Knowledge (XXG)

Salt bridge (protein and supramolecular)

Source 📝

444:
His31-Asp70 salt bridge in T4 lysozyme was buried within the protein. Entropy plays a larger role in surface salt bridges where residues that normally have the ability to move are constricted by their electrostatic interaction and hydrogen bonding. This has been shown to decrease entropy enough to nearly erase the contribution of the interaction. Surface salt bridges can be studied similarly to that of buried salt bridges, employing double mutant cycles and NMR titrations. Although cases exist where buried salt bridges contribute to stability, like anything else, exceptions do exist and buried salt bridges can display a destabilizing effect. Also, surface salt bridges, under certain conditions, can display a stabilizing effect. The stabilizing or destabilizing effect must be assessed on a case by case basis and few blanket statements are able to be made.
120: 27: 107:
organic ions display at moderate ionic strength I similar salt bridge association ΔG values around 5 to 6 kJ/mol for a 1:1 combination of anion and cation, almost independent of the nature (size, polarizability etc) of the ions. The ΔG values are additive and approximately a linear function of the charges, the interaction of e.g. a doubly charged phosphate anion with a single charged ammonium cation accounts for about 2x5 = 10 kJ/mol. The ΔG values depend on the ionic strength I of the solution, as described by the
230: 288:, or the pH where the ratio of protonated: deprotonated molecules is 1:1. Continuing with the T4 lysozyme example, a titration curve is obtained through observation of a shift in the C2 proton of histidine 31 (Figure 5). Figure 5 shows the shift in the titration curve between the wild-type and the mutant in which Asp70 is Asn. The salt bridge formed is between the deprotonated Asp70 and protonated His31. This interaction causes the shift seen in His31’s p 1623: 65:. It is a most commonly observed contribution to the stability to the entropically unfavorable folded conformation of proteins. Although non-covalent interactions are known to be relatively weak interactions, small stabilizing interactions can add up to make an important contribution to the overall stability of a conformer. Not only are salt bridges found in proteins, but they can also be found in 193:'s. The distance between the residues participating in the salt bridge is also cited as being important. The N-O distance required is less than 4 Å (400 pm). Amino acids greater than this distance apart do not qualify as forming a salt bridge. Due to the numerous ionizable side chains of amino acids found throughout a protein, the pH at which a protein is placed is crucial to its stability. 1617: 453: 222:
at high pH, the salt bridge’s contribution to the overall free energy of the folded protein state can be determined by performing a point-mutation, altering and, consequently, breaking the salt bridge. For example, a salt bridge was identified to exist in the T4 lysozyme between aspartic acid (Asp) at residue 70 and a histidine (His) at residue 31 (Figure 3).
211: 1629: 432:
values, and the relationship between natural logarithms and logarithms. In the T4 lysozyme example, this approach yielded a calculated contribution of about 3 kcal/mol to the overall free energy. A similar approach can be taken with the other participant in the salt bridge, such as Asp70 in the T4
221:
The contribution of a salt bridge to the overall stability to the folded state of a protein can be assessed through thermodynamic data gathered from mutagenesis studies and nuclear magnetic resonance techniques. Using a mutated pseudo-wild-type protein specifically mutated to prevent precipitation
106:
or the Fuoss equation describe ion pair association as function of the ion charges zA and zB and the dielectric constant ε of the medium; a corresponding plot of the stability ΔG vs. zAzB shows for over 200 ion pairs the expected linear correlation for a large variety of ions. Inorganic as well as
201:
Salt bridges also can form between a protein and small molecule ligands. Over 1100 unique protein-ligand complexes from the Protein Databank were found to form salt bridges with their protein targets, indicating that salt bridges are frequent in drug-protein interaction. These contain structures
240:
Once the mutants have been established, two methods can be employed to calculate the free energy associated with a salt bridge. One method involves the observation of the melting temperature of the wild-type protein versus that of the three mutants. The denaturation can be monitored through a
443:
A word of caution when choosing the appropriate experiment involves the location of the salt bridge within the protein. The environment plays a large role in the interaction. At high ionic strengths, the salt bridge can be completely masked since an electrostatic interaction is involved. The
486:
Major contributions of supramolecular chemistry have been devoted to recognition and sensing of anions. Ion pairing is the most important driving force for anion complexation, but selectivity e.g. within the halide series has been achieved, mostly by hydrogen bonds contributions.
