Knowledge (XXG)

Vapor–liquid equilibrium

Source 📝

81:. At vapor–liquid equilibrium, a liquid with individual components in certain concentrations will have an equilibrium vapor in which the concentrations or partial pressures of the vapor components have certain values depending on all of the liquid component concentrations and the temperature. The converse is also true: if a vapor with components at certain concentrations or partial pressures is in vapor–liquid equilibrium with its liquid, then the component concentrations in the liquid will be determined dependent on the vapor concentrations and on the temperature. The equilibrium concentration of each component in the liquid phase is often different from its concentration (or vapor pressure) in the vapor phase, but there is a relationship. The VLE concentration data can be determined experimentally or approximated with the help of theories such as 1453: 1303: 1435:
complexity, such boiling-point diagrams are rarely seen. Alternatively, the three-dimensional curved surfaces can be represented on a two-dimensional graph by the use of curved isotherm lines at graduated intervals, similar to iso-altitude lines on a map. Two sets of such isotherm lines are needed on such a two-dimensional graph: one set for the bubble point surface and another set for the dew point surface.
3308: 1779: 1771: 1426:
of the triangle represent a mixture of the two components at each end of the edge. Any point inside the triangle represents the composition of a mixture of all three components. The mole fraction of each component would correspond to where a point lies along a line starting at that component's corner and perpendicular to the opposite edge. The
1323:. At any given temperature (or pressure) where both phases are present, vapor with a certain mole fraction is in equilibrium with liquid with a certain mole fraction. The two mole fractions often differ. These vapor and liquid mole fractions are represented by two points on the same horizontal isotherm (constant 1425:
can be used. Two of the dimensions would be used to represent the composition mole fractions, and the third dimension would be the temperature. Using two dimensions, the composition can be represented as an equilateral triangle in which each corner represents one of the pure components. The edges
2661:
For many kinds of mixtures, particularly where there is interaction between components beyond simply the effects of dilution, Raoult's law does not work well for determining the shapes of the curves in the boiling point or VLE diagrams. Even in such mixtures, there are usually still differences in
142:
When a temperature is reached such that the sum of the equilibrium vapor pressures of the liquid components becomes equal to the total pressure of the system (it is otherwise smaller), then vapor bubbles generated from the liquid begin to displace the gas that was maintaining the overall pressure,
1434:
data would become curved surfaces inside a triangular prism, which connect the three boiling points on the vertical temperature "axes". Each face of this triangular prism would represent a two-dimensional boiling-point diagram for the corresponding binary mixture. Due to their three-dimensional
1958:
For each component in a binary mixture, one could make a vapor–liquid equilibrium diagram. Such a diagram would graph liquid mole fraction on a horizontal axis and vapor mole fraction on a vertical axis. In such VLE diagrams, liquid mole fractions for components 1 and 2 can be represented as
2566:
s as a function of liquid composition in terms of mole fractions have been determined, these values can be inserted into the above equations to obtain corresponding vapor compositions in terms of mole fractions. When this is finished over a complete range of liquid mole fractions and their
1475:
constant. There can be VLE data for mixtures of four or more components, but such a boiling-point diagram is hard to show in either tabular or graphical form. For such multi-component mixtures, as well as binary mixtures, the vapor–liquid equilibrium data are represented in terms of
149:
of the liquid mixture at the given pressure. (It is assumed that the total pressure is held steady by adjusting the total volume of the system to accommodate the specific volume changes that accompany boiling.) The boiling point at an overall pressure of 1 atm is called the
134:
Binary mixtures are those having two components. Three-component mixtures are called ternary mixtures. There can be VLE data for mixtures with even more components, but such data is often hard to show graphically. VLE data is a function of the total pressure, such as
2080:) needed to distill a given composition binary feed mixture into one distillate fraction and one bottoms fraction. Corrections can also be made to take into account the incomplete efficiency of each tray in a distillation column when compared to a theoretical plate. 2345:
may be used to approximate how the vapor pressure varies as a function of temperature. This makes each of the partial pressures dependent on temperature also regardless of whether Raoult's law applies or not. When Raoult's law is valid these expressions become:
2662:
the vapor and liquid equilibrium concentrations at most points, and distillation is often still useful for separating components at least partially. For such mixtures, empirical data is typically used in determining such boiling point and VLE diagrams.
1176: 1327:) line. When an entire range of temperatures vs. vapor and liquid mole fractions is graphed, two (usually curved) lines result. The lower one, representing the mole fraction of the boiling liquid at various temperatures, is called the 2494:
At boiling temperatures if Raoult's law applies, a number of the preceding equations in this section can be combined to give the following expressions for vapor mole fractions as a function of liquid mole fractions and temperature:
1918: 1923:
which is a measure of the relative ease or difficulty of separating the two components. Large-scale industrial distillation is rarely undertaken if the relative volatility is less than 1.05 with the volatile component being
975: 633: 326: 1310:
The preceding equilibrium equations are typically applied for each phase (liquid or vapor) individually, but the result can be plotted in a single diagram. In a binary boiling-point diagram, temperature (
2245:
is approximately valid for mixtures of components between which there is very little interaction other than the effect of dilution by the other components. Examples of such mixtures includes mixtures of
1702: 1212:
Binary mixture VLE data at a certain overall pressure, such as 1 atm, showing mole fraction vapor and liquid concentrations when boiling at various temperatures can be shown as a two-dimensional
182:
If the liquid and vapor are pure, in that they consist of only one molecular component and no impurities, then the equilibrium state between the two phases is described by the following equations:
1404:. When they meet, they meet tangently; the dew-point temperature always lies above the boiling-point temperature for a given composition when they are not equal. The meeting point is called an 1629: 224: 168:
describes when vapor–liquid equilibrium is possible, and its properties. Much of the analysis depends on whether the vapor and liquid consist of a single component, or if they are mixtures.
905: 863: 266: 1539: 1068: 1027: 748: 692: 517: 481: 2666:
have done a significant amount of research trying to develop equations for correlating and/or predicting VLE data for various kinds of mixtures which do not obey Raoult's law well.
527:) within the liquid and vapor, respectively. In other words, the temperature, pressure and molar Gibbs free energy are the same between the two phases when they are at equilibrium. 1767:
are correlated empirically or theoretically in terms of temperature, pressure and phase compositions in the form of equations, tables or graph such as the DePriester charts.
