822:, New York: Springer, pp. 141–144, 880:{\displaystyle \exp(-c(\log N)^{1/12})N} 1878:Journal of Computer and System Sciences 1792: 1649:, and in the construction of efficient 341:have large Salem–Spencer sets, of size 2750: 2748: 1636:each edge belongs to a unique triangle 1525: 1518: 1511: 1504: 1497: 1276: 2159: 2157: 2155: 2153: 1935: 1933: 1931: 1929: 1852: 1850: 1848: 1798: 1796: 1651:non-interactive zero-knowledge proofs 1488: 50:. Salem–Spencer sets are also called 38:In mathematics, and in particular in 7: 2536:Bloom, Thomas; Sisask, Olaf (2020), 1946:Electronic Journal of Combinatorics 246:of numbers that, when written as a 2576:"Strong Bounds for 3-Progressions" 1668:These sets can also be applied in 1659:strong exponential time hypothesis 25: 2384:Geometric and Functional Analysis 1777:{\displaystyle \{1,\dots n/2\}.} 1524: 1517: 1510: 1503: 1496: 1490: 1220:{\displaystyle {\sqrt {\log n}}} 613:{\displaystyle O(n/\log \log n)} 506:in 1946, who found sets of size 3110:Journal of Combinatorial Theory 2942:Journal of Symbolic Computation 2116:"On some sequences of integers" 1809:Canadian Journal of Mathematics 196:-element Salem-Spencer set are 27:Progression-free set of numbers 1643:Coppersmith–Winograd algorithm 871: 854: 841: 832: 757: 744: 679: 660: 636:, this result has been called 607: 581: 545: 529: 396: 364: 1: 2956:10.1016/S0747-7171(08)80013-2 2758:Israel Journal of Mathematics 2024:10.1016/S0012-365X(98)00385-9 1731:{\displaystyle \{1,\dots n\}} 1335:{\displaystyle \{1,\dots n\}} 469:{\displaystyle n^{1-\delta }} 3123:10.1016/0097-3165(86)90012-9 2992:10.1007/978-3-642-28914-9_10 2642:Sloman, Leila (2023-03-21). 2598:10.1109/FOCS57990.2023.00059 2454:10.4007/annals.2011.174.1.20 1940:Dybizbański, Janusz (2012), 1279:gave constructions of large 808:{\displaystyle \delta >0} 495:{\displaystyle \delta >0} 218:{1, 2, 4, 5, 10, 11, 13, 14} 109:{\displaystyle k=1,2,\dots } 2981:, in Cramer, Ronald (ed.), 2838:10.1007/978-0-387-68361-4_9 952:{\displaystyle \beta =5/41} 136:such that the numbers from 3182: 2345:Acta Mathematica Hungarica 1981:Sloane, N. J. A. 1891:10.1016/j.jcss.2007.06.002 1674:mathematical chess problem 918:{\displaystyle \beta =1/9} 719:. An even better bound of 286: 3087:10.1137/1.9781611975482.3 2883:10.1017/S0080454100017726 2782:10.1007/s11856-011-0061-1 1695:{\displaystyle n\times n} 1361:{\displaystyle n\leq 187} 1152:With a careful choice of 630:Diophantine approximation 3147:Nonaveraging sets search 2319:10.1112/jlms/s2-35.3.385 2137:10.1112/jlms/s1-11.4.261 1670:recreational mathematics 1255:-AP-free