477:
is a field concerned with non-covalent interactions between macromolecules. Salt bridges have been used by chemists within this field in both diverse and creative ways, including sensing of anions, the synthesis of molecular capsules and double helical polymers.
280:
to calculate the free energy of the salt bridge. A titration is performed, while recording the chemical shift corresponding to the protons of the carbon adjacent to the carboxylate or ammonium group. The midpoint of the titration curve corresponds to the
531: 130:(LMNA, PDB: 1IFR). Normally, arginine 527 (blue) forms salt bridge with glutamate 537 (magenta), but R527L mutation causes loss of the complementary negative charge and structure destabilization. At the phenotype level this manifests with overlapping 266: 245:. A reduction in melting temperature indicates a reduction in stability. This is quantified through a method described by Becktel and Schellman where the free energy difference between the two is calculated through Δ 261:
of 360 cal/(mol·K) (1.5 kJ/(mol·K)) yields a free energy change of about −4 kcal/mol (−17 kJ/mol). This value corresponds to the amount of free energy contributed to the stability of the protein by the salt bridge.
1389:
Ikeda M, Tanaka Y, Hasegawa T, Furusho Y, Yashima E (May 2006). "Construction of double-stranded metallosupramolecular polymers with a controlled helicity by combination of salt bridges and metal coordination".
97:
etc; then the association constants depend on the pH. Entropic driving forces for ion pairing (in absence of significant H-bonding contributions) are also found in methanol as solvent. In nonpolar solvents
320:
is supported by the His31’s interaction with Asp70. To maintain the salt bridge, His31 will attempt to keep its proton as long as possible. When the salt bridge is disrupted, like in the mutant D70N, the
81:
is mostly driven by entropy, usually accompanied by unfavorable ΔH contributions on account of desolvation of the interacting ions upon association. Hydrogen bonds contribute to the stability of
944:
Anderson DE, Becktel WJ, Dahlquist FW (March 1990). "pH-induced denaturation of proteins: a single salt bridge contributes 3-5 kcal/mol to the free energy of folding of T4 lysozyme".
111:, at zero ionic strength one observes ΔG = 8 kJ/mol. The stabilities of the alkali-ion pairs as function of the anion charge z by can be described by a more detailed equation. 1052:
Sun DP, Sauer U, Nicholson H, Matthews BW (July 1991). "Contributions of engineered surface salt bridges to the stability of T4 lysozyme determined by directed mutagenesis".
69:. The thermodynamics of each are explored through experimental procedures to access the free energy contribution of the salt bridge to the overall free energy of the state. 780:
Daniele PG, Foti C, Gianguzza A, Prenesti E, Sammartano S (2008). "Weak alkali and alkaline earth metal complexes of low molecular weight ligands in aqueous solution".
1716: 523:
to create a double helical metallopolymer. Starting from their monomer and platinum(II) biphenyl (Figure 8), their metallopolymer self assembles through a series of
226:
with asparagine (Asn) (Figure 4) was done obtaining three new mutants: Asp70Asn His31 (Mutant 1), Asp70 His31Asn (Mutant 2), and Asp70Asn His31Asn (Double Mutant).
1017:
Horovitz A, Serrano L, Avron B, Bycroft M, Fersht AR (December 1990). "Strength and co-operativity of contributions of surface salt bridges to protein stability".
507:(Figure 6). Salt bridge interactions between the two halves cause them to self-assemble in solution (Figure 7). They are stable even when heated to 60 °C. 527:
reactions. The two halves of the monomer are anchored together through the salt bridge between the deprotonated carboxylate and the protonated nitrogens.
257:
of the pseudo-wild-type had previously been reported at pH 5.5 so the midpoint temperature difference of 11 °C at this pH multiplied by the reported Δ
202:
from different enzyme classes, including hydrolase, transferases, kinases, reductase, oxidoreductase, lyases, and G protein-coupled receptors (GPCRs).
1834: 1442: 807:
Al-Haggar M, Madej-Pilarczyk A, Kozlowski L, Bujnicki JM, Yahia S, Abdel-Hadi D, Shams A, Ahmad N, Hamed S, Puzianowska-Kuznicka M (November 2012).