2119: 441: 414: 383: 356: 2790: 818:
In a multicomponent system, where the vapor and liquid consist of more than one type of compounds, describing the equilibrium state is more complicated. For all components
2237: 1088: 1732: 1410:
for that particular pair of substances. It is characterized by an azeotrope temperature and an azeotropic composition, often expressed as a mole fraction. There can be
800: 77:(a part of the total gas pressure) if any other gas(es) are present with the vapor. The equilibrium vapor pressure of a liquid is in general strongly dependent on 2953: 3750: 1803: 3245: 1951: 2851: 2094:
At boiling and higher temperatures the sum of the individual component partial pressures becomes equal to the overall pressure, which can symbolized as
108:, which is a particular specialty of chemical engineers. Distillation is a process used to separate or partially separate components in a mixture by 2258:
in many ways, so there is little attraction or repulsion between the molecules. Raoult's law states that for components 1, 2, etc. in a mixture:
3056: 2886: 2861: 2827: 912: 540: 1422: 2753: 273: 1452: 1381:, pure component 1). The temperatures at those two points correspond to the boiling points of each of the two pure components. 123:. The mole fraction of a given component of a mixture in a particular phase (either the vapor or the liquid phase) is the number of 2946: 2742: 1643: 3147: 2466:
may not be mathematically analytical (i.e., may require a numerical solution or approximation). For a binary mixture at a given
2342: 3512: 2748: 2738: 1071: 3755: 3582: 3507: 3238: 530:
An equivalent, more common way to express the vapor–liquid equilibrium condition in a pure system is by using the concept of
3694: 3522: 3322: 3109: 172: 3704: 2939: 1582: 3018: 188: 3125: 1471:
The tendency of a given chemical species to partition itself preferentially between liquid and vapor phases is the
870: 828: 231: 1490: 3765: 3231: 3033: 3001: 1032: 991: 697: 641: 66: 2073: 1082:) within the liquid and vapor, respectively, for each phase. The partial molar Gibbs free energy is defined by: 3729: 3628: 3258: 3174: 3169: 3130: 486: 450: 116:. Distillation takes advantage of differences in concentrations of components in the liquid and vapor phases. 3623: 2711: 2675: 1939: 105: 3383: 2333:
Recall from the first section that vapor pressures of liquids are very dependent on temperature. Thus the
119:
In mixtures containing two or more components, the concentrations of each component are often expressed as
3648: 3638: 3388: 3193: 3083: 2778: 3760: 3186: 3181: 3159: 3104: 3011: 2991: 2462:
can be solved for to give the liquid mixture's boiling point or bubble point, although the solution for
3567: 3327: 3068: 3051: 2962: 1735: 1334:. The upper one, representing the mole fraction of the vapor at various temperatures, is called the 1171:{\displaystyle {\bar {G}}_{i}\ {\stackrel {\mathrm {def} }{=}}\ {\frac {\partial G}{\partial n_{i}}}} 822:
in the system, the equilibrium state between the two phases is described by the following equations:
152: 97: 35: 2097: 1950: 1302: 419: 392: 361: 334: 3542: 3434: 3424: 3337: 3292: 3164: 3142: 3028: 2986: 2817: 2696: 1977:
respectively, and vapor mole fractions of the corresponding components are commonly represented as
1791: 1481: 1447: 1421:
If one wants to represent a VLE data for a three-component mixture as a boiling point "diagram", a
1197: 1079: 524: 2784: 2215: 3689: 3618: 3452: 3152: 3043: 2976: 2773: 2680: 2491:) and this function can be shown on a two-dimensional graph like a binary boiling point diagram. 1710: 1186: 1075: 2571:
function of vapor composition mole fractions. This function effectively acts as the dew point
1341:
These two curves necessarily meet where the mixture becomes purely one component, namely where
3719: 3714: 3684: 3643: 3532: 3484: 3469: 3362: 3332: 3198: 3078: 3006: 2996: 2882: 2857: 2823: 2726: 2706: 2691: 2663: 2255: 2251: 2077: 520: 1384:
For certain pairs of substances, the two curves also coincide at some point strictly between
3674: 3297: 3137: 3023: 1746: 74: 47: 771: 3664: 3517: 3254: 3099: 2686: 2242: 2125: 2089: 1635: 1574: 86: 82: 2789:
George Schlowsky, Alan Erickson, and Thomas A. Schafer, Modular Process Systems, Inc.,
1220:. The mole fraction of component 1 in the mixture can be represented by the symbol 3462: 3457: 3414: 3347: 3342: 3210: 1472: 165: 128: 90: 70: 31: 3744: 3699: 3679: 3602: 3562: 3497: 3429: 3352: 3063: 2716: 1913:{\displaystyle \alpha ={\frac {K_{i}}{K_{j}}}={\frac {(y_{i}/x_{i})}{(y_{j}/x_{j})}}} 145: 120: 62: 3724: 3597: 3592: 3587: 3552: 3502: 3419: 2721: 1427: 1329: 113: 101: 55: 1778: 1770: 3633: 3527: 3439: 3307: 2701: 2316:, etc. are the vapor pressures of components 1, 2, etc. when they are pure, and 444: 124: 78: 51: 2769: 17: 3572: 3547: 3474: 3444: 3378: 3357: 3073: 1461: 136: 2405:
At boiling temperatures if Raoult's law applies, the total pressure becomes:
2981: 2756:(Chemical Engineering Dept., Prof. Richard Rowley, Brigham Young University) 1431: 1414:, where the azeotrope temperature is at a maximum in the boiling curves, or 1406: 807: 3223: 3709: 3537: 1754: 1465: 1418:, where the azeotrope temperature is at a minimum in the boiling curves. 1270:
In multi-component mixtures in general with n components, this becomes:
1213: 751: 531: 386: 2759: 2567:
corresponding temperatures, one effectively obtains a temperature 
2330:, etc. are mole fractions of the corresponding component in the liquid. 3669: 3557: 3492: 3409: 3404: 2337:
pure vapor pressures for each component are a function of temperature (
1457: 970:{\displaystyle {\bar {G}}_{i}^{\text{liq}}={\bar {G}}_{i}^{\text{vap}}} 628:{\displaystyle f^{\text{liq}}(T_{s},P_{s})=f^{\text{vap}}(T_{s},P_{s})} 534:. Under this view, equilibrium is described by the following equation: 109: 2931: 2785:
Can. J. Chem. Eng. ternary and multicomponent systems from binary ones
131:
divided by the total number of moles of all components in that phase.
3278: 2247: 2770:
Some VLE data sets and diagrams for mixtures of 30 common components
2035:
Such VLE diagrams are square with a diagonal line running from the (
321:{\displaystyle {\tilde {G}}^{\text{liq}}={\tilde {G}}^{\text{vap}}} 3287: 3273: 1777: 1769: 1451: 1782:
K-Values for systems of light hydrocarbons High Temperature Range
754:
of the liquid and vapor, respectively, at the system temperature
96:
Such vapor–liquid equilibrium information is useful in designing
2763: 1774:
K-Values for systems of light hydrocarbons Low Temperature Range
143:
and the mixture is said to boil. This temperature is called the
3227: 2935: 3283: 1697:{\displaystyle K_{i}={\frac {\gamma _{i}P_{i}^{\star }}{P}}} 2791:
Operations & Maintenance - Generating your own VLE Data
2341:): For example, commonly for a pure liquid component, the 1995:. Similarly for binary mixtures in these VLE diagrams: 1229:. The mole fraction of component 2, represented by 2779:
Where can I get the vapor-liquid phase equilibrium data?