sets, in which 40:arithmetic combinatorics 2977:Lipmaa, Helger (2012), 2667:Essential Number Theory 1985:"Sequence A005836" 1632:Ruzsa–Szemerédi problem 1630:In connection with the 116:the smallest values of 3166:Additive combinatorics 2562:Combinatorics and more 2192:10.1073/pnas.32.12.331 2076:10.1073/pnas.28.12.561 1823:10.4153/cjm-1953-027-0 1778: 1732: 1696: 1661:based hardness of the 1437: 1414: 1382: 1362: 1336: 1293: 1269: 1249: 1221: 1186: 1166: 1143: 1123: 1097: 1077: 1045: 1025: 1005: 985: 953: 919: 881: 809: 783: 713: 614: 554: 496: 470: 429: 405: 335: 315: 190: 170: 150: 130: 110: 48:arithmetic progression 35: 3151:University of Wrocław 2689:10.2140/ent.2023.2.15 2431:Annals of Mathematics 2397:10.1007/s000390050105 1779: 1733: 1697: 1647:matrix multiplication 1438: 1415: 1383: 1363: 1337: 1303:Computational results 1294: 1270: 1250: 1222: 1187: 1167: 1144: 1124: 1098: 1078: 1046: 1026: 1006: 986: 954: 920: 882: 810: 784: 714: 615: 555: 497: 471: 430: 406: 336: 316: 191: 171: 151: 131: 111: 56:progression-free sets 33: 3149:, Jarek Wroblewski, 2011:Discrete Mathematics 1742: 1707: 1680: 1424: 1404: 1392:algorithms that use 1372: 1346: 1311: 1283: 1259: 1239: 1201: 1176: 1156: 1133: 1107: 1087: 1076:{\displaystyle 2d-1} 1058: 1035: 1015: 995: 975: 929: 895: 823: 793: 723: 644: 575: 510: 480: 447: 419: 345: 325: 305: 180: 160: 140: 120: 82: 3015:(4): A28:1–A28:20, 2816:Chudnovsky, Gregory 2508:10.1112/jlms/jdw010 2183:1946PNAS...32..331B 2067:1942PNAS...28..561S 1122:{\displaystyle d-1} 622:Szemerédi's theorem 275:It is a theorem of 52:3-AP-free sequences 3008:Journal of the ACM 2358:10.1007/BF01903717 2301:Heath-Brown, D. R. 1952:(2): P15:1–P15:5, 1774: 1728: 1692: 1663:subset sum problem 1436:{\displaystyle 3n} 1433: 1410: 1394:linear programming 1378: 1358: 1332: 1289: 1265: 1245: 1217: 1182: 1172:, and a choice of 1162: 1139: 1119: 1093: 1073: 1041: 1021: 1001: 981: 949: 915: 877: 815:that has not been 805: 779: 709: 610: 550: 492: 466: 425: 401: 331: 311: 186: 166: 146: 126: 106: 36: 2812:Chudnovsky, David 2607:979-8-3503-1894-4 2582:. IEEE: 933–973. 2488:, Second Series, 2434:, Second Series, 2309:, Second Series, 2257:Discrete Analysis 1994:, OEIS Foundation 1862:Kruskal, Clyde P. 1623: 1622: 1413:{\displaystyle n} 1381:{\displaystyle n} 1292:{\displaystyle k} 1268:{\displaystyle k} 1248:{\displaystyle k} 1215: 1185:{\displaystyle k} 1165:{\displaystyle d} 1142:{\displaystyle k} 1096:{\displaystyle 0} 1044:{\displaystyle y} 1024:{\displaystyle x} 1004:{\displaystyle y} 984:{\displaystyle x} 959:) in a preprint. 