119: 809:"A novel homozygous p.Arg527Leu LMNA mutation in two unrelated Egyptian families causes overlapping mandibuloacral dysplasia and progeria syndrome" 277: 1091: 464: 102:
with very high association constants are formed; in the gas phase the association energies of e.g. alkali halides reach up to 200 kJ/mol. The
694: 657: 566: 418:). Calculation of the free energy difference of the mutant and wild-type can now be done using the free energy equation, the definition of p 1224: 1191: 1166: 630: 1141: 372:
is the equilibrium constant of a reaction in equilibrium. The deprotonation of His31 is an acid equilibrium reaction with a special
1696: 1681: 1282: 33:
Example of salt bridge between amino acids glutamic acid and lysine demonstrating electrostatic interaction and hydrogen bonding
1505: 872: 1532: 1493: 1483: 62: 515:
Yashima and coworkers have used salt bridges to construct several polymers that adopt a double helix conformation much like
253:. There are some issues with this calculation and can only be used with very accurate data. In the T4 lysozyme example, Δ 1488: 108: 1865: 1435: 26: 380: 1756: 1751: 1860: 1741: 1731: 1706: 1676: 223: 58: 1522: 474: 131: 66: 46: 1783: 1686: 1658: 1428: 496: 217:
A salt bridge in T4 lysozyme between aspartic acid (Asp) at residue 70 and a histidine (His) at residue 31
1827: 1788: 500: 1822: 229: 1746: 1637: 1500: 1459: 1354:
Liu J, Lam JW, Tang BZ (November 2009). "Acetylenic polymers: syntheses, structures, and functions".
1212: 710:
Biedermann F, Schneider HJ (May 2016). "Experimental Binding Energies in Supramolecular Complexes".
295:. In the unfolded wild-type protein, where the salt bridge is absent, His31 is reported to have a p 61:
forces in chemistry, in biological systems, in different materials and in many applications such as
1648: 1512: 1478: 174:(Figure 2). Although these are the most common, other residues with ionizable side chains such as 1812: 1567: 894:
Kurczab, Rafał; Śliwa, Paweł; Rataj, Krzysztof; Kafel, Rafał; Bojarski, Andrzej J. (2018-11-26).
242: 896:"Salt Bridge in Ligand-Protein Complexes-Systematic Theoretical and Statistical Investigations" 1798: 1587: 1547: 1537: 1407: 1371: 1336: 1305: 1263: 1220: 1187: 1162: 1137: 1114: 1069: 1034: 996: 961: 923: 915: 876: 838: 762: 727: 690: 653: 626: 599: 562: 339: 135: 495:
Molecular capsules are chemical scaffolds designed to capture and hold a guest molecule (see
1839: 1622: 1579: 1552: 1399: 1363: 1328: 1297: 1253: 1106: 1061: 1026: 988: 953: 907: 868: 828: 820: 789: 754: 719: 591: 99: 1691: 1562: 1323:
Kuberski B, Szumna A (April 2009). "A self-assembled chiral capsule with polar interior".
524: 82: 1817: 1216: 1726: 1527: 1283:"Advances in anion supramolecular chemistry: From recognition to chemical applications" 859:
Kumar S, Nussinov R (July 2002). "Close-range electrostatic interactions in proteins".
833: 808: 1030: 1854: 1775: 1735: 1668: 1597: 1470: 1451: 674:. J. Phys. Chem. Ref. Data. Vol. Monograph 9 (Fourth ed.). pp. 1–1951. 619: 147: 143: 103: 54: 50: 463: 452: 1721: 338:
can be quantified to reflect the salt bridge’s contribution to free energy. Using
328:
shifts back to a value of 6.9, much closer to that of His31 in the unfolded state.
86: 1807: 1557: 1258: 1241: 723: 530: 142:
The salt bridge most often arises from the anionic carboxylate (RCOO) of either
90: 20: 1616: 793: 504: 919: 911: 470:
Interlacing salt bridges that connect the two halves of the molecular capsule
1542: 1517: 175: 159: 94: 38: 1411: 1375: 1340: 1309: 1301: 1267: 1118: 927: 895: 880: 842: 766: 758: 731: 603: 1073: 1038: 1000: 992: 965: 824: 520: 179: 171: 78: 1065: 957: 210: 745:
Schneider HJ (2009). "Binding mechanisms in supramolecular complexes".
127: 1403: 1367: 1110: 979:
Becktel WJ, Schellman JA (November 1987). "Protein stability curves".