2781:
Reference to the various phase equilibrium data sources
774: 2793:, Chemical Engineering, March 1995, McGraw-Hill, Inc. 2762:(Describes the extensive VLE database available from 2749:
Introduction to Distillation: Vapor Liquid Equilibria
2218: 2100: 1938:
values are widely used in the design calculations of
1806: 1713: 1646: 1585: 1493: 1091: 1035: 994: 988:
are the temperature and pressure for each phase, and
915: 873: 831: 700: 644: 543: 489: 453: 422: 395: 364: 337: 276: 234: 191: 160:
Thermodynamic description of vapor–liquid equilibrium
3657: 3611: 3483: 3397: 3371: 3315: 3266: 3118: 3092: 3042: 2969: 2458:such as 1 atm and a given liquid composition, 27:
Concentration of a vapor in contact with its liquid
2231: 2113: 2076:to determine the number of equilibrium stages (or 1912: 1726: 1696: 1623: 1533: 1170: 1062: 1021: 969: 899: 857: 794: 742: 686: 627: 511: 475: 435: 408: 377: 350: 320: 260: 218: 1624:{\displaystyle K_{i}={\frac {P_{i}^{\star }}{P}}} 1942:columns for distilling multicomponent mixtures. 139:or at the pressure the process is conducted at. 2592:and the above equations can be expressed as: 219:{\displaystyle P^{\text{liq}}=P^{\text{vap}}\,} 2877:Seader, J. D. & Henley, Ernest J. (1998). 2156:Then for each component in the vapor phase: 3239: 2947: 900:{\displaystyle T^{\text{liq}}=T^{\text{vap}}} 858:{\displaystyle P^{\text{liq}}=P^{\text{vap}}} 768:. It is often convenient to use the quantity 261:{\displaystyle T^{\text{liq}}=T^{\text{vap}}} 8: 2072:These types of VLE diagrams are used in the 1790:values for the two components is called the 1534:{\displaystyle K_{i}={\frac {y_{i}}{x_{i}}}} 1063:{\displaystyle {\bar {G}}_{i}^{\text{vap}}} 1022:{\displaystyle {\bar {G}}_{i}^{\text{liq}}} 743:{\displaystyle f^{\text{vap}}(T_{s},P_{s})} 687:{\displaystyle f^{\text{liq}}(T_{s},P_{s})} 3246: 3232: 3224: 2954: 2940: 2932: 65:in contact with its liquid, especially at 2223: 2217: 2105: 2099: 1898: 1889: 1883: 1865: 1856: 1850: 1840: 1829: 1819: 1813: 1805: 1718: 1712: 1682: 1677: 1667: 1660: 1651: 1645: 1610: 1605: 1599: 1590: 1584: 1558:are the mole fractions of component  1523: 1513: 1507: 1498: 1492: 1314:) (or sometimes pressure) is graphed vs. 1159: 1141: 1123: 1122: 1117: 1115: 1114: 1105: 1094: 1093: 1090: 1054: 1049: 1038: 1037: 1034: 1013: 1008: 997: 996: 993: 961: 956: 945: 944: 934: 929: 918: 917: 914: 891: 878: 872: 849: 836: 830: 784: 773: 731: 718: 705: 699: 675: 662: 649: 643: 616: 603: 590: 574: 561: 548: 542: 512:{\displaystyle {\tilde {G}}^{\text{vap}}} 503: 492: 491: 488: 476:{\displaystyle {\tilde {G}}^{\text{liq}}} 467: 456: 455: 452: 427: 421: 400: 394: 369: 363: 342: 336: 312: 301: 300: 290: 279: 278: 275: 252: 239: 233: 215: 209: 196: 190: 2811: 2809: 2807: 2239:= partial pressure of component 2, etc. 1949: 1301: 2850:Perry, R.H.; Green, D.W., eds. (1997). 2845: 2843: 2841: 2839: 2803: 1928:and the less volatile component being 1786:For binary mixtures, the ratio of the 2760:NIST Standard Reference Database 103b 1442:values and relative volatility values 7: 2853:Perry's Chemical Engineers' Handbook 2745:(scroll down to Relative Volatility) 3751:Chemical engineering thermodynamics 2906:Chemical Engineering Thermodynamics 2900: 2898: 2683:(includes a collection of VLE data) 2212:= partial pressure of component 1, 1152: 1144: 1130: 1127: 1124: 46:) describes the distribution of a 25: 2919:Chem. Eng. Prog. Symposium Series 2743:University of Newcastle upon Tyne 2578:In the case of a binary mixture, 2128:would be in effect as follows: 1946:Vapor–liquid equilibrium diagrams 447:within the liquid and vapor, and 69:, is often expressed in terms of 3306: 1954:Vapor-Liquid Equilibrium Diagram 1482:vapor–liquid distribution ratios 1247:in a binary mixture as follows: 2575:function of vapor composition. 1072:partial molar Gibbs free energy 178:Pure (single-component) systems 2114:{\displaystyle P_{\text{tot}}} 1904: 1876: 1871: 1843: 1099: 1043: 1002: 950: 923: 737: 711: 681: 655: 622: 596: 580: 554: 497: 461: 436:{\displaystyle T^{\text{vap}}} 409:{\displaystyle T^{\text{liq}}} 378:{\displaystyle P^{\text{vap}}} 351:{\displaystyle P^{\text{liq}}} 306: 284: 1: 3695:Macroscopic quantum phenomena 2879:Separation Process Principles 2856:(7th ed.). McGraw-hill. 2822:(1st ed.). McGraw-hill. 389:within the liquid and vapor, 3705:Order and disorder (physics) 2232:{\displaystyle P_{\text{2}}} 1460:Best-Fit Curve), Mixture of 1361:, pure component 2) or 2343:Clausius–Clapeyron relation 1727:{\displaystyle \gamma _{i}} 112:(vaporization) followed by 3782: 2087: 1445: 1416:minimum-boiling azeotropes 1412:maximum-boiling azeotropes 170: 127:of that component in that 3304: 3034:Thermodynamic equilibrium 2904:Balzhiser et al. (1972), 2816:Kister, Henry Z. (1992). 