Knowledge (XXG)

Scalar potential

Source 📝

73: 2076: 1111: 1628:(whose axis of rotation is perpendicular to the surface), then the vortex causes a depression in the pressure field. The surface of the liquid inside the vortex is pulled downwards as are any surfaces of equal pressure, which still remain parallel to the liquids surface. The effect is strongest inside the vortex and decreases rapidly with the distance from the vortex axis. 2891: 3014: 1894: 1916: 2530: 884: 557: 1170:
is proportional to altitude. On a contour map, the two-dimensional negative gradient of the altitude is a two-dimensional vector field, whose vectors are always perpendicular to the contours and also perpendicular to the direction of gravity. But on the hilly region represented by the contour map,
2705: 1620:
Since buoyant force points upwards, in the direction opposite to gravity, then pressure in the fluid increases downwards. Pressure in a static body of water increases proportionally to the depth below the surface of the water. The surfaces of constant pressure are planes parallel to the surface,
239: 1747: 1103: 1554:: altitude on a contour map is not exactly a two-dimensional potential field. The magnitudes of forces are different, but the directions of the forces are the same on a contour map as well as on the hilly region of the Earth's surface represented by the contour map. 2410: 1016: 1355: 736: 2405: 125: 375: 2071:{\displaystyle \mathbf {E} =-\mathbf {\nabla } \Phi =-{\frac {1}{4\pi }}\mathbf {\nabla } \int _{\mathbb {R} ^{3}}{\frac {\operatorname {div} \mathbf {E} (\mathbf {r} ')}{\left\|\mathbf {r} -\mathbf {r} '\right\|}}\,dV(\mathbf {r} ')} 2685: 2182: 1536: 2266: 1566:, a fluid in equilibrium, but in the presence of a uniform gravitational field is permeated by a uniform buoyant force that cancels out the gravitational force: that is how the fluid maintains its equilibrium. This 2886:{\displaystyle \Phi (\mathbf {r} )=-{\frac {1}{n\omega _{n}}}\int _{\mathbb {R} ^{n}}{\frac {\mathbf {E} (\mathbf {r} ')\cdot (\mathbf {r} -\mathbf {r} ')}{\|\mathbf {r} -\mathbf {r} '\|^{n}}}\,dV(\mathbf {r} ').} 2329: 2579: 1693: 1444: 1238: 459: 1889:{\displaystyle \Phi (\mathbf {r} )={\frac {1}{4\pi }}\int _{\mathbb {R} ^{3}}{\frac {\operatorname {div} \mathbf {E} (\mathbf {r} ')}{\left\|\mathbf {r} -\mathbf {r} '\right\|}}\,dV(\mathbf {r} ')} 912: 503: 1256: 1185:
of the hill's surface, which cancels out the component of gravity perpendicular to the hill's surface. The component of gravity that remains to move the ball is parallel to the surface:
1616: 2346: 1631:
The buoyant force due to a fluid on a solid object immersed and surrounded by that fluid can be obtained by integrating the negative pressure gradient along the surface of the object:
2595: 1731: 30:
This article is about a general description of a function used in mathematics and physics to describe conservative fields. For the scalar potential of electromagnetism, see
2118: 2525:{\displaystyle \nabla \operatorname {div} (\mathbf {E} *\Gamma )=\nabla ^{2}(\mathbf {E} *\Gamma )=\mathbf {E} *\nabla ^{2}\Gamma =-\mathbf {E} *\delta =-\mathbf {E} } 2935:
valid for Cartesian coordinates, other coordinate systems such as cylindrical or spherical coordinates will have more complicated representations, derived from the
1449: 1156: 292: 53:
of an object in two different positions depends only on the positions, not upon the path taken by the object in traveling from one position to the other. It is a