925:(and conjectured 634:algebraic numbers 543: 428:{\displaystyle n} 334:{\displaystyle n} 314:{\displaystyle 1} 252:lexicographically 189:{\displaystyle k} 169:{\displaystyle n} 149:{\displaystyle 1} 129:{\displaystyle n} 64:Donald C. Spencer 44:Salem-Spencer set 18:Salem-Spencer set 16:(Redirected from 3173: 3134: 3133: 3104: 3098: 3097: 3080: 3065:Chan, Timothy M. 3056: 3050: 3049: 3024: 3002: 2996: 2995: 2994: 2974: 2968: 2967: 2958: 2937:Winograd, Shmuel 2933:Coppersmith, Don 2929: 2923: 2922: 2900: 2894: 2893: 2863: 2857: 2856: 2831: 2800: 2794: 2793: 2784: 2774: 2752: 2743: 2742: 2740: 2728: 2722: 2721: 2719: 2707: 2701: 2700: 2682: 2658: 2652: 2651: 2639: 2633: 2632: 2630: 2618: 2612: 2611: 2591: 2571: 2565: 2564: 2556:(July 8, 2020), 2550: 2549: 2533: 2527: 2526: 2501: 2479: 2473: 2472: 2447: 2422: 2416: 2415: 2375: 2369: 2368: 2352:(1–2): 155–158, 2336: 2330: 2329: 2297: 2291: 2290: 2280:10.19086/da.7884 2273: 2251: 2245: 2244: 2220: 2214: 2213: 2204: 2194: 2161: 2148: 2147: 2120: 2104: 2098: 2097: 2088: 2078: 2041: 2035: 2034: 2018:(1–3): 119–135, 2002: 1996: 1995: 1977: 1971: 1970: 1961: 1937: 1924: 1923: 1908: 1902: 1901: 1874: 1869: 1860:; Glenn, James; 1858:Gasarch, William 1854: 1843: 1842: 1825: 1800: 1783: 1781: 1780: 1775: 1764: 1737: 1735: 1734: 1729: 1701: 1699: 1698: 1693: 1528: 1527: 1521: 1520: 1514: 1513: 1507: 1506: 1500: 1499: 1494: 1493: 1453: 1442: 1440: 1439: 1434: 1419: 1417: 1416: 1411: 1390:branch-and-bound 1387: 1385: 1384: 1379: 1367: 1365: 1364: 1359: 1341: 1339: 1338: 1333: 1298: 1296: 1295: 1290: 1274: 1272: 1271: 1266: 1254: 1252: 1251: 1246: 1226: 1224: 1223: 1218: 1216: 1205: 1191: 1189: 1188: 1183: 1171: 1169: 1168: 1163: 1148: 1146: 1145: 1140: 1128: 1126: 1125: 1120: 1102: 1100: 1099: 1094: 1082: 1080: 1079: 1074: 1050: 1048: 1047: 1042: 1030: 1028: 1027: 1022: 1010: 1008: 1007: 1002: 990: 988: 987: 982: 958: 956: 955: 950: 945: 924: 922: 921: 916: 911: 886: 884: 883: 878: 870: 869: 865: 814: 812: 811: 806: 788: 786: 785: 780: 778: 777: 771: 770: 743: 735: 734: 718: 716: 715: 710: 708: 707: 692: 687: 686: 656: 655: 619: 617: 616: 611: 591: 559: 557: 556: 551: 549: 548: 544: 533: 520: 501: 499: 498: 493: 475: 473: 472: 467: 465: 464: 434: 432: 431: 426: 410: 408: 407: 402: 400: 399: 380: 355: 340: 338: 337: 332: 320: 318: 317: 312: 266: 237: 227:Stanley sequence 205: 195: 193: 192: 187: 175: 173: 172: 167: 155: 153: 152: 147: 135: 133: 132: 127: 115: 113: 112: 107: 21: 3181: 3180: 3176: 3175: 3174: 3172: 3171: 3170: 3156: 3155: 3143: 3138: 3137: 3106: 3105: 3101: 3061:Bringmann, Karl 3058: 3057: 3053: 3031:10.1145/3088511 