2477:can become a function of 1189:) Gibbs free energy, and 3730:Thermo-dielectric effect 3629:Enthalpy of vaporization 3323:Bose–Einstein condensate 3187:Distribution coefficient 3131:Hammett acidity function 3110:Liquid–liquid extraction 3019:Le Chatelier's principle 2772:, a small subset of the 2473:, the bubble point  2069:) corner for reference. 1760:The values of the ratio 173:Wong–Sandler mixing rule 63:concentration of a vapor 40:vapor–liquid equilibrium 3624:Enthalpy of sublimation 2739:Distillation Principals 2712:Margules activity model 2676:Continuous distillation 2124:Under such conditions, 1940:continuous distillation 1456:K Values Diagram (with 1423:three-dimensional graph 156:of the liquid mixture. 106:fractional distillation 3639:Latent internal energy 3389:Color-glass condensate 3148:Coordination complexes 3084:Thermodynamic activity 2562:Once the bubble point 2233: 2115: 1955: 1914: 1783: 1775: 1728: 1698: 1625: 1535: 1468: 1307: 1208:Boiling-point diagrams 1172: 1064: 1023: 971: 901: 859: 814:Multicomponent systems 796: 795:{\textstyle \phi =f/P} 744: 688: 629: 513: 477: 437: 410: 379: 352: 322: 262: 220: 3756:Equilibrium chemistry 3449:Magnetically ordered 3160:Dissociation constant 3105:Equilibrium unfolding 2992:Equilibrium chemistry 2234: 2116: 1953: 1915: 1781: 1773: 1729: 1699: 1626: 1536: 1455: 1306:Boiling-point diagram 1305: 1218:boiling-point diagram 1173: 1078:(units of energy per 1065: 1024: 972: 902: 860: 797: 745: 689: 630: 523:(units of energy per 514: 478: 438: 411: 380: 353: 323: 263: 221: 171:Further information: 3328:Fermionic condensate 3069:Predominance diagram 3052:Equilibrium constant 2216: 2098: 2074:McCabe–Thiele method 1804: 1736:activity coefficient 1711: 1644: 1583: 1491: 1089: 1033: 992: 913: 871: 829: 806:, which is 1 for an 804:fugacity coefficient 802:, the dimensionless 772: 698: 642: 541: 487: 451: 420: 393: 362: 335: 274: 232: 189: 153:normal boiling point 36:chemical engineering 3543:Chemical ionization 3435:Programmable matter 3425:Quantum spin liquid 3293:Supercritical fluid 3143:Binding selectivity 3119:Specific equilibria 3029:Reversible reaction 2987:Dynamic equilibrium 2963:Chemical equilibria 2881:. New York: Wiley. 2819:Distillation Design 2254:, relatively inert 2083: 1792:relative volatility 1687: 1615: 1448:Relative volatility 1198:amount of substance 1080:amount of substance 1059: 1018: 966: 939: 525:amount of substance 521:Gibbs free energies 3690:Leidenfrost effect 3619:Enthalpy of fusion 3384:Quark–gluon plasma 3153:Macrocyclic effect 2977:Chemical stability 2917:DePriester, C.L., 2774:Dortmund Data Bank 2754:VLE Thermodynamics 2681:Dortmund Data Bank 2664:Chemical engineers 2229: 2111: 2078:theoretical plates 1956: 1910: 1784: 1776: 1724: 1694: 1673: 1621: 1601: 1531: 1469: 1308: 1200:of component  1168: 1076:chemical potential 1060: 1036: 1019: 995: 967: 943: 916: 897: 855: 792: 740: 684: 625: 509: 473: 433: 406: 375: 348: 318: 258: 216: 73:, which will be a 3738: 3737: 3720:Superheated vapor 3715:Superconductivity 3685:Equation of state 3533:Flash evaporation 3485:Phase transitions 3470:String-net liquid 3363:Photonic molecule 3333:Degenerate matter 3221: 3220: 3199:Common-ion effect 3126:Acid dissociation 3079:Reaction quotient 2997:Equilibrium stage 2888:978-0-471-58626-5 2863:978-0-07-049841-9 2829:978-0-07-034909-4 2741:by Ming T. Tham, 2727:Superheated steam 2707:Van Laar equation 2692:Flash evaporation 2226: 2108: 2052:) corner to the ( 1908: 1835: 1692: 1619: 1529: 1166: 1140: 1135: 1113: 1102: 1057: 1046: 1016: 1005: 964: 953: 937: 926: 894: 881: 852: 839: 708: 652: 593: 551: 506: 500: 470: 464: 430: 403: 372: 345: 315: 309: 293: 287: 255: 242: 212: 199: 16:(Redirected from 3773: 3766:Phases of matter 3675:Compressed fluid 3310: 3255:States of matter 3248: 3241: 3234: 3225: 3138:Binding constant 3024:Phase separation 2956: 2949: 2942: 2933: 2926: 2915: 2909: 2902: 2893: 2892: 2874: 2868: 2867: 2847: 2834: 2833: 2813: 2250:, which are non- 2238: 2236: 2235: 2230: 2228: 2227: 2224: 2120: 2118: 2117: 2112: 2110: 2109: 2106: 2068: 2051: 2031: 2014: 1994: 1985: 1976: 1967: 1937: 1931: 1927: 1919: 1917: 1916: 1911: 1909: 1907: 1903: 1902: 1893: 1888: 1887: 1874: 1870: 1869: 1860: 1855: 1854: 1841: 1836: 1834: 1833: 1824: 1823: 1814: 1797: 1789: 1766: 1752: 1747:partial pressure 1744: 1733: 1731: 1730: 1725: 1723: 1722: 1703: 1701: 1700: 1695: 1693: 1688: 1686: 1681: 1672: 1671: 1661: 1656: 