Knowledge (XXG)

Sato–Tate conjecture

Source 📝

795: 1027:) following from such a hypothetical trace formula. In 2011, Barnet-Lamb, Geraghty, Harris, and Taylor proved a generalized version of the Sato–Tate conjecture for an arbitrary non-CM holomorphic modular form of weight greater than or equal to two, by improving the potential modularity results of previous papers. The prior issues involved with the trace formula were solved by 549: 790:{\displaystyle \lim _{N\to \infty }{\frac {\#\{p\leq N:\alpha \leq \theta _{p}\leq \beta \}}{\#\{p\leq N\}}}={\frac {2}{\pi }}\int _{\alpha }^{\beta }\sin ^{2}\theta \,d\theta ={\frac {1}{\pi }}\left(\beta -\alpha +\sin(\alpha )\cos(\alpha )-\sin(\beta )\cos(\beta )\right)} 458: 902: 257: 542: 987: 1203: 1339:
is multiplicative, rather than additive. In practice this is the typical case, so the condition can be thought of as mild. In more classical terms, the result applies where the
286: 481: 501: 358: 815: 1796: 1791: 1682: 1654: 1568: 806: 179: 1459:
Harris, Michael; Shepherd-Barron, Nicholas; Taylor, Richard (2010), "A family of Calabi–Yau varieties and potential automorphy",
1039: 1016: 1734: 1631: 1559:
Harris, M. (2011). "An introduction to the stable trace formula". In Clozel, L.; Harris, M.; Labesse, J.-P.; Ngô, B. C. (eds.).
188: 1250: 1028: 312: 304: 81: 73: 1008:
In 2008, Clozel, Harris, Shepherd-Barron, and Taylor published a proof of the Sato–Tate conjecture for elliptic curves over
1739: 506: 1230: 1012:
satisfying a certain condition: of having multiplicative reduction at some prime, in a series of three joint papers.
320: 1269: 1081:, there is a conjectural correspondence between (unitarized) characteristic polynomials of Frobenius elements and 997: 949: 143: 42: 1820: 308: 128: 77: 1800:[d'après Clozel, Harris, Shepherd-Barron, Taylor], Bourbaki seminar June 2007 by Henri Carayol (PDF) 1164: 1825: 1765:
David, Chantal; Pappalardi, Francesco (1999-01-01). "Average Frobenius distributions of elliptic curves".
1423: 1370: 1238: 1147: 336: 1805:
Video introducing Elliptic curves and its relation to Sato-Tate conjecture, Imperial College London, 2014
1590: 1461: 1059: 323:, Harris, and Taylor in 2011. Several generalizations to other algebraic varieties and fields are open. 316: 1830: 1697:
Koblitz, Neal (1988), "Primality of the number of points on an elliptic curve over a finite field",
1428: 1375: 1063: 936: 28: 265: 1009: 296: 1563:. Vol. I: Stabilization of the trace formula. Boston: International Press. pp. 3–47. 1678: 1650: 1564: 1086: 1051: 1020: 920: 466: 1706: 1599: 1519: 1470: 1433: 1380: 486: 1720: 1533: 1484: 1445: 1392: 1786: 1716: 1529: 1480: 1441: 1388: 1273: 1082: 171:
elements, the conjecture gives an answer to the distribution of the second-order term for
124: 1109:) then gives the conjectured distribution, and the classical case is USp(2) =  1744: 1336: 924: 300: 289: 110: 65: 1632:"Richard Taylor, Institute for Advanced Study: 2015 Breakthrough Prize in Mathematics" 1814: 1328: 1234: 453:{\displaystyle p+1-N_{p}=2{\sqrt {p}}\cos \theta _{p}~~(0\leq \theta _{p}\leq \pi ).} 1213: 1130: 1102: 1078: 1055: 1032: 164: 132: 897:{\displaystyle {\frac {(p+1)-N_{p}}{2{\sqrt {p}}}}={\frac {a_{p}}{2{\sqrt {p}}}}} 1604: 1585: 1475: 1340: 1331:(and at least for elliptic curves over the rational numbers there are some such 1277: 916: 106: 98: 1506:
Barnet-Lamb, Thomas; Geraghty, David; Harris, Michael; Taylor, Richard (2011).