3004: 3003: 2999: 2976: 2975: 2971: 2931: 2930: 2926: 2902: 2901: 2897: 2865: 2864: 2860: 2802: 2801: 2797: 2754: 2753: 2746: 2730: 2729: 2725: 2709: 2708: 2704: 2660: 2659: 2655: 2648:Quanta Magazine 2641: 2640: 2636: 2620: 2619: 2615: 2608: 2573: 2572: 2568: 2552: 2535: 2534: 2530: 2481: 2480: 2476: 2424: 2423: 2419: 2377: 2376: 2372: 2338: 2337: 2333: 2299: 2298: 2294: 2253: 2252: 2248: 2222: 2221: 2217: 2177:(12): 331–332, 2163: 2162: 2151: 2118: 2106: 2105: 2101: 2061:(12): 561–563, 2043: 2042: 2038: 2004: 2003: 1999: 1979: 1978: 1974: 1939: 1938: 1927: 1910: 1909: 1905: 1872: 1867: 1856: 1855: 1846: 1802: 1801: 1794: 1789: 1740: 1739: 1705: 1704: 1703:odd numbers in 1678: 1677: 1628: 1627: 1626: 1530: 1529: 1522: 1515: 1508: 1501: 1491: 1449: 1422: 1421: 1402: 1401: 1370: 1369: 1344: 1343: 1309: 1308: 1305: 1299:-AP-free sets. 1281: 1280: 1257: 1256: 1237: 1236: 1233: 1199: 1198: 1174: 1173: 1154: 1153: 1131: 1130: 1105: 1104: 1085: 1084: 1056: 1055: 1033: 1032: 1013: 1012: 993: 992: 973: 972: 969:ternary numbers 965: 927: 926: 893: 892: 853: 821: 820: 791: 790: 756: 721: 720: 678: 642: 641: 573: 572: 521: 508: 507: 478: 477: 450: 445: 444: 417: 416: 356: 343: 342: 323: 322: 303: 302: 299: 285: 262: 233: 201: 178: 177: 158: 157: 138: 137: 118: 117: 80: 79: 76: 28: 23: 22: 15: 12: 11: 5: 3179: 3177: 3169: 3168: 3158: 3157: 3154: 3153: 3142: 3141:External links 3139: 3136: 3135: 3117:(1): 137–139, 3099: 3059:Abboud, Amir; 3051: 2997: 2969: 2949:(3): 251–280, 2924: 2895: 2877:(4): 332–344, 2858: 2795: 2744: 2723: 2702: 2653: 2634: 2613: 2606: 2566: 2528: 2492:(3): 643–663, 2474: 2438:(1): 619–636, 2417: 2391:(5): 968–984, 2370: 2331: 2313:(3): 385–394, 2292: 2246: 2215: 2165:Behrend, F. A. 2149: 2131:(4): 261–264, 2099: 2049:Spencer, D. C. 2036: 1997: 1972: 1925: 1903: 1885:(4): 628–655, 1844: 1791: 1790: 1788: 1785: 1773: 1770: 1767: 1763: 1759: 1756: 1753: 1750: 1747: 1727: 1724: 1721: 1718: 1715: 1712: 1691: 1688: 1685: 1655:graph spanners 1624: 1621: 1620: 1618: 1615: 1612: 1609: 1606: 1603: 1600: 1597: 1594: 1591: 1590: 1587: 1583: 1582: 1579: 1575: 1574: 1571: 1567: 1566: 1563: 1559: 1558: 1555: 1551: 1550: 1547: 1543: 1542: 1539: 1535: 1534: 1531: 1523: 1516: 1509: 1502: 1495: 1489: 1487: 1483: 1482: 1480: 1477: 1474: 1471: 1468: 1465: 1462: 1459: 1456: 1451: 1450: 1448: 1445: 1432: 1429: 1409: 1377: 1357: 1354: 1351: 1331: 1328: 1325: 1322: 1319: 1316: 1304: 1301: 1288: 1264: 1244: 1232: 1231:Generalization 1229: 1214: 1211: 1208: 1181: 1161: 1138: 1118: 1115: 1112: 1092: 1072: 1069: 1066: 1063: 1040: 1020: 1000: 980: 964: 