873:
10.1002/1439-7633(20020703)3:7<604::AID-CBIC604>3.0.CO;2-X
595: 265: 1332: 186:
can also participate, depending on outside factors perturbing their p
183: 155: 499:). Szumna and coworkers developed a novel molecular capsule with a 1628: 529: 451: 264: 228: 209: 25: 1420: 272:
Titration curve between the wild-type (blue) and the mutant (red)
236:
Mutagenesis of T4 lysozyme salt bridge between Asp 70 and His 31
1424: 1240:
Busschaert N, Caltagirone C, Van Rossom W, Gale PA (May 2015).
89:, and with anions is formed by deprotonation as in the case of 516: 503:
interior. This capsule is made of two halves, like a plastic
1092:"Contribution of surface salt bridges to protein stability" 646:
Ionic Interactions in Natural and Synthetic Macromolecules
1157:
Bowman-James K, Bianchi A, García-Espana E, eds. (2012).
1132:
Bianchi A, Bowman-James K, García-España E, eds. (1997).
306:
O buffers of moderate ionic strength. Figure 5 shows a p
206:
Methods for quantifying salt bridge stability in proteins
16:
Combination of hydrogen and ionic bonding in chemistry
57:(Figure 1). Ion pairing is one of the most important 1797: 1774: 1705: 1667: 1647: 1636: 1596: 1578: 1469: 1458: 582:Marcus Y, Hefter G (November 2006). "Ion pairing". 1242:"Applications of supramolecular anion recognition" 687:Principles and methods in supramolecular chemistry 618: 537:Self-assembly of a double helical metallopolymer 197:Salt bridges found in protein - ligand complexes 313:of the wild-type of 9.05. This difference in p 854: 852: 433:lysozyme example, by monitoring its shift in p 1436: 1209:Anion Recognition in Supramolecular Chemistry 126:Wild type (left) and mutated (right) form of 19:For the device used in electrochemistry, see 8: 939: 937: 900:Journal of Chemical Information and Modeling 1012: 1010: 685:Schneider HJ, Yatsimirsky AK, eds. (2000). 561:. Sausalito, CA: University Science Books. 1644: 1466: 1443: 1429: 1421: 1182:Sessler JL, Gale PA, Cho WS, eds. (2006). 1257: 1186:. Cambridge: Royal Society of Chemistry. 832: 552: 550: 1835:Polyhedral skeletal electron pair theory 1392:Journal of the American Chemical Society 462: 118: 1290:Angewandte Chemie International Edition 1085: 1083: 652:John Wiley & Sons, Inc., p. 35 ff 546: 278:nuclear magnetic resonance spectroscopy 77:In water, formation of salt bridges or 519:. In one example, they incorporated 7: 625:(2nd ed.). England: Longmans. 365:is the temperature in kelvins, and 1281:Evans NH, Beer PD (October 2014). 1134:Supramolecular chemistry of anions 1090:Strop P, Mayo SL (February 2000). 813:European Journal of Human Genetics 14: 648:(A. Ciferri and A. Perico, Eds), 559:Modern Physical Organic Chemistry 459:The "egg shell" molecular capsule 1627: 1621: 1615: 1207:Gale PA, Dehaen W, eds. (2010). 672:NIST-JANAF Thermochemical Tables 73:Salt bridges in chemical bonding 361:is the universal gas constant, 782:Coordination Chemistry Reviews 390:: His31-H ⇌ His31 + H. The p 150:and the cationic ammonium (RNH 115:Salt bridges found in proteins 1: 1031:10.1016/S0022-2836(99)80018-7 557:Dougherty, Dennis A. (2006). 