1406:
Clozel, Laurent; Harris, Michael; Taylor, Richard (2008). "Automorphy for some
1146:, the trace of Frobenius that appears in the formula. For the typical case (no 1804: 1437: 1384: 1126: 993: 139: 38: 1711: 1074: 1280:). The known analytic results on these answer even more precise questions. 1561:
The stable trace formula, Shimura varieties, and arithmetic applications
919:
accounting for the remainder and with the denominator as given they are
1524: 1507: 1066:. In particular there is a conjectural theory for curves of genus  1042:"for numerous breakthrough results in (...) the Sato–Tate conjecture." 1024: 1508:"A family of Calabi–Yau varieties and potential automorphy. II" 1586:"Galois representations arising from some compact Shimura varieties" 1216:(1988) provided detailed conjectures for the case of a prime number 1268:
In the case of an elliptic curve with complex multiplication, the
1110: 1094: 1619: 1547: 335:
be an elliptic curve defined over the rational numbers without
1735:"Concordia Mathematician Recognized for Research Excellence" 1000:(independently, and around 1960, published somewhat later). 1496:
See Carayol's Bourbaki seminar of 17 June 2007 for details.
1241:
proved an averaged version of the Lang–Trotter conjecture.
907:
is between -1 and 1. Thus it can be expressed as cos 
1050:
There are generalisations, involving the distribution of
1015:
Further results are conditional on improved forms of the
252:{\displaystyle N_{p}/p=1+\mathrm {O} (1/\!{\sqrt {p}})\ } 1023:
of a result for the product of two elliptic curves (not
288:, and the point of the conjecture is to predict how the 295:
The original conjecture and its generalization to all
1647:
Random matrices, Frobenius Eigenvalues, and Monodromy
1167: 1150:, trace ≠ 0) their formula states that the number of 952: 935:
doesn't have complex multiplication, states that the
818: 552: 509: 489: 469: 361: 268: 191: 156:denotes the number of points on the elliptic curve 87: 61: 48: 34: 24: 1197: 981: 896: 789: 536: 495: 475: 452: 280: 251: 1649:, Providence, RI: American Mathematical Society, 537:{\displaystyle 0\leq \alpha <\beta \leq \pi ,} 315:under mild assumptions in 2008, and completed by 235: 554: 146:independently posed the conjecture around 1960. 1645:Katz, Nicholas M. & Sarnak, Peter (1999), 1353:Taylor, Richard (2008). "Automorphy for some 16:Mathematical conjecture about elliptic curves 8: 1306:in the volume (O. F. G. Schilling, editor), 1304:Algebraic cycles and poles of zeta functions 1121:There are also more refined statements. The 632: 620: 612: 575: 19: 1073:Under the random matrix model developed by 982:{\displaystyle \sin ^{2}\theta \,d\theta .