961: 948: 944: 940: 937: 934: 914: 910: 906: 903: 900: 876: 873: 868: 864: 860: 856: 852: 849: 846: 843: 840: 837: 834: 831: 828: 804: 801: 798: 776: 769: 766: 763: 759: 755: 752: 749: 746: 742: 738: 733: 728: 706: 701: 698: 695: 691: 685: 681: 677: 674: 671: 668: 665: 662: 659: 654: 649: 626:Roth's theorem 609: 606: 603: 600: 597: 594: 590: 586: 583: 580: 569:Roth's theorem 547: 542: 539: 536: 531: 528: 524: 519: 515: 491: 488: 485: 463: 460: 457: 453: 424: 413:big O notation 398: 395: 392: 389: 386: 383: 379: 375: 372: 369: 366: 363: 359: 354: 350: 330: 310: 284: 281: 277:Leonhard Euler 273: 272: 248:ternary number 244: 243: 220: 219: 212: 211: 185: 165: 145: 125: 105: 102: 99: 96: 93: 90: 87: 75: 72: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3178: 3167: 3164: 3163: 3161: 3152: 3148: 3145: 3144: 3140: 3132: 3128: 3124: 3120: 3116: 3112: 3111: 3103: 3100: 3096: 3092: 3088: 3084: 3079: 3074: 3070: 3066: 3062: 3055: 3052: 3048: 3044: 3040: 3036: 3032: 3028: 3023: 3018: 3014: 3010: 3009: 3001: 2998: 2993: 2988: 2984: 2980: 2973: 2970: 2966: 2962: 2957: 2952: 2948: 2944: 2943: 2938: 2934: 2928: 2925: 2921: 2917: 2913: 2909: 2908:Szemerédi, E. 2905: 2899: 2896: 2892: 2888: 2884: 2880: 2876: 2872: 2868: 2867:Rankin, R. A. 2862: 2859: 2855: 2851: 2847: 2843: 2839: 2835: 2830: 2825: 2821: 2817: 2813: 2809: 2805: 2799: 2796: 2792: 2788: 2783: 2778: 2773: 2768: 2764: 2760: 2759: 2751: 2749: 2745: 2739: 2734: 2727: 2724: 2718: 2713: 2706: 2703: 2698: 2694: 2690: 2686: 2681: 2676: 2672: 2668: 2664: 2657: 2654: 2649: 2645: 2638: 2635: 2629: 2624: 2617: 2614: 2609: 2603: 2599: 2595: 2590: 2585: 2581: 2577: 2570: 2567: 2563: 2559: 2555: 2548: 2543: 2539: 2532: 2529: 2525: 2521: 2517: 2513: 2509: 2505: 2500: 2495: 2491: 2487: 2486: 2478: 2475: 2471: 2467: 2463: 2459: 2455: 2451: 2446: 2441: 2437: 2433: 2432: 2427: 2421: 2418: 2414: 2410: 2406: 2402: 2398: 2394: 2390: 2386: 2385: 2380: 2374: 2371: 2367: 2363: 2359: 2355: 2351: 2347: 2346: 2341: 2340:Szemerédi, E. 2335: 2332: 2328: 2324: 2320: 2316: 2312: 2308: 2307: 2302: 2296: 2293: 2289: 2285: 2281: 2277: 2272: 2267: 2263: 2259: 2258: 2250: 2247: 2243: 2239: 2235: 2231: 2230: 2225: 2219: 2216: 2212: 2208: 2203: 2198: 2193: 2188: 2184: 2180: 2176: 2172: 2171: 2166: 2160: 2158: 2156: 2154: 2150: 2146: 2142: 2138: 2134: 2130: 2126: 2125: 2117: 2113: 2109: 2103: 2100: 2096: 2092: 2087: 2082: 2077: 2072: 2068: 2064: 2060: 2056: 2055: 2050: 2046: 2040: 2037: 2033: 2029: 2025: 2021: 2017: 2013: 2012: 2007: 2001: 1998: 1993: 1992: 1986: 1982: 1976: 1973: 1969: 1965: 1960: 1959:10.37236/2061 1955: 1951: 