1159:Anion coordination chemistry 1019:Journal of Molecular Biology 1259:10.1021/acs.chemrev.5b00099 724:10.1021/acs.chemrev.5b00583 276:The second method utilizes 1882: 1533:Metal–ligand multiple bond 621:Physical Organic Chemistry 381:acid dissociation constant 18: 1613: 794:10.1016/j.ccr.2007.08.005 440:after mutation of His31. 224:Site-directed mutagenesis 47:non-covalent interactions 1184:Anion receptor chemistry 912:10.1021/acs.jcim.8b00266 475:Supramolecular chemistry 448:Supramolecular chemistry 132:mandibuloacral dysplasia 67:supramolecular chemistry 45:is a combination of two 1325:Chemical Communications 1161:. Weinheim: Wiley-VCH. 1136:. New York: Wiley-VCH. 511:Double helical polymers 497:molecular encapsulation 63:ion pair chromatography 1302:10.1002/anie.201309937 759:10.1002/anie.200802947 538: 471: 460: 273: 237: 218: 139: 34: 993:10.1002/bip.360261104 689:. Chichester: Wiley. 533: 466: 455: 268: 232: 213: 122: 109:Debye–Hückel equation 85:with e.g. protonated 29: 1523:Coordinate (dipolar) 1211:. Springer Science. 825:10.1038/ejhg.2012.77 788:(10–11): 1093–1107. 404:by the following: p 1866:Protein engineering 1697:C–H···O interaction 1479:Electron deficiency 1217:2010arsc.book.....G 1066:10.1021/bi00243a015 958:10.1021/bi00461a025 397:is then related to 331:The difference in p 1682:Resonance-assisted 539: 491:Molecular capsules 482:Anion complexation 472: 461: 274: 243:circular dichroism 238: 219: 140: 35: 1848: 1847: 1799:Electron counting 1770: 1769: 1659:London dispersion 1611: 1610: 1588:Metal aromaticity 1404:10.1021/ja0619096 1368:10.1021/cr900149d 1111:10.1021/bi992257j 906:(11): 2224–2238. 747:Angewandte Chemie 696:978-0-471-97253-2 670:Chase MW (1998). 658:978-0-470-52927-0 617:Isaacs N (1996). 596:10.1021/cr040087x 568:978-1-891389-31-3 340:Gibbs free energy 136:progeria syndrome 100:contact ion pairs 1873: 1861:Chemical bonding 1840:Jemmis mno rules 1692:Dihydrogen bonds 1645: 1631: 1625: 1619: 1553:Hyperconjugation 1467: 1445: 1438: 1431: 1422: 1416: 1415: 1386: 1380: 1379: 1362:(11): 5799–867. 1356:Chemical Reviews 1351: 1345: 1344: 1333:10.1039/b820990a 1320: 1314: 1313: 1296:(44): 11716–54. 1287: 1278: 1272: 1271: 1261: 1252:(15): 8038–155. 1246:Chemical Reviews 1237: 1231: 1230: 1204: 1198: 1197: 1179: 1173: 1172: 1154: 1148: 1147: 1129: 1123: 1122: 1096: 1087: 1078: 1077: 1049: 1043: 1042: 1014: 1005: 1004: 976: 970: 969: 941: 932: 931: 891: 885: 884: 856: 847: 846: 836: 804: 798: 797: 777: 771: 770: 742: 736: 735: 712:Chemical Reviews 707: 701: 700: 682: 676: 675: 667: 661: 643: 637: 636: 624: 614: 608: 607: 590:(11): 4585–621. 584:Chemical Reviews 579: 573: 572: 554: 425:, the observed p 51:hydrogen bonding 1881: 1880: 1876: 1875: 1874: 1872: 1871: 1870: 1851: 1850: 1849: 1844: 1793: 1766: 1709: 1701: 1663: 1650: 1640: 1632: 1626: 1620: 1607: 1592: 1574: 1462: 1454: 1449: 1419: 1388: 1387: 1383: 1353: 1352: 1348: 1327:(15): 1959–61. 