} 1792:Michael Harris notes, with statement (PDF) 1767:International Mathematics Research Notices 18: 1710: 1603: 1523: 1474: 1427: 1374: 1335:), the type in the singular fibre of the 1178: 1171: 1166: 969: 957: 951: 884: 874: 868: 855: 844: 819: 817: 692: 682: 670: 660: 655: 641: 600: 569: 557: 551: 508: 488: 468: 432: 407: 390: 378: 360: 267: 236: 230: 219: 202: 196: 190: 1038:In 2015, Richard Taylor was awarded the 1261: 1133:states the asymptotic number of primes 1669:Lang, Serge; Trotter, Hale F. (1976), 1198:{\displaystyle c{\sqrt {X}}/\log X\ } 7: 1787:Report on Barry Mazur giving context 1416:Publ. Math. Inst. Hautes Études Sci 1363:Publ. Math. Inst. Hautes Études Sci 915:; in geometric terms there are two 807:Hasse's theorem on elliptic curves 617: 572: 564: 275: 220: 180:Hasse's theorem on elliptic curves 14: 1040:Breakthrough Prize in Mathematics 463:Then, for every two real numbers 352:as the solution to the equation 119:obtained from an elliptic curve 1618:See p. 71 and Corollary 8.9 of 1410:-adic lifts of automorphic mod 1357:-adic lifts of automorphic mod 1308:Arithmetical Algebraic Geometry 1699:Pacific Journal of Mathematics 1251:Wigner semicircle distribution 834: 822: 779: 773: 764: 758: 746: 740: 731: 725: 561: 444: 419: 272: 243: 224: 109:statement about the family of 1: 1740:Canadian Mathematical Society 1671:Frobenius Distributions in GL 1361:Galois representations. II". 52: 1743:. 2013-04-15. Archived from 1302:It is mentioned in J. Tate, 1017:Arthur–Selberg trace formula 281:{\displaystyle p\to \infty } 1677:, Berlin: Springer-Verlag, 1605:10.4007/annals.2011.173.3.9 1476:10.4007/annals.2010.171.779 1272:is expressed in terms of a 1231:elliptic curve cryptography 1847: 1798:La Conjecture de Sato–Tate 1512:Publ. Res. Inst. Math. Sci 1208:with a specified constant 1438:10.1007/s10240-008-0016-1 1414:Galois representations". 1385:10.1007/s10240-008-0015-2 1712:10.2140/pjm.1988.131.157 309:Nicholas Shepherd-Barron 78:Nicholas Shepherd-Barron 1620:Barnet-Lamb et al. 2011 1548:Barnet-Lamb et al. 2011 1123:Lang–Trotter conjecture 476:{\displaystyle \alpha } 1584:Shin, Sug Woo (2011). 1310:, pages 93–110 (1965). 1199: 1148:complex multiplication 1137:with a given value of 1060:Galois representations 983: 898: 791: 538: 497: 496:{\displaystyle \beta } 477: 454: 339:. For a prime number 337:complex multiplication 282: 253: 1591:Annals of Mathematics 1462:Annals of Mathematics 1270:Hasse–Weil L-function 1200: 984: 899: 792: 539: 498: 478: 455: 283: 254: 1289:To normalise, put 2/ 1239:Francesco Pappalardi 1165: 950: 929:Sato–Tate conjecture 816: 550: 507: 487: 467: 359: 266: 189: 103:Sato–Tate conjecture 20:Sato–Tate conjecture 1070: > 1. 1010:totally real fields 943:is proportional to 937:probability measure 665: 297:totally real fields 29:Arithmetic geometry 21: 1319:That is, for some 1195: 1158:is asymptotically 1052:Frobenius elements 979: 894: 787: 651: 568: 534: 493: 473: 450: 317:Thomas Barnet-Lamb 278: 249: 69:Thomas Barnet-Lamb 1807:(Last 15 minutes) 1684:978-0-387-07550-1 1656:978-0-8218-1017-0 1570:978-1-57146-227-5 1194: 1176: 1087:compact Lie group 1083:conjugacy classes 1021:conditional proof 921:complex conjugate 892: 889: 863: 860: 700: 649: 636: 553: 418: 415: 395: 248: 241: 163:defined over the 95: 94: 1838: 1775: 1774: 1762: 1756: 1755: 1753: 1752: 1731: 1725: 1723: 1714: 1694: 1688: 1687: 1666: 1660: 1659: 1642: 1636: 1635: 1628: 1622: 1616: 1610: 1609: 1607: 1598:(3): 1645–1741. 1581: 1575: 1574: 1556: 1550: 1544: 1538: 1537: 1527: 1525:10.2977/PRIMS/31 1503: 1497: 1494: 1488: 1487: 1478: 1456: 1450: 1449: 1431: 1403: 1397: 1396: 1378: 1350: 1344: 1343:is not integral. 