1947: 1943: 1936: 1934: 1932: 1930: 1926: 1922: 1918: 1914: 1907: 1904: 1900: 1896: 1892: 1888: 1884: 1880: 1879: 1871: 1863: 1859: 1853: 1851: 1849: 1845: 1841: 1837: 1833: 1829: 1824: 1819: 1815: 1811: 1810: 1805: 1799: 1797: 1793: 1786: 1784: 1771: 1765: 1761: 1757: 1754: 1751: 1748: 1722: 1719: 1716: 1713: 1689: 1686: 1683: 1675: 1671: 1666: 1664: 1660: 1656: 1652: 1648: 1644: 1639: 1637: 1633: 1619: 1616: 1613: 1610: 1607: 1604: 1601: 1598: 1595: 1593: 1592: 1588: 1585: 1584: 1580: 1577: 1576: 1572: 1569: 1568: 1564: 1561: 1560: 1556: 1553: 1552: 1548: 1545: 1544: 1540: 1537: 1536: 1532: 1485: 1484: 1481: 1478: 1475: 1472: 1469: 1466: 1463: 1460: 1457: 1455: 1454: 1446: 1444: 1430: 1427: 1407: 1399: 1398:thirds method 1395: 1391: 1375: 1355: 1352: 1349: 1326: 1323: 1320: 1317: 1302: 1300: 1286: 1278: 1277:Rankin (1961) 1262: 1242: 1230: 1228: 1212: 1209: 1206: 1195: 1179: 1159: 1150: 1136: 1116: 1113: 1110: 1090: 1070: 1067: 1064: 1061: 1052: 1038: 1018: 998: 978: 970: 962: 960: 946: 942: 938: 935: 932: 912: 908: 904: 901: 898: 890: 874: 866: 862: 858: 850: 847: 844: 838: 835: 829: 826: 818: 802: 799: 796: 767: 764: 761: 753: 750: 747: 740: 736: 726: 699: 696: 693: 689: 683: 675: 672: 669: 666: 663: 657: 647: 639: 635: 631: 627: 623: 604: 601: 598: 595: 592: 588: 584: 578: 570: 566: 561: 540: 537: 534: 526: 522: 517: 513: 505: 504:Felix Behrend 489: 486: 483: 461: 458: 455: 451: 442: 438: 422: 414: 393: 390: 387: 384: 381: 377: 373: 370: 367: 361: 357: 352: 348: 328: 308: 298: 294: 290: 282: 280: 278: 270: 265: 260: 259: 258: 257: 253: 249: 241: 236: 231: 230: 229: 228: 223: 217: 216: 215: 209: 204: 199: 198: 197: 183: 163: 143: 123: 103: 100: 97: 94: 91: 88: 85: 73: 71: 69: 65: 61: 60:Raphaël Salem 57: 53: 49: 45: 41: 32: 19: 3114: 3113:, Series A, 3108: 3102: 3068: 3054: 3012: 3006: 3000: 2982: 2972: 2946: 2940: 2927: 2911: 2904:Ruzsa, I. Z. 2898: 2874: 2870: 2861: 2819: 2798: 2762: 2756: 2726: 2705: 2673:(1): 15–44. 2670: 2666: 2656: 2647: 2637: 2616: 2579: 2569: 2561: 2537: 2531: 2489: 2483: 2477: 2435: 2429: 2426:Sanders, Tom 2420: 2388: 2382: 2379:Bourgain, J. 2373: 2349: 2343: 2334: 2310: 2304: 2295: 2271:1810.12791v2 2261: 2255: 2249: 2233: 2227: 2218: 2174: 2168: 2128: 2122: 2102: 2058: 2052: 2039: 2015: 2009: 2000: 1988: 1975: 1949: 1945: 1912: 1906: 1882: 1876: 1813: 1807: 1667: 1640: 1629: 1447:Applications 1397: 1306: 1234: 1151: 1053: 966: 963:Construction 637: 562: 300: 274: 245: 224: 221: 213: 77: 55: 51: 43: 37: 2808:Wolf, Julia 2551:; see also 2236:: 388–390, 2224:Roth, Klaus 2112:Turán, Paul 2108:Erdős, Paul 1816:: 245–252, 