1322: 1321: 1317: 1285: 1280: 1279: 1275: 1239: 1238: 1234: 1227: 1206: 1205: 1201: 1194: 1181: 1180: 1176: 1169: 1156: 1155: 1151: 1144: 1131: 1130: 1126: 1094: 1089: 1088: 1081: 1060:(29): 7142–53. 1051: 1050: 1046: 1016: 1015: 1008: 987:(11): 1859–77. 978: 977: 973: 943: 942: 935: 893: 892: 888: 858: 857: 850: 819:(11): 1134–40. 806: 805: 801: 779: 778: 774: 753:(22): 3924–77. 744: 743: 739: 718:(9): 5216–300. 709: 708: 704: 697: 684: 683: 679: 669: 668: 664: 644: 640: 633: 616: 615: 611: 581: 580: 576: 569: 556: 555: 548: 544: 525:ligand exchange 513: 493: 484: 450: 439: 431: 424: 417: 410: 403: 396: 389: 378: 371: 356: 337: 327: 319: 312: 305: 301: 294: 287: 208: 199: 192: 169: 165: 153: 117: 75: 24: 17: 12: 11: 5: 1879: 1877: 1869: 1868: 1863: 1853: 1852: 1846: 1845: 1843: 1842: 1837: 1832: 1831: 1830: 1825: 1820: 1815: 1804: 1802: 1795: 1794: 1792: 1791: 1786: 1780: 1778: 1772: 1771: 1768: 1767: 1765: 1764: 1759: 1754: 1749: 1744: 1739: 1729: 1724: 1719: 1713: 1711: 1703: 1702: 1700: 1699: 1694: 1689: 1684: 1679: 1673: 1671: 1665: 1664: 1662: 1661: 1655: 1653: 1642: 1638:Intermolecular 1634: 1633: 1614: 1612: 1609: 1608: 1606: 1605: 1602: 1600: 1594: 1593: 1591: 1590: 1584: 1582: 1576: 1575: 1573: 1572: 1571: 1570: 1565: 1555: 1550: 1545: 1540: 1535: 1530: 1525: 1520: 1515: 1510: 1509: 1508: 1498: 1497: 1496: 1491: 1486: 1475: 1473: 1464: 1460:Intramolecular 1456: 1455: 1452:Chemical bonds 1450: 1448: 1447: 1440: 1433: 1425: 1418: 1417: 1398:(21): 6806–7. 1381: 1346: 1315: 1273: 1232: 1226:978-3642264702 1225: 1199: 1193:978-0854049745 1192: 1174: 1168:978-3527323708 1167: 1149: 1142: 1124: 1079: 1044: 1025:(4): 1031–44. 1006: 971: 933: 886: 848: 799: 772: 737: 702: 695: 677: 662: 638: 632:978-0582218635 631: 609: 574: 567: 545: 543: 540: 512: 509: 492: 489: 483: 480: 449: 446: 437: 429: 422: 415: 408: 401: 394: 387: 376: 369: 354: 335: 325: 317: 310: 303: 299: 292: 285: 207: 204: 198: 195: 190: 167: 163: 151: 116: 113: 74: 71: 15: 13: 10: 9: 6: 4: 3: 2: 1878: 1867: 1864: 1862: 1859: 1858: 1856: 1841: 1838: 1836: 1833: 1829: 1826: 1824: 1821: 1819: 1816: 1814: 1813:Hückel's rule 1811: 1810: 1809: 1806: 1805: 1803: 1800: 1796: 1790: 1787: 1785: 1782: 1781: 1779: 1777: 1776:Bond cleavage 1773: 1763: 1760: 1758: 1755: 1753: 1750: 1748: 1745: 1743: 1742:Intercalation 1740: 1737: 1733: 1732:Metallophilic 1730: 1728: 1725: 1723: 1720: 1718: 1715: 1714: 1712: 1708: 1704: 1698: 1695: 1693: 1690: 1688: 1685: 1683: 1680: 1678: 1675: 1674: 1672: 1670: 1666: 1660: 1657: 1656: 1654: 1652: 1649:Van der Waals 1646: 1643: 1639: 1635: 1630: 1624: 1618: 1604: 1603: 1601: 1599: 1595: 1589: 1586: 1585: 1583: 1581: 1577: 1569: 1566: 1564: 1561: 1560: 1559: 1556: 1554: 1551: 1549: 1546: 1544: 1541: 1539: 1536: 1534: 1531: 1529: 1526: 1524: 1521: 1519: 1516: 1514: 1511: 1507: 1504: 1503: 1502: 1499: 1495: 1492: 1490: 1487: 1485: 1482: 1481: 1480: 1477: 1476: 1474: 1472: 1468: 1465: 1461: 1457: 1453: 1446: 