879:{\displaystyle V(\mathbf {r} )=-\int _{C}\mathbf {F} (\mathbf {r} )\cdot \,d\mathbf {r} =-\int _{a}^{b}\mathbf {F} (\mathbf {r} (t))\cdot \mathbf {r} '(t)\,dt,} 2207: 234:{\displaystyle \mathbf {F} =-\nabla P=-\left({\frac {\partial P}{\partial x}},{\frac {\partial P}{\partial y}},{\frac {\partial P}{\partial z}}\right),} 2285: 2538: 1634: 1390: 1188: 1071:. Scalar potential is not determined by the vector field alone: indeed, the gradient of a function is unaffected if a constant is added to it. If 2906: 2969: 3044: 529:
so that it can be expressed as the gradient of a scalar function. The third condition re-expresses the second condition in terms of the
263:. In some cases, mathematicians may use a positive sign in front of the gradient to define the potential. Because of this definition of 1577: 419: 667: 72: 470: 257: 3018: 654:
in physics. Examples of non-conservative forces include frictional forces, magnetic forces, and in fluid mechanics a
891: 1736: 685: 646: 550: 286:
to be described in terms of a scalar potential only, any of the following equivalent statements have to be true:
3039: 1097: 1011:{\displaystyle \mathbf {r} (t),a\leq t\leq b,\mathbf {r} (a)=\mathbf {r_{0}} ,\mathbf {r} (b)=\mathbf {r} .} 659: 513: 1129: 1114:
Plot of a two-dimensional slice of the gravitational potential in and around a uniform spherical body. The
2334: 516: 1350:{\displaystyle \mathbf {F} _{\mathrm {P} }=-mg\ \sin \theta \ \cos \theta =-{1 \over 2}mg\sin 2\theta .} 630: 556: 662:
theorem however, all vector fields can be describable in terms of a scalar potential and corresponding
1707: 2201: 2189: 626: 582: 66: 62: 42: 3034: 2400:{\displaystyle \nabla ^{2}\mathbf {G} =\mathbf {\nabla } (\mathbf {\nabla } \cdot {}\mathbf {G} ).} 2185: 2085: 1123: 704: 634: 598: 707: 694: 666:. In electrodynamics, the electromagnetic scalar and vector potentials are known together as the 651: 605:. The electric potential is in this case the electrostatic potential energy per unit charge. In 590: 530: 31: 540: 2698:-ball. The proof is identical. Alternatively, integration by parts (or, more rigorously, the 2965: 638: 574: 370:{\displaystyle -\int _{a}^{b}\mathbf {F} \cdot d\mathbf {l} =P(\mathbf {b} )-P(\mathbf {a} ),} 2936: 2901: 2193: 1115: 1044: 663: 622: 509: 101: 50: 2987:
for an example where the potential is defined without a negative. Other references such as
2985: 2680:{\displaystyle \Gamma (\mathbf {r} )={\frac {1}{n(n-2)\omega _{n}\|\mathbf {r} \|^{n-2}}}} 1563: 1102: 614: 602: 88: 610: 606: 594: 586: 573:
Scalar potentials play a prominent role in many areas of physics and engineering. The
1166:
is the height above the surface. This means that gravitational potential energy on a
3028: 2911: 2177:{\displaystyle \Gamma (\mathbf {r} )={\frac {1}{4\pi }}{\frac {1}{\|\mathbf {r} \|}}} 730: 618: 1182: 578: 462: 110: 106: 54: 1380:
be the uniform interval of altitude between contours on the contour map, and let
1181:. However, a ball rolling down a hill cannot move directly downwards due to the 2699: 2269: 1167: 256:
and the second part of the equation is minus the gradient for a function of the
58: 17: 1110: 2096: 1531:{\displaystyle F_{P}=-mg{\Delta x\,\Delta h \over \Delta x^{2}+\Delta h^{2}}.} 655: 378: 577:
is the scalar potential associated with the gravity per unit mass, i.e., the
83: 35: 2088:
and vanishes asymptotically to zero towards infinity, decaying faster than
277:
at that point, its magnitude is the rate of that decrease per unit length.