1388:, found by 3078:1704.04546 3022:1511.00700 2804:Green, Ben 2765:: 93–128, 2738:2309.02353 2717:2302.07211 2680:2302.07211 2628:2302.05537 2589:2302.05537 2554:Kalai, Gil 2547:2007.03528 1804:Moser, Leo 1787:References 1657:, and the 817:explicitly 789:(for some 565:Klaus Roth 437:Paul Erdős 287:See also: 68:Klaus Roth 3047:209870748 2891:122037820 2829:0810.0732 2772:0801.4310 2697:2834-4634 2499:1405.5800 2445:1011.0104 2288:119583263 2045:Salem, R. 2006:Erdős, P. 1840:124488483 1755:… 1720:… 1687:× 1645:for fast 1353:≤ 1324:… 1210:⁡ 1194:Leo Moser 1114:− 1068:− 933:β 899:β 848:⁡ 836:− 830:⁡ 797:δ 768:δ 751:⁡ 697:⁡ 673:⁡ 667:⁡ 602:⁡ 596:⁡ 563:In 1952, 538:⁡ 484:δ 476:for some 462:δ 459:− 441:Pál Turán 391:⁡ 385:⁡ 371:⁡ 104:… 3160:Category 3095:15802062 2854:10475217 2818:(eds.), 2524:27536138 2470:53331882 2211:16578230 2114:(1936), 2095:16588588 1864:(2008), 74:Examples 3131:0843468 3067:(ed.), 3039:3702458 2965:1056627 2920:0519318 2846:2744752 2791:2823971 2516:3509957 2462:2811612 2405:1726234 2366:1100788 2327:0889362 2242:0046374 2202:1078964 2179:Bibcode 2145:1574918 2086:1078539 2063:Bibcode 2032:1692285 1983:(ed.), 1968:2928630 1921:0406967 1899:2417032 1832:0053140 567:proved 267:in the 264:A000578 238:in the 235:A005836 206:in the 203:A065825 176:have a 3129:  3093:  3045:  3037:  2963:  2918:  2889:  2852:  2844:  2789:  2695:  2604:  2522:  2514:  2468:  2460:  2413:392820 2411:  2403:  2364:  2325:  2286:  2240:  2209:  2199:  2143:  2093:  2083:  2030:  1966:  1919:  1897:  1838:  1830:  295:, and 3091:S2CID 3073:arXiv 3043:S2CID 3017:arXiv 2887:S2CID 2850:S2CID 2824:arXiv 2767:arXiv 2733:arXiv 2712:arXiv 2675:arXiv 2623:arXiv 2584:arXiv 2542:arXiv 2520:S2CID 2494:arXiv 2466:S2CID 2440:arXiv 2409:S2CID 2284:S2CID 2266:arXiv 2264:(4), 2119:(PDF) 1873:(PDF) 1870:case" 1836:S2CID 1672:to a 889:Bloom 256:cubes 2693:ISSN 2602:ISBN 2262:2019 2207:PMID 2091:PMID 1989:The 1031:and 991:and 800:> 487:> 439:and 283:Size 269:OEIS 240:OEIS 208:OEIS 78:For 62:and 42:, a 3119:doi 3083:doi 3027:doi 2987:doi 2951:doi 2879:doi 2834:doi 2777:doi 2763:184 2685:doi 2594:doi 2504:doi 2450:doi 2436:174 2393:doi 2354:doi 2315:doi 2276:doi 2234:234 2197:PMC 2187:doi 2133:doi 2081:PMC 2071:doi 2020:doi 2016:200 1954:doi 1887:doi 1818:doi 1638:. 1356:187 1207:log 1103:to 845:log 827:exp 748:log 694:log 670:log 664:log 632:of 628:on 599:log 593:log 535:log 388:log 382:log 368:log 321:to 156:to 54:or 3162:: 3127:MR 3125:, 3115:42 3089:, 3081:, 3041:, 3035:MR 3033:, 3025:, 3013:64 3011:, 2961:MR 2959:, 2945:, 2935:; 2916:MR 2906:; 2885:, 2875:65 2873:, 2848:, 2842:MR 2840:, 2832:, 2814:; 2806:; 2787:MR 2785:, 2775:, 2761:, 2747:^ 2691:. 