1655: 1630: 1628: 1627: 1622: 1620: 1614: 1609: 1600: 1595: 1594: 1569: 1565: 1561: 1557: 1550: 1540: 1538: 1537: 1532: 1530: 1528: 1527: 1518: 1517: 1508: 1503: 1502: 1479: 1403: 1393: 1380: 1370: 1360: 1350: 1326: 1322: 1313: 1298: 1266: 1246: 1238:, is related to 1237: 1228: 1203: 1195: 1184: 1177: 1175: 1174: 1169: 1167: 1165: 1164: 1163: 1150: 1142: 1138: 1137: 1136: 1134: 1133: 1121: 1116: 1111: 1110: 1109: 1104: 1103: 1095: 1069: 1067: 1066: 1061: 1058: 1055: 1053: 1048: 1047: 1039: 1028: 1026: 1025: 1020: 1017: 1014: 1012: 1007: 1006: 998: 987: 983: 976: 974: 973: 968: 965: 962: 960: 955: 954: 946: 938: 935: 933: 928: 927: 919: 906: 904: 903: 898: 896: 895: 892: 883: 882: 879: 864: 862: 861: 856: 854: 853: 850: 841: 840: 837: 821: 801: 799: 798: 793: 788: 767: 760: 749: 747: 746: 741: 736: 735: 723: 722: 710: 709: 706: 693: 691: 690: 685: 680: 679: 667: 666: 654: 653: 650: 634: 632: 631: 626: 621: 620: 608: 607: 595: 594: 591: 579: 578: 566: 565: 553: 552: 549: 518: 516: 515: 510: 508: 507: 504: 502: 501: 493: 482: 480: 479: 474: 472: 471: 468: 466: 465: 457: 442: 440: 439: 434: 432: 431: 428: 415: 413: 412: 407: 405: 404: 401: 384: 382: 381: 376: 374: 373: 370: 357: 355: 354: 349: 347: 346: 343: 327: 325: 324: 319: 317: 316: 313: 311: 310: 302: 295: 294: 291: 289: 288: 280: 267: 265: 264: 259: 257: 256: 253: 244: 243: 240: 225: 223: 222: 217: 214: 213: 210: 201: 200: 197: 75:partial pressure 48:chemical species 21: 3781: 3780: 3776: 3775: 3774: 3772: 3771: 3770: 3741: 3740: 3739: 3734: 3665:Baryonic matter 3653: 3607: 3578:Saturated fluid 3518:Crystallization 3479: 3453:Antiferromagnet 3393: 3367: 3311: 3302: 3262: 3252: 3222: 3217: 3170:Self-ionization 3114: 3100:Buffer solution 3088: 3038: 2965: 2960: 2930: 2929: 2916: 2912: 2903: 2896: 2889: 2876: 2875: 2871: 2864: 2849: 2848: 2837: 2830: 2815: 2814: 2805: 2800: 2735: 2687:Fenske equation 2672: 2657: 2651: /  2647: 2640: 2633: 2624: 2618: /  2614: 2608: 2601: 2591: 2584: 2557: 2551: /  2547: 2541: 2534: 2527: 2521: /  2517: 2511: 2504: 2490: 2483: 2472: 2457: 2443: 2437: 2427: 2421: 2414: 2397: 2391: 2381: 2371: 2365: 2355: 2329: 2322: 2315: 2311: 2300: 2294: 2287: 2280: 2274: 2267: 2219: 2214: 2213: 2211: 2200: 2194: /  2193: 2186: 2179: 2173: /  2172: 2165: 2151: 2144: 2137: 2101: 2096: 2095: 2092: 2086: 2066: 2059: 2053: 2049: 2042: 2036: 2029: 2022: 2016: 2012: 2005: 1999: 1993: 1987: 1984: 1978: 1975: 1969: 1966: 1960: 1948: 1935: 1929: 1925: 1894: 1879: 1875: 1861: 1846: 1842: 1825: 1815: 1802: 1801: 1795: 1787: 1765: 1761: 1750: 1743: 1739: 1714: 1709: 1708: 1663: 1662: 1647: 1642: 1641: 1586: 1581: 1580: 1567: 1563: 1559: 1556: 1552: 1549: 1545: 1519: 1509: 1494: 1489: 1488: 1477: 1450: 1444: 1401: 1395: 1391: 1385: 1378: 1372: 1368: 1362: 1358: 1352: 1348: 1342: 1336:dew point curve 1324: 1321: 1315: 1311: 1296: 1287: 1280: 1274: 1264: 1257: 1251: 1245: 1239: 1236: 1230: 1227: 1221: 1210: 1201: 1194: 1190: 1182: 1155: 1151: 1143: 1092: 1087: 1086: 1031: 1030: 990: 989: 985: 981: 911: 910: 887: 874: 869: 868: 845: 832: 827: 826: 819: 816: 770: 769: 766: 762: 759: 755: 727: 714: 701: 696: 695: 671: 658: 645: 640: 639: 612: 599: 586: 570: 557: 544: 539: 538: 490: 485: 484: 454: 449: 448: 423: 418: 417: 396: 391: 390: 365: 360: 359: 338: 333: 332: 299: 277: 272: 271: 248: 235: 230: 229: 205: 192: 187: 186: 180: 175: 162: 28: 23: 22: 18:Saturated fluid 15: 12: 11: 5: 3779: 3777: 3769: 3768: 3763: 3758: 3753: 3743: 3742: 3736: 3735: 3733: 3732: 3727: 3722: 3717: 3712: 3707: 3702: 3697: 3692: 3687: 3682: 3677: 3672: 3667: 3661: 3659: 3655: 3654: 3652: 3651: 3646: 3644:Trouton's rule 3641: 3636: 3631: 3626: 3621: 3615: 3613: 3609: 3608: 3606: 3605: 3600: 3595: 3590: 3585: 3580: 3575: 3570: 3565: 3560: 3555: 3550: 3545: 3540: 3535: 3530: 3525: 3520: 3515: 3513:Critical point 3510: 3505: 3500: 3495: 3489: 3487: 3481: 3480: 3478: 3477: 3472: 3467: 3466: 3465: 3460: 3455: 3447: 3442: 3437: 3432: 3427: 3422: 3417: 3415:Liquid crystal 3412: 3407: 3401: 3399: 3395: 3394: 3392: 3391: 3386: 3381: 3375: 3373: 3369: 3368: 3366: 3365: 3360: 3355: 3350: 3348:Strange matter 3345: 3343:Rydberg matter 3340: 3335: 3330: 3325: 3319: 3317: 3313: 3312: 3305: 3303: 3301: 3300: 3295: 3290: 3281: 3276: 3270: 3268: 3264: 3263: 3253: 3251: 3250: 3243: 3236: 3228: 3219: 3218: 3216: 3215: 3214: 3213: 3203: 3202: 3201: 3191: 3190: 3189: 3179: 3178: 3177: 3167: 3162: 3157: 3156: 3155: 3145: 3140: 3135: 3134: 3133: 3122: 3120: 3116: 3115: 3113: 3112: 3107: 3102: 3096: 3094: 3090: 3089: 3087: 3086: 3081: 3076: 3071: 3066: 3061: 3060: 3059: 3048: 3046: 3040: 3039: 3037: 3036: 3031: 3026: 3021: 