1317: 1311: 1300: 1294: 1287: 1281: 1274:Hecke L-function 1266: 1204: 1202: 1201: 1196: 1192: 1182: 1177: 1172: 1064:étale cohomology 1058:involved in the 988: 986: 985: 980: 962: 961: 903: 901: 900: 895: 893: 891: 890: 885: 879: 878: 869: 864: 862: 861: 856: 850: 849: 848: 820: 796: 794: 793: 788: 786: 782: 701: 693: 675: 674: 664: 659: 650: 642: 637: 635: 615: 605: 604: 570: 567: 543: 541: 540: 535: 502: 500: 499: 494: 482: 480: 479: 474: 459: 457: 456: 451: 437: 436: 416: 413: 412: 411: 396: 391: 383: 382: 287: 285: 284: 279: 258: 256: 255: 250: 246: 242: 237: 234: 223: 206: 201: 200: 129:reduction modulo 125:rational numbers 57: 54: 22: 1846: 1845: 1841: 1840: 1839: 1837: 1836: 1835: 1821:Elliptic curves 1811: 1810: 1783: 1778: 1764: 1763: 1759: 1750: 1748: 1733: 1732: 1728: 1696: 1695: 1691: 1685: 1674: 1668: 1667: 1663: 1657: 1644: 1643: 1639: 1630: 1629: 1625: 1617: 1613: 1583: 1582: 1578: 1571: 1558: 1557: 1553: 1545: 1541: 1505: 1504: 1500: 1495: 1491: 1458: 1457: 1453: 1429:10.1.1.143.9755 1405: 1404: 1400: 1376:10.1.1.116.9791 1352: 1351: 1347: 1318: 1314: 1301: 1297: 1288: 1284: 1267: 1263: 1259: 1247: 1229:, motivated by 1228: 1163: 1162: 1145: 1119: 1048: 1046:Generalisations 1019:. Harris has a 1006: 992:This is due to 953: 948: 947: 880: 870: 851: 840: 821: 814: 813: 803: 706: 702: 666: 616: 596: 571: 548: 547: 505: 504: 485: 484: 465: 464: 428: 403: 374: 357: 356: 351: 329: 264: 263: 192: 187: 186: 176: 161: 154: 117: 111:elliptic curves 80: 76: 72: 70: 68: 55: 41: 17: 12: 11: 5: 1844: 1842: 1834: 1833: 1828: 1823: 1813: 1812: 1809: 1808: 1802: 1794: 1789: 1782: 1781:External links 1779: 1777: 1776: 1757: 1726: 1705:(1): 157–165, 1689: 1683: 1672: 1661: 1655: 1637: 1623: 1611: 1576: 1569: 1551: 1539: 1498: 1489: 1469:(2): 779–813, 1451: 1398: 1345: 1312: 1295: 1282: 1260: 1258: 1255: 1254: 1253: 1246: 1243: 1224: 1206: 1205: 1191: 1188: 1185: 1181: 1175: 1170: 1141: 1118: 1115: 1093:) =  1047: 1044: 1029:Michael Harris 1005: 1002: 990: 989: 978: 975: 972: 968: 965: 960: 956: 925:absolute value 905: 904: 888: 883: 877: 873: 867: 859: 854: 847: 843: 839: 836: 833: 830: 827: 824: 802: 799: 798: 797: 785: 781: 778: 775: 772: 769: 766: 763: 760: 757: 754: 751: 748: 745: 742: 739: 736: 733: 730: 727: 724: 721: 718: 715: 712: 709: 705: 699: 696: 691: 688: 685: 681: 678: 673: 669: 663: 658: 654: 648: 645: 640: 634: 631: 628: 625: 622: 619: 614: 611: 608: 603: 599: 595: 592: 589: 586: 583: 580: 577: 574: 566: 563: 560: 556: 533: 530: 527: 524: 521: 518: 515: 512: 492: 472: 461: 460: 449: 446: 443: 440: 435: 431: 427: 424: 421: 410: 406: 402: 399: 394: 389: 386: 381: 377: 373: 370: 367: 364: 347: 328: 325: 321:David Geraghty 313:Richard Taylor 305:Michael Harris 301:Laurent Clozel 299:was proved by 277: 274: 271: 260: 259: 245: 240: 233: 229: 226: 222: 218: 215: 212: 209: 205: 199: 195: 174: 159: 152: 115: 93: 92: 89: 88:First proof in 85: 84: 82:Richard Taylor 74:Michael Harris 71:David Geraghty 66:Laurent Clozel 63: 62:First proof by 59: 58: 50: 49:Conjectured in 46: 45: 36: 35:Conjectured by 32: 31: 26: 15: 13: 10: 9: 6: 4: 3: 2: 1843: 1832: 1829: 1827: 1826:Finite fields 1824: 1822: 1819: 1818: 1816: 1806: 1803: 1801: 1799: 1795: 1793: 1790: 1788: 1785: 1784: 1780: 1773:(4): 165–183. 