1441: 1439: 1434: 1432: 1427: 1426: 1423: 1413: 1409: 1405: 1401: 1397: 1393: 1385: 1382: 1377: 1373: 1369: 1365: 1361: 1357: 1350: 1347: 1342: 1338: 1334: 1330: 1326: 1319: 1316: 1311: 1307: 1303: 1299: 1295: 1291: 1284: 1277: 1274: 1269: 1265: 1260: 1255: 1251: 1247: 1243: 1236: 1233: 1228: 1222: 1218: 1214: 1210: 1203: 1200: 1195: 1189: 1185: 1178: 1175: 1170: 1164: 1160: 1153: 1150: 1145: 1143:9780471186229 1139: 1135: 1128: 1125: 1120: 1116: 1112: 1108: 1105:(6): 1251–5. 1104: 1100: 1093: 1086: 1084: 1080: 1075: 1071: 1067: 1063: 1059: 1055: 1048: 1045: 1040: 1036: 1032: 1028: 1024: 1020: 1013: 1011: 1007: 1002: 998: 994: 990: 986: 982: 975: 972: 967: 963: 959: 955: 952:(9): 2403–8. 951: 947: 940: 938: 934: 929: 925: 921: 917: 913: 909: 905: 901: 897: 890: 887: 882: 878: 874: 870: 867:(7): 604–17. 866: 862: 855: 853: 849: 844: 840: 835: 830: 826: 822: 818: 814: 810: 803: 800: 795: 791: 787: 783: 776: 773: 768: 764: 760: 756: 752: 748: 741: 738: 733: 729: 725: 721: 717: 713: 706: 703: 698: 692: 688: 681: 678: 673: 666: 663: 659: 655: 651: 647: 642: 639: 634: 628: 623: 622: 613: 610: 605: 601: 597: 593: 589: 585: 578: 575: 570: 564: 560: 553: 551: 547: 541: 536: 532: 528: 526: 522: 518: 510: 508: 506: 502: 498: 490: 488: 481: 479: 476: 469: 465: 458: 454: 447: 445: 441: 436: 428: 421: 414: 407: 400: 393: 386: 382: 379:known as the 375: 368: 364: 360: 353: 349: 345: 341: 334: 329: 324: 316: 309: 298: 291: 284: 279: 271: 267: 263: 260: 256: 252: 248: 244: 235: 231: 227: 225: 216: 212: 205: 203: 196: 194: 189: 185: 181: 177: 173: 161: 157: 149: 148:glutamic acid 145: 144:aspartic acid 137: 133: 129: 125: 121: 114: 112: 110: 105: 101: 96: 92: 88: 87:ammonium ions 84: 80: 72: 70: 68: 64: 60: 56: 55:ionic bonding 52: 48: 44: 40: 32: 28: 22: 1818:Baird's rule 1761: 1538:Charge-shift 1501:Hypervalence 1395: 1391: 1384: 1359: 1355: 1349: 1324: 1318: 1293: 1289: 1276: 1249: 1245: 1235: 1208: 1202: 1183: 1177: 1158: 1152: 1133: 1127: 1102: 1099:Biochemistry 1098: 1057: 1054:Biochemistry 1053: 1047: 1022: 1018: 984: 980: 974: 949: 946:Biochemistry 945: 903: 899: 889: 864: 860: 816: 812: 802: 785: 781: 775: 750: 746: 740: 715: 711: 705: 686: 680: 671: 665: 649: 645: 641: 620: 612: 587: 583: 577: 558: 534: 514: 494: 485: 473: 467: 456: 442: 434: 426: 419: 412: 405: 398: 391: 384: 373: 366: 362: 358: 351: 347: 343: 332: 330: 322: 314: 307: 296: 289: 282: 275: 269: 258: 254: 250: 246: 239: 233: 220: 214: 200: 187: 141: 123: 76: 42: 36: 30: 1808:Aromaticity 1784:Heterolysis 1762:Salt bridge 1707:Noncovalent 1677:Low-barrier 1558:Aromaticity 1548:Conjugation 1528:Pi backbond 981:Biopolymers 861:ChemBioChem 302:of 6.8 in H 160:guanidinium 91:carboxylate 59:noncovalent 43:salt bridge 21:Salt bridge 1855:Categories 1736:aurophilic 1717:Mechanical 542:References 505:easter egg 241:change in 1828:spherical 1789:Homolysis 1752:Cation–pi 1727:Chalcogen 1687:Symmetric 1543:Hapticity 920:1549-960X 535:Figure 8. 468:Figure 7. 457:Figure 6. 