2683:. 2669:. 2665:. 2646:. 2600:. 2592:. 2578:. 2560:, 2540:, 2518:, 2512:MR 2510:, 2502:, 2490:93 2464:, 2458:MR 2456:, 2448:, 2407:, 2401:MR 2399:, 2387:, 2362:MR 2360:, 2350:56 2348:, 2323:MR 2321:, 2311:35 2282:, 2274:, 2260:, 2238:MR 2232:, 2205:, 2195:, 2185:, 2175:32 2173:, 2152:^ 2141:MR 2139:, 2129:11 2127:, 2121:, 2110:; 2089:, 2079:, 2069:, 2059:28 2057:, 2047:; 2028:MR 2026:, 2014:, 1987:, 1964:MR 1962:, 1950:19 1948:, 1944:, 1928:^ 1917:MR 1895:MR 1893:, 1883:74 1881:, 1875:, 1847:^ 1834:, 1828:MR 1826:, 1812:, 1795:^ 1665:. 1443:. 947:41 867:12 560:. 291:, 3121:: 3085:: 3075:: 3029:: 3019:: 2989:: 2953:: 2947:9 2881:: 2836:: 2826:: 2779:: 2769:: 2741:. 2735:: 2720:. 2714:: 2699:. 2687:: 2677:: 2671:2 2650:. 2631:. 2625:: 2610:. 2596:: 2586:: 2544:: 2506:: 2496:: 2452:: 2442:: 2395:: 2389:9 2356:: 2317:: 2278:: 2268:: 2189:: 2181:: 2135:: 2073:: 2065:: 2022:: 1956:: 1889:: 1868:n 1820:: 1814:5 1772:. 1769:} 1766:2 1762:/ 1758:n 1752:, 1749:1 1746:{ 1726:} 1723:n 1717:, 1714:1 1711:{ 1690:n 1684:n 1617:h 1614:g 1611:f 1608:e 1605:d 1602:c 1599:b 1596:a 1589:1 1586:1 1581:2 1578:2 1573:3 1570:3 1565:4 1562:4 1557:5 1554:5 1549:6 1546:6 1541:7 1538:7 1533:8 1486:8 1479:h 1476:g 1473:f 1470:e 1467:d 1464:c 1461:b 1458:a 1431:n 1428:3 1408:n 1376:n 1350:n 1330:} 1327:n 1321:, 1318:1 1315:{ 1287:k 1263:k 1243:k 1213:n 1180:k 1160:d 1137:k 1117:1 1111:d 1091:0 1071:1 1065:d 1062:2 1039:y 1019:x 999:y 979:x 943:/ 939:5 936:= 913:9 909:/ 905:1 902:= 875:N 872:) 863:/ 859:1 855:) 851:N 842:( 839:c 833:( 803:0 775:) 765:+ 762:1 758:) 754:n 745:( 741:/ 737:n 732:( 727:O 705:) 700:n 690:/ 684:4 680:) 676:n 661:( 658:n 653:( 648:O 608:) 605:n 589:/ 585:n 582:( 579:O 546:) 541:n 530:( 527:O 523:e 518:/ 514:n 490:0 456:1 452:n 423:n 397:) 394:n 378:/ 374:n 365:( 362:O 358:e 353:/ 349:n 329:n 309:1 271:) 242:) 210:) 184:k 164:n 144:1 124:n 101:, 98:2 95:, 92:1 89:= 86:k 20:)

Index

Salem-Spencer set

arithmetic combinatorics
arithmetic progression
Raphaël Salem
Donald C. Spencer
Klaus Roth
A065825
OEIS
Stanley sequence
A005836
OEIS
ternary number
lexicographically
cubes
A000578
OEIS
Leonhard Euler
Szemerédi's theorem § Quantitative bounds
Erdős conjecture on arithmetic progressions § Progress and related results
Roth's theorem on arithmetic progressions § Improving Bounds
big O notation
Paul Erdős
Pál Turán
Felix Behrend
Klaus Roth
Roth's theorem
Szemerédi's theorem
Roth's theorem
Diophantine approximation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.