3016: 3015: 3014: 3009: 2999: 2994: 2989: 2984: 2979: 2973: 2971: 2967: 2966: 2961: 2959: 2958: 2951: 2944: 2936: 2928: 2927: 2910: 2894: 2887: 2869: 2862: 2835: 2828: 2802: 2801: 2799: 2796: 2795: 2794: 2787: 2782: 2776: 2767: 2757: 2751: 2746: 2734: 2733:External links 2731: 2730: 2729: 2724: 2719: 2714: 2709: 2704: 2699: 2694: 2689: 2684: 2678: 2671: 2668: 2659: 2658: 2655: 2645: 2638: 2631: 2626: 2622: 2612: 2606: 2599: 2589: 2582: 2560: 2559: 2555: 2545: 2539: 2532: 2528:,   2525: 2515: 2509: 2502: 2488: 2481: 2470: 2455: 2449: 2448: 2441: 2435: 2425: 2419: 2412: 2403: 2402: 2395: 2389: 2379: 2375:,   2369: 2363: 2353: 2327: 2320: 2313: 2309: 2303: 2302: 2298: 2292: 2285: 2281:,   2278: 2272: 2265: 2222: 2209: 2203: 2202: 2198: 2191: 2184: 2180:,   2177: 2170: 2163: 2154: 2153: 2149: 2142: 2135: 2104: 2088:Main article: 2085: 2082: 2064: 2057: 2047: 2040: 2033: 2032: 2027: 2020: 2010: 2003: 1991: 1982: 1973: 1964: 1947: 1944: 1921: 1920: 1906: 1901: 1897: 1892: 1886: 1882: 1878: 1873: 1868: 1864: 1859: 1853: 1849: 1845: 1839: 1832: 1828: 1822: 1818: 1812: 1809: 1763: 1741: 1721: 1717: 1705: 1704: 1691: 1685: 1680: 1676: 1670: 1666: 1659: 1654: 1650: 1632: 1631: 1618: 1613: 1608: 1604: 1598: 1593: 1589: 1570:respectively. 1562:in the phases 1554: 1547: 1542: 1541: 1526: 1522: 1516: 1512: 1506: 1501: 1497: 1446:Main article: 1443: 1437: 1399: 1389: 1376: 1366: 1356: 1346: 1319: 1300: 1299: 1292: 1285: 1278: 1268: 1267: 1262: 1255: 1243: 1234: 1225: 1209: 1206: 1192: 1179: 1178: 1162: 1158: 1154: 1149: 1146: 1132: 1129: 1126: 1120: 1108: 1101: 1098: 1052: 1045: 1042: 1011: 1004: 1001: 978: 977: 959: 952: 949: 942: 932: 925: 922: 908: 890: 886: 877: 866: 848: 844: 835: 815: 812: 791: 787: 783: 780: 777: 764: 757: 739: 734: 730: 726: 721: 717: 713: 704: 683: 678: 674: 670: 665: 661: 657: 648: 636: 635: 624: 619: 615: 611: 606: 602: 598: 589: 585: 582: 577: 573: 569: 564: 560: 556: 547: 519:are the molar 499: 496: 463: 460: 426: 399: 368: 341: 329: 328: 308: 305: 298: 286: 283: 269: 251: 247: 238: 227: 208: 204: 195: 179: 176: 166:thermodynamics 161: 158: 121:mole fractions 71:vapor pressure 32:thermodynamics 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3778: 3767: 3764: 3762: 3759: 3757: 3754: 3752: 3749: 3748: 3746: 3731: 3728: 3726: 3723: 3721: 3718: 3716: 3713: 3711: 3708: 3706: 3703: 3701: 3700:Mpemba effect 3698: 3696: 3693: 3691: 3688: 3686: 3683: 3681: 3680:Cooling curve 3678: 3676: 3673: 3671: 3668: 3666: 3663: 3662: 3660: 3656: 3650: 3647: 3645: 3642: 3640: 3637: 3635: 3632: 3630: 3627: 3625: 3622: 3620: 3617: 3616: 3614: 3610: 3604: 3603:Vitrification 3601: 3599: 3596: 3594: 3591: 3589: 3586: 3584: 3581: 3579: 3576: 3574: 3571: 3569: 3568:Recombination 3566: 3564: 3563:Melting point 3561: 3559: 3556: 3554: 3551: 3549: 3546: 3544: 3541: 3539: 3536: 3534: 3531: 3529: 3526: 3524: 3521: 3519: 3516: 3514: 3511: 3509: 3508:Critical line 3506: 3504: 3501: 3499: 3498:Boiling point 3496: 3494: 3491: 3490: 3488: 3486: 3482: 3476: 3473: 3471: 3468: 3464: 3461: 3459: 3456: 3454: 3451: 3450: 3448: 3446: 3443: 3441: 3438: 3436: 3433: 3431: 3430:Exotic matter 3428: 3426: 3423: 3421: 3418: 3416: 3413: 3411: 3408: 3406: 3403: 3402: 3400: 3396: 3390: 3387: 3385: 3382: 3380: 3377: 3376: 3374: 3370: 3364: 3361: 3359: 3356: 3354: 3351: 3349: 3346: 3344: 3341: 3339: 3336: 3334: 3331: 3329: 3326: 3324: 3321: 3320: 3318: 3314: 3309: 3299: 3296: 3294: 3291: 3289: 3285: 3282: 3280: 3277: 3275: 3272: 3271: 3269: 3265: 3260: 3256: 3249: 3244: 3242: 3237: 3235: 3230: 3229: 3226: 3212: 3209: 3208: 3207: 3204: 3200: 3197: 3196: 3195: 3192: 3188: 3185: 3184: 3183: 3180: 3176: 3173: 3172: 3171: 3168: 3166: 3163: 3161: 3158: 3154: 3151: 3150: 3149: 3146: 3144: 3141: 3139: 3136: 3132: 3129: 3128: 3127: 3124: 3123: 3121: 3117: 3111: 3108: 3106: 3103: 3101: 3098: 3097: 3095: 3091: 3085: 3082: 3080: 3077: 3075: 3072: 3070: 3067: 3065: 3064:Phase diagram 3062: 3058: 3057:determination 3055: 3054: 3053: 3050: 3049: 3047: 3045: 3041: 3035: 3032: 3030: 3027: 3025: 3022: 3020: 3017: 3013: 3010: 3008: 3005: 3004: 3003: 3000: 2998: 2995: 2993: 2990: 2988: 2985: 2983: 2980: 2978: 2975: 2974: 2972: 2968: 2964: 2957: 2952: 2950: 2945: 2943: 2938: 2937: 2934: 2924: 2920: 2914: 2911: 2907: 2901: 2899: 2895: 2890: 2884: 2880: 2873: 2870: 2865: 2859: 2855: 2854: 2846: 2844: 2842: 2840: 2836: 2831: 2825: 2821: 2820: 2812: 2810: 2808: 2804: 2797: 2792: 2788: 2786: 2783: 2780: 2777: 2775: 2771: 2768: 2765: 2761: 2758: 2755: 2752: 2750: 2747: 2744: 2740: 2737: 2736: 2732: 2728: 2725: 2723: 2720: 2718: 2717:Pervaporation 2715: 2713: 2710: 2708: 2705: 2703: 