3013: 581:
due to the field, as a function of position. The gravity potential is the
2261:{\displaystyle \nabla ^{2}\Gamma (\mathbf {r} )+\delta (\mathbf {r} )=0.} 1571: 1567: 249: 2333:
Indeed, convolution of an irrotational vector field with a rotationally
644:
Not every vector field has a scalar potential. Those that do are called
461:
where the integral is over any simple closed path, otherwise known as a
92: 1625: 1538:
However, on a contour map, the gradient is inversely proportional to
1101: 555: 2324:{\displaystyle \Phi =\operatorname {div} (\mathbf {E} *\Gamma ).} 2574:{\displaystyle \Phi =\operatorname {div} (\mathbf {E} *\Gamma )} 637:. Further, the scalar potential is the fundamental quantity in 1688:{\displaystyle F_{B}=-\oint _{S}\nabla p\cdot \,d\mathbf {S} .} 76:
Vector field (right) and corresponding scalar potential (left).
1439:{\displaystyle \theta =\tan ^{-1}{\frac {\Delta h}{\Delta x}}} 1175:
always points straight downwards in the direction of gravity;
613:
have a scalar potential only in the special case when it is a
99:
is frequently omitted if there is no danger of confusion with
1233:{\displaystyle \mathbf {F} _{\mathrm {S} }=-mg\ \sin \theta } 27:
When potential energy difference depends only on displacement
65:) that depends only on its location. A familiar example is 1075:
is defined in terms of the line integral, the ambiguity of
1621:
which can be characterized as the plane of zero pressure.
1079:
reflects the freedom in the choice of the reference point
273:
at any point is the direction of the steepest decrease of
2105:
likewise vanishes towards infinity, decaying faster than
560:
Gravitational potential well of an increasing mass where
512:
and is true for any vector field that is a gradient of a
2337:
is also irrotational. For an irrotational vector field
454:{\displaystyle \oint \mathbf {F} \cdot d\mathbf {l} =0,} 1065:
is a scalar potential of the conservative vector field
2708: 2598: 2541: 2413: 2349: 2288: 2210: 2121: 1919: 1750: 1710: 1637: 1580: 1452: 1393: 1259: 1191: 1132: 1126:
near the Earth's surface. It has a potential energy
915: 739: 473: 422: 295: 128: 1118:
of the cross-section are at the surface of the body.
1106:
uniform gravitational field near the Earth's surface
1020:
The fact that the line integral depends on the path
49:
describes the situation where the difference in the
2268:Then the scalar potential is the divergence of the 1907:is an infinitesimal volume element with respect to 2885: 2679: 2573: 2524: 2399: 2323: 2260: 2176: 2070: 1888: 1725: 1687: 1610: 1530: 1438: 1349: 1244:is the angle of inclination, and the component of 1232: 1150: 1010: 878: 497: 453: 369: 233: 498:{\displaystyle {\nabla }\times {\mathbf {F} }=0.} 2999:when solving for a function from its gradient. 625:. The potential play a prominent role in the 549:that satisfies these conditions is said to be 2592:) with the Newtonian potential given then by 1387:be the distance between two contours. Then 508:The first of these conditions represents the 8: 2845: 2823: 2659: 2650: 2168: 2160: 593:is the scalar potential associated with the 523:. The second condition is a requirement of 105:). The scalar potential is an example of a 1611:{\displaystyle \mathbf {f_{B}} =-\nabla p.