1772: 1768: 1761: 1758: 1747:on 2017-02-01 1746: 1742: 1741: 1736: 1730: 1727: 1722: 1718: 1713: 1708: 1704: 1700: 1693: 1690: 1686: 1680: 1676: 1665: 1662: 1658: 1652: 1648: 1641: 1638: 1633: 1627: 1624: 1621: 1615: 1612: 1606: 1601: 1597: 1593: 1592: 1587: 1580: 1577: 1572: 1566: 1562: 1555: 1552: 1549: 1546:Theorem B of 1543: 1540: 1535: 1531: 1526: 1521: 1517: 1513: 1509: 1502: 1499: 1493: 1490: 1486: 1482: 1477: 1472: 1468: 1464: 1463: 1455: 1452: 1447: 1443: 1439: 1435: 1430: 1425: 1421: 1417: 1413: 1409: 1402: 1399: 1394: 1390: 1386: 1382: 1377: 1372: 1368: 1364: 1360: 1356: 1349: 1346: 1342: 1338: 1334: 1330: 1329:bad reduction 1326: 1322: 1316: 1313: 1309: 1305: 1299: 1296: 1292: 1286: 1283: 1279: 1276:(a result of 1275: 1271: 1265: 1262: 1256: 1252: 1249: 1248: 1244: 1242: 1240: 1236: 1235:Chantal David 1232: 1227: 1223: 1220:of points on 1219: 1215: 1211: 1189: 1186: 1183: 1179: 1173: 1168: 1161: 1160: 1159: 1157: 1153: 1149: 1144: 1140: 1136: 1132: 1128: 1124: 1116: 1114: 1112: 1108: 1104: 1100: 1098: 1092: 1088: 1084: 1080: 1076: 1071: 1069: 1065: 1061: 1057: 1056:Galois groups 1053: 1045: 1043: 1041: 1036: 1034: 1030: 1026: 1022: 1018: 1013: 1011: 1003: 1001: 999: 995: 976: 973: 970: 966: 963: 958: 954: 946: 945: 944: 942: 938: 934: 930: 927: 1. The 926: 922: 918: 914: 911:for an angle 910: 886: 881: 875: 871: 865: 857: 852: 845: 841: 837: 831: 828: 825: 812: 811: 810: 808: 800: 783: 776: 770: 767: 761: 755: 752: 749: 743: 737: 734: 728: 722: 719: 716: 713: 710: 707: 703: 697: 694: 689: 686: 683: 679: 676: 671: 667: 661: 656: 652: 646: 643: 638: 629: 626: 623: 609: 606: 601: 597: 593: 590: 587: 584: 581: 578: 558: 546: 545: 544: 531: 528: 525: 522: 519: 516: 513: 510: 490: 470: 447: 441: 438: 433: 429: 425: 422: 408: 404: 400: 397: 392: 387: 384: 379: 375: 371: 368: 365: 362: 355: 354: 353: 350: 346: 342: 338: 334: 326: 324: 322: 318: 314: 310: 306: 302: 298: 293: 291: 269: 238: 231: 227: 216: 213: 210: 207: 203: 197: 193: 185: 184: 183: 181: 177: 170: 166: 162: 155: 147: 145: 141: 137: 134: 133:prime numbers 130: 126: 122: 118: 112: 108: 104: 100: 90: 86: 83: 79: 75: 67: 64: 60: 51: 47: 44: 40: 37: 33: 30: 27: 23: 1797: 1770: 1766: 1760: 1749:. Retrieved 1745:the original 1738: 1729: 1702: 1698: 1692: 1670: 1664: 1646: 1640: 1626: 1614: 1595: 1589: 1579: 1560: 1554: 1542: 1518:(1): 29–98. 1515: 1511: 1501: 1492: 1466: 1460: 1454: 1419: 1415: 1411: 1407: 1401: 1366: 1362: 1358: 1354: 1348: 1332: 1324: 1320: 1315: 1307: 1303: 1298: 1290: 1285: 1264: 1225: 1221: 1217: 1214:Neal Koblitz 1209: 1207: 1155: 1151: 1142: 1138: 1134: 1131:Hale Trotter 1122: 1120: 1106: 1103:Haar measure 1096: 1090: 1079:Peter Sarnak 1072: 1067: 1049: 1037: 1033:Sug Woo Shin 1014: 1007: 991: 940: 932: 928: 912: 908: 906: 809:, the ratio 804: 462: 348: 344: 340: 332: 330: 294: 261: 172: 168: 165:finite field 157: 150: 148: 135: 120: 113: 102: 96: 1831:Conjectures 1369:: 183–239. 