2700: 2698: 2697:DECHEMA model 2695: 2693: 2690: 2688: 2685: 2682: 2679: 2677: 2674: 2673: 2669: 2667: 2665: 2654: 2650: 2644: 2637: 2630: 2627: 2621: 2617: 2611: 2605: 2598: 2595: 2594: 2593: 2588: 2581: 2576: 2574: 2570: 2565: 2554: 2550: 2544: 2538: 2531: 2524: 2520: 2514: 2508: 2501: 2498: 2497: 2496: 2492: 2487: 2480: 2476: 2469: 2465: 2461: 2454: 2446: 2440: 2434: 2430: 2424: 2418: 2411: 2408: 2407: 2406: 2400: 2394: 2388: 2384: 2378: 2374: 2368: 2362: 2358: 2352: 2349: 2348: 2347: 2344: 2340: 2336: 2331: 2326: 2319: 2308: 2297: 2291: 2284: 2277: 2271: 2264: 2261: 2260: 2259: 2257: 2253: 2249: 2244: 2240: 2220: 2208: 2197: 2190: 2183: 2176: 2169: 2162: 2159: 2158: 2157: 2148: 2141: 2134: 2131: 2130: 2129: 2127: 2122: 2102: 2091: 2081: 2079: 2075: 2070: 2063: 2056: 2046: 2039: 2026: 2019: 2009: 2002: 1998: 1997: 1996: 1990: 1981: 1972: 1963: 1952: 1945: 1943: 1941: 1933: 1899: 1895: 1890: 1884: 1880: 1866: 1862: 1857: 1851: 1847: 1837: 1830: 1826: 1820: 1816: 1810: 1807: 1800: 1799: 1798: 1793: 1780: 1772: 1768: 1758: 1756: 1748: 1737: 1719: 1715: 1689: 1683: 1678: 1674: 1668: 1664: 1657: 1652: 1648: 1640: 1639: 1638: 1637: 1634:For modified 1616: 1611: 1606: 1602: 1596: 1591: 1587: 1579: 1578: 1577: 1576: 1571: 1524: 1520: 1514: 1510: 1504: 1499: 1495: 1487: 1486: 1485: 1484:) defined by 1483: 1474: 1467: 1463: 1459: 1454: 1449: 1441: 1438: 1436: 1433: 1429: 1424: 1419: 1417: 1413: 1409: 1408: 1398: 1388: 1382: 1375: 1365: 1355: 1345: 1339: 1337: 1333: 1331: 1318: 1304: 1295: 1291: 1284: 1277: 1273: 1272: 1271: 1261: 1254: 1250: 1249: 1248: 1242: 1233: 1224: 1219: 1215: 1207: 1205: 1199: 1188: 1160: 1156: 1147: 1118: 1106: 1096: 1085: 1084: 1083: 1081: 1077: 1073: 1050: 1040: 1009: 999: 957: 947: 940: 930: 920: 909: 888: 884: 875: 867: 846: 842: 833: 825: 824: 823: 813: 811: 809: 805: 789: 785: 781: 778: 775: 761:and pressure 753: 732: 728: 724: 719: 715: 702: 676: 672: 668: 663: 659: 646: 617: 613: 609: 604: 600: 587: 583: 575: 571: 567: 562: 558: 545: 537: 536: 535: 533: 528: 526: 522: 494: 458: 446: 424: 397: 388: 366: 339: 303: 296: 281: 270: 249: 245: 236: 228: 206: 202: 193: 185: 184: 183: 177: 174: 169: 167: 164:The field of 159: 157: 155: 154: 148: 147: 146:boiling point 140: 138: 132: 130: 126: 122: 117: 115: 111: 107: 104:, especially 103: 99: 94: 92: 88: 84: 80: 76: 72: 68: 64: 59: 57: 53: 49: 45: 41: 37: 33: 19: 3761:Distillation 3725:Superheating 3598:Vaporization 3593:Triple point 3588:Supercooling 3577: 3553:Lambda point 3503:Condensation 3420:Time crystal 3398:Other states 3338:Quantum Hall 3206:Vapor–liquid 3205: 3093:Applications 2925:, pages 1–43 2922: 2918: 2913: 2905: 2878: 2872: 2852: 2818: 2722:Supercooling 2660: 2652: 2648: 2642: 2635: 2628: 2619: 2615: 2609: 2603: 2596: 2586: 2579: 2577: 2572: 2568: 2563: 2561: 2552: 2548: 2542: 2536: 2529: 2522: 2518: 2512: 2506: 2499: 2493: 2485: 2478: 2474: 2467: 2463: 2459: 2452: 2450: 2444: 2438: 2432: 2428: 2422: 2416: 2409: 2404: 2398: 2392: 2386: 2382: 2376: 2372: 2366: 2360: 2356: 2350: 2338: 2334: 2332: 2324: 2317: 2306: 2304: 2295: 2289: 2282: 2275: 2269: 2262: 2243:Raoult's law 2241: 2206: 2204: 2195: 2188: 2181: 2174: 2167: 2160: 2155: 2146: 2139: 2132: 2126:Dalton's law 2123: 2093: 2090:Raoult's law 2084:Raoult's law 2071: 2061: 2054: 2044: 2037: 2034: 2024: 2017: 2007: 2000: 1988: 1979: 1970: 1961: 1957: 1934: 1922: 1785: 1759: 1706: 1636:Raoult's law 1633: 1575:Raoult's law 1572: 1543: 1470: 1439: 1428:bubble point 1420: 1415: 1411: 1405: 1396: 1386: 1383: 1373: 1363: 1353: 1343: 1340: 1335: 1330:bubble point 1328: 1316: 1309: 1293: 1289: 1282: 1275: 1269: 1259: 1252: 1240: 1231: 1222: 1217: 1211: 1180: 1074:also called 979: 817: 803: 637: 529: 445:temperatures 330: 181: 163: 151: 144: 141: 133: 118: 114:condensation 102:distillation 95: 87:Dalton's law 83:Raoult's law 60: 56:liquid phase 50:between the 43: 39: 29: 3634:Latent heat 3583:Sublimation 3528:Evaporation 3463:Ferromagnet 3458:Ferrimagnet 3440:Dark matter 3372:High energy 3211:Henry's law 3002:Free energy 2702:Hand boiler 2451:At a given 2401:, ... etc. 2301:, ... etc. 1794:denoted by 1473:Henry's law 91:Henry's law 79:temperature 67:equilibrium 52:vapor phase 3745:Categories 3649:Volatility 3612:Quantities 3573:Regelation 3548:Ionization 3523:Deposition 3475:Superglass 3445:Antimatter 3379:QCD matter 3358:Supersolid 3353:Superfluid 3316:Low energy 3194:Solubility 3165:Hydrolysis 3074:Phase rule 2798:References 2558:, ... etc. 2447:+ ... etc. 2201:, ... etc. 2015:and  1462:Chloroform 752:fugacities 3182:Partition 3012:Helmholtz 2982:Chelation 2634:= (1  − 2256:compounds 1808:α 1716:γ 