357:), where 350: ln( 346: = − 270:Figure 5. 234:Figure 4. 215:Figure 3. 176:histidine 124:Figure 2. 95:phosphate 83:ion pairs 79:ion pairs 39:chemistry 31:Figure 1. 1757:Anion–pi 1747:Stacking 1669:Hydrogen 1580:Metallic 1471:Covalent 1463:(strong) 1412:16719458 1376:19678641 1341:19333456 1310:25204549 1268:25996028 1119:10684603 928:30351056 881:12324994 843:22549407 767:19415701 732:27136957 604:17091929 521:platinum 180:tyrosine 172:arginine 162:(RNHC(NH 128:lamin A 1722:Halogen 1568:bicyclo 1513:Agostic 1213:Bibcode 1074:1854726 1039:2266554 1001:3689874 966:2337607 834:3476705 411:= −log( 158:or the 154:) from 104:Bjerrum 1823:Möbius 1651:forces 1641:(weak) 1410:  1374:  1339:  1308:  1266:  1223:  1190:  1165:  1140:  1117:  1072:  1037:  999:  964:  926:  918:  879:  841:  831:  765:  730:  693:  656:  629:  602:  565:  501:chiral 184:serine 182:, and 156:lysine 1801:rules 1710:other 1598:Ionic 1506:3c–4e 1494:8c–2e 1489:4c–2e 1484:3c–2e 1286:(PDF) 1095:(PDF) 170:) of 1563:homo 1518:Bent 1408:PMID 1372:PMID 1337:PMID 1306:PMID 1264:PMID 1221:ISBN 1188:ISBN 1163:ISBN 1138:ISBN 1115:PMID 1070:PMID 1035:PMID 997:PMID 962:PMID 924:PMID 916:ISSN 877:PMID 839:PMID 763:PMID 728:PMID 691:ISBN 654:ISBN 650:2012 627:ISBN 600:PMID 563:ISBN 134:and 53:and 41:, a 1400:doi 1396:128 1364:doi 1360:109 1329:doi 1298:doi 1254:doi 1250:115 1107:doi 1062:doi 1027:doi 1023:216 989:doi 954:doi 908:doi 869:doi 829:PMC 821:doi 790:doi 786:252 755:doi 720:doi 716:116 592:doi 588:106 517:DNA 342:: Δ 146:or 37:In 1857:: 1406:. 1394:. 1370:. 1358:. 1335:. 1304:. 1294:53 1292:. 1288:. 1262:. 1248:. 1244:. 1219:. 1113:. 1103:39 1101:. 1097:. 1082:^ 1068:. 1058:30 1056:. 1033:. 1021:. 1009:^ 995:. 985:26 983:. 960:. 950:29 948:. 936:^ 922:. 914:. 904:58 902:. 898:. 875:. 863:. 851:^ 837:. 827:. 817:20 815:. 811:. 784:. 761:. 751:48 749:. 726:. 714:. 598:. 586:. 549:^ 383:, 377:eq 370:eq 355:eq 348:RT 178:, 93:, 49:: 1738:) 1734:( 1444:e 1437:t 1430:v 1414:. 1402:: 1378:. 1366:: 1343:. 1331:: 1312:. 1300:: 1270:. 1256:: 1229:. 1215:: 1196:. 1171:. 1146:. 1121:. 1109:: 1076:. 1064:: 1041:. 1029:: 1003:. 991:: 968:. 956:: 930:. 910:: 883:. 871:: 865:3 845:. 823:: 796:. 792:: 769:. 757:: 734:. 722:: 699:. 660:. 635:. 606:. 594:: 571:. 438:a 435:K 430:a 427:K 423:a 420:K 416:a 413:K 409:a 406:K 402:a 399:K 395:a 392:K 388:a 385:K 374:K 367:K 363:T 359:R 352:K 344:G 336:a 333:K 326:a 323:K 321:p 318:a 315:K 311:a 308:K 304:2 300:a 297:K 293:a 290:K 286:a 283:K 281:p 259:S 255:S 251:S 249:Δ 247:T 191:a 188:K 168:2 166:) 164:2 152:3 138:. 23:.

Index

Salt bridge

chemistry
non-covalent interactions
hydrogen bonding
ionic bonding
noncovalent
ion pair chromatography
supramolecular chemistry
ion pairs
ion pairs
ammonium ions
carboxylate
phosphate
contact ion pairs
Bjerrum
Debye–Hückel equation

lamin A
mandibuloacral dysplasia
progeria syndrome
aspartic acid
glutamic acid
lysine
guanidinium
arginine
histidine
tyrosine
serine

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.