1341:j-invariant 1337:Néron model 1278:Max Deuring 1233:. In 1999, 1117:Refinements 917:eigenvalues 131:almost all 107:statistical 99:mathematics 56: 1960 1815:Categories 1751:2018-01-15 1675:extensions 1257:References 1127:Serge Lang 1125:(1976) of 994:Mikio Sato 503:for which 140:Mikio Sato 39:Mikio Sato 1424:CiteSeerX 1422:: 1–181. 1371:CiteSeerX 1293:in front. 1187:⁡ 1075:Nick Katz 1025:isogenous 998:John Tate 974:θ 967:θ 964:⁡ 838:− 777:β 771:⁡ 762:β 756:⁡ 750:− 744:α 738:⁡ 729:α 723:⁡ 714:α 711:− 708:β 698:π 687:θ 680:θ 677:⁡ 662:β 657:α 653:∫ 647:π 627:≤ 618:# 610:β 607:≤ 598:θ 594:≤ 591:α 582:≤ 573:# 565:∞ 562:→ 529:π 526:≤ 523:β 517:α 514:≤ 491:β 471:α 442:π 439:≤ 430:θ 426:≤ 405:θ 401:⁡ 372:− 343:, define 327:Statement 276:∞ 273:→ 144:John Tate 123:over the 43:John Tate 1245:See also 1105:on USp(2 292:varies. 1721:0917870 1534:2827723 1485:2630056 1446:2470687 1393:2470688 1101:. The 1085:in the 931:, when 923:and of 801:Details 1719:  1681:  1653:  1567:  1532:  1483:  1444:  1426:  1391:  1373:  1323:where 1291:π 1193:  1154:up to 1031:, and 417:  414:  311:, and 290:O-term 247:  101:, the 1111:SU(2) 1089:USp(2 1004:Proof 178:. By 167:with 105:is a 25:Field 1679:ISBN 1651:ISBN 1565:ISBN 1327:has 1237:and 1129:and 1077:and 996:and 520:< 483:and 331:Let 142:and 91:2011 1771:199 1707:doi 1703:131 1600:doi 1596:173 1520:doi 1471:doi 1467:171 1434:doi 1420:108 1381:doi 1367:108 1184:log 1095:Sp( 1062:on 1054:in 955:sin 939:of 805:By 768:cos 753:sin 735:cos 720:sin 668:sin 555:lim 398:cos 262:as 149:If 127:by 97:In 1817:: 1769:. 1737:. 1717:MR 1715:, 1701:, 1594:. 1588:. 1530:MR 1528:. 1516:47 1514:. 1510:. 1481:MR 1479:, 1465:, 1442:MR 1440:. 1432:. 1418:. 1389:MR 1387:. 1379:. 1365:. 1212:. 1113:. 1035:. 319:, 307:, 303:, 182:, 138:. 53:c. 1754:. 1724:. 1709:: 1673:2 1634:. 1608:. 1602:: 1573:. 1536:. 1522:: 1473:: 1448:. 1436:: 1412:l 1408:l 1395:. 1383:: 1359:l 1355:l 1333:p 1325:E 1321:p 1226:p 1222:E 1218:q 1210:c 1190:X 1180:/ 1174:X 1169:c 1156:X 1152:p 1143:p 1139:a 1135:p 1107:n 1099:) 1097:n 1091:n 1068:n 977:. 971:d 959:2 941:θ 933:E 913:θ 909:θ 887:p 882:2 876:p 872:a 866:= 858:p 853:2 846:p 842:N 835:) 832:1 829:+ 826:p 823:( 784:) 780:) 774:( 765:) 759:( 747:) 741:( 732:) 726:( 717:+ 704:( 695:1 690:= 684:d 672:2 644:2 639:= 633:} 630:N 624:p 621:{ 613:} 602:p 588:: 585:N 579:p 576:{ 559:N 532:, 511:0 448:. 445:) 434:p 423:0 420:( 409:p 393:p 388:2 385:= 380:p 376:N 369:1 366:+ 363:p 349:p 345:θ 341:p 333:E 270:p 244:) 239:p 232:/ 228:1 225:( 221:O 217:+ 214:1 211:= 208:p 204:/ 198:p 194:N 175:p 173:N 169:p 160:p 158:E 153:p 151:N 136:p 121:E 116:p 114:E

Index

Arithmetic geometry
Mikio Sato
John Tate
Laurent Clozel
Michael Harris
Nicholas Shepherd-Barron
Richard Taylor
mathematics
statistical
elliptic curves
rational numbers
reduction modulo
prime numbers
Mikio Sato
John Tate
finite field
Hasse's theorem on elliptic curves
O-term
totally real fields
Laurent Clozel
Michael Harris
Nicholas Shepherd-Barron
Richard Taylor
Thomas Barnet-Lamb
David Geraghty
complex multiplication
Hasse's theorem on elliptic curves
eigenvalues
complex conjugate
absolute value

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.