1684:⋆ 1665:γ 1612:⋆ 1432:dew point 1407:azeotrope 1216:called a 1187:extensive 1153:∂ 1145:∂ 1100:¯ 1044:¯ 1003:¯ 951:¯ 924:¯ 808:ideal gas 776:ϕ 498:~ 462:~ 387:pressures 307:~ 285:~ 3710:Spinodal 3658:Concepts 3538:Freezing 3175:of water 2970:Concepts 2670:See also 1755:pressure 1480:values ( 1466:Methanol 1185:is the ( 1070:are the 750:are the 532:fugacity 443:are the 385:are the 3670:Binodal 3558:Melting 3493:Boiling 3410:Crystal 3405:Colloid 2248:alkanes 1753:is the 1745:is the 1734:is the 1458:UNIQUAC 1288:+ ⋯ + 1196:is the 135:1  110:boiling 98:columns 3298:Plasma 3279:Liquid 3044:Models 2885:  2860:  2826:  2585:= 1 − 2305:where 2205:where 1707:where 1544:where 1181:where 1139:  1112:  980:where 638:where 331:where 89:, and 54:and a 38:, the 3288:Vapor 3274:Solid 3267:State 3007:Gibbs 2921:, 7, 2625:, and 2252:polar 2152:+ ... 2060:= 1, 2043:= 0, 1371:(and 1351:(and 1332:curve 1214:graph 907:; and 268:; and 129:phase 125:moles 3259:list 2883:ISBN 2858:ISBN 2824:ISBN 2764:NIST 2484:(or 1986:and 1968:and 1749:and 1573:For 1566:and 1551:and 1430:and 1394:and 1029:and 984:and 694:and 483:and 416:and 358:and 100:for 61:The 34:and 3284:Gas 2656:tot 2623:tot 2556:tot 2526:tot 2471:tot 2456:tot 2413:tot 2312:, P 2199:tot 2178:tot 2136:tot 2107:tot 2067:= 1 2050:= 0 2030:= 1 2023:+ 2013:= 1 2006:+ 1402:= 1 1392:= 0 1379:= 0 1369:= 1 1359:= 1 1349:= 0 1297:= 1 1281:+ 1265:= 1 1258:+ 1056:vap 1015:liq 963:vap 936:liq 893:vap 880:liq 851:vap 838:liq 707:vap 651:liq 592:vap 550:liq 505:vap 469:liq 429:vap 402:liq 371:vap 344:liq 314:vap 292:liq 254:vap 241:liq 211:vap 198:liq 137:atm 44:VLE 30:In 3747:: 3286:/ 2923:49 2897:^ 2838:^ 2806:^ 2641:) 2602:= 2564:T' 2535:= 2505:= 2431:+ 2415:= 2385:= 2359:= 2323:, 2288:= 2268:= 2187:= 2166:= 2145:+ 2138:= 2121:. 1932:. 1757:. 1738:, 1338:. 1325:T 1312:T 1204:. 810:. 93:. 85:, 58:. 3261:) 3257:( 3247:e 3240:t 3233:v 2955:e 2948:t 2941:v 2908:. 2891:. 2866:. 2832:. 2766:) 2653:P 2649:T 2646:2 2643:P 2639:1 2636:x 2632:2 2629:y 2620:P 2616:T 2613:1 2610:P 2607:1 2604:x 2600:1 2597:y 2590:1 2587:x 2583:2 2580:x 2573:T 2569:T 2553:P 2549:T 2546:2 2543:P 2540:2 2537:x 2533:2 2530:y 2523:P 2519:T 2516:1 2513:P 2510:1 2507:x 2503:1 2500:y 2489:2 2486:x 2482:1 2479:x 2475:T 2468:P 2464:T 2460:T 2453:P 2445:T 2442:2 2439:P 2436:2 2433:x 2429:T 2426:1 2423:P 2420:1 2417:x 2410:P 2399:T 2396:2 2393:P 2390:2 2387:x 2383:T 2380:2 2377:P 2373:T 2370:1 2367:P 2364:1 2361:x 2357:T 2354:1 2351:P 2339:T 2335:P 2328:2 2325:x 2321:1 2318:x 2314:2 2310:1 2307:P 2299:2 2296:P 2293:2 2290:x 2286:2 2283:P 2279:1 2276:P 2273:1 2270:x 2266:1 2263:P 2225:2 2221:P 2210:1 2207:P 2196:P 2192:2 2189:P 2185:2 2182:y 2175:P 2171:1 2168:P 2164:1 2161:y 2150:2 2147:P 2143:1 2140:P 2133:P 2103:P 2065:1 2062:y 2058:1 2055:x 2048:1 2045:y 2041:1 2038:x 2028:2 2025:y 2021:1 2018:y 2011:2 2008:x 2004:1 2001:x 1992:2 1989:y 1983:1 1980:y 1974:2 1971:x 1965:1 1962:x 1936:K 1930:j 1926:i 1905:) 1900:j 1896:x 1891:/ 1885:j 1881:y 1877:( 1872:) 1867:i 1863:x 1858:/ 1852:i 1848:y 1844:( 1838:= 1831:j 1827:K 1821:i 1817:K 1811:= 1796:α 1788:K 1764:i 1762:K 1751:P 1742:i 1740:P 1720:i 1690:P 1679:i 1675:P 1669:i 1658:= 1653:i 1649:K 1617:P 1607:i 1603:P 1597:= 1592:i 1588:K 1568:x 1564:y 1560:i 1555:i 1553:x 1548:i 1546:y 1525:i 1521:x 1515:i 1511:y 1505:= 1500:i 1496:K 1478:K 1464:/ 1440:K 1400:1 1397:x 1390:1 1387:x 1377:2 1374:x 1367:1 1364:x 1357:2 1354:x 1347:1 1344:x 1320:1 1317:x 1294:n 1290:x 1286:2 1283:x 1279:1 1276:x 1263:2 1260:x 1256:1 1253:x 1244:1 1241:x 1235:2 1232:x 1226:1 1223:x 1202:i 1193:i 1191:n 1183:G 1161:i 1157:n 1148:G 1131:f 1128:e 1125:d 1119:= 1107:i 1097:G 1051:i 1041:G 1010:i 1000:G 986:T 982:P 958:i 948:G 941:= 931:i 921:G 889:T 885:= 876:T 865:; 847:P 843:= 834:P 820:i 790:P 786:/ 782:f 779:= 765:s 763:P 758:s 756:T 738:) 733:s 729:P 725:, 720:s 716:T 712:( 703:f 682:) 677:s 673:P 669:, 664:s 660:T 656:( 647:f 623:) 618:s 614:P 610:, 605:s 601:T 597:( 588:f 584:= 581:) 576:s 572:P 568:, 563:s 559:T 555:( 546:f 495:G 459:G 425:T 398:T 367:P 340:P 304:G 297:= 282:G 250:T 246:= 237:T 226:; 207:P 203:= 194:P 42:( 20:)

Index

Saturated fluid
thermodynamics
chemical engineering
chemical species
vapor phase
liquid phase
concentration of a vapor
equilibrium
vapor pressure
partial pressure
temperature
Raoult's law
Dalton's law
Henry's law
columns
distillation
fractional distillation
boiling
condensation
mole fractions
moles
phase
atm
boiling point
normal boiling point
thermodynamics
Wong–Sandler mixing rule
pressures
temperatures
Gibbs free energies

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.