} 1366:, parallel to the ground, is greatest when 1171:the three-dimensional negative gradient of 267:in terms of the gradient, the direction of 1162:is the gravitational potential energy and 1092:Altitude as gravitational potential energy 2868: 2857: 2848: 2835: 2826: 2809: 2800: 2782: 2773: 2770: 2762: 2758: 2757: 2755: 2742: 2729: 2715: 2707: 2662: 2653: 2644: 2616: 2605: 2597: 2557: 2540: 2517: 2500: 2485: 2473: 2456: 2447: 2426: 2412: 2386: 2384: 2376: 2368: 2360: 2354: 2348: 2304: 2287: 2244: 2227: 2215: 2209: 2163: 2154: 2139: 2128: 2120: 2056: 2045: 2029: 2020: 2002: 1993: 1984: 1976: 1972: 1971: 1969: 1960: 1945: 1931: 1920: 1918: 1874: 1863: 1847: 1838: 1820: 1811: 1802: 1794: 1790: 1789: 1787: 1768: 1757: 1749: 1717: 1713: 1712: 1709: 1677: 1673: 1658: 1642: 1636: 1586: 1581: 1579: 1516: 1500: 1484: 1475: 1457: 1451: 1416: 1404: 1392: 1316: 1267: 1266: 1261: 1258: 1199: 1198: 1193: 1190: 1131: 1000: 983: 973: 968: 951: 916: 914: 866: 848: 827: 819: 813: 808: 793: 789: 778: 770: 764: 746: 738: 483: 482: 474: 472: 437: 426: 421: 356: 339: 325: 314: 308: 303: 294: 203: 180: 157: 129: 127: 1109: 71: 2952: 2924: 2907:Fundamental theorem of vector analysis 1045:fundamental theorem of line integrals 7: 2931:The second part of this equation is 1043:of a conservative vector field. The 2991:The Calculus with Analytic Geometry 2937:fundamental theorem of the gradient 1698:Scalar potential in Euclidean space 1122:An example is the (nearly) uniform 510:fundamental theorem of the gradient 2709: 2599: 2565: 2542: 2491: 2482: 2464: 2444: 2434: 2414: 2377: 2369: 2351: 2312: 2289: 2221: 2212: 2122: 1961: 1936: 1932: 1751: 1664: 1599: 1509: 1493: 1485: 1478: 1427: 1419: 1268: 1200: 720:with respect to a reference point 475: 214: 206: 191: 183: 168: 160: 140: 25: 2914:(isopotential) lines and surfaces 1702:In 3-dimensional Euclidean space 1024:only through its terminal points 650:, corresponding to the notion of 3012: 2869: 2836: 2827: 2810: 2801: 2783: 2774: 2716: 2654: 2606: 2558: 2518: 2501: 2474: 2457: 2427: 2387: 2361: 2305: 2245: 2228: 2200:is equal to the negative of the 2196:, meaning that the Laplacian of 2164: 2129: 2057: 2030: 2021: 2003: 1994: 1921: 1875: 1848: 1839: 1821: 1812: 1758: 1726:{\displaystyle \mathbb {R} ^{3}} 1678: 1587: 1583: 1545:, which is not similar to force 1262: 1194: 1001: 984: 974: 970: 952: 917: 849: 828: 820: 794: 779: 771: 747: 484: 438: 427: 377:where the integration is over a 357: 340: 326: 315: 130: 541:fundamental theorem of the curl 67:potential energy due to gravity 2877: 2864: 2818: 2797: 2791: 2778: 2720: 2712: 2637: 2625: 2610: 2602: 2585:-dimensional Euclidean space ( 2568: 2554: 2467: 2453: 2437: 2423: 2391: 2373: 2315: 2301: 2249: 2241: 2232: 2224: 2133: 2125: 2065: 2052: 2039: 2016: 2011: 1998: 1883: 1870: 1857: 1834: 1829: 1816: 1762: 1754: 994: 988: 962: 956: 927: 921: 863: 857: 841: 838: 832: 824: 783: 775: 751: 743: 668:electromagnetic four-potential 583:gravitational potential energy 361: 353: 344: 336: 1: 1735:, the scalar potential of an 1624:If the liquid has a vertical 1558:Pressure as buoyant potential 1051:is defined in this way, then 2964:(2 ed.). pp. 3–4. 2535:More generally, the formula 1570:is the negative gradient of 1253:perpendicular to gravity is 87:is a fundamental concept in 729:is defined in terms of the 703:), and its components have 3061: 3045:Scalar physical quantities 2993:(5 ed.), p. 1199 2694:is the volume of the unit 1095: 1041:path independence property 617:. Certain aspects of the 61:: a directionless value ( 34:. For all other uses, see 29: 2700:properties of convolution 2115:Written another way, let 1737:irrotational vector field 686:conservative vector field 2343:, it can be shown that 674:Integrability conditions 1098:Gravitational potential 660:Helmholtz decomposition 658:velocity field. By the 122:is defined such that: 118:, the scalar potential 2887: 2681: 2575: 2526: 2401: 2325: 2262: 2178: 2072: 1890: 1727: 1689: 1612: 1532: 1440: 1351: 1234: 1152: 1119: 1107: 1012: 880: 621:can be described by a 570: 499: 455: 408:evaluated at location 381:passing from location 371: 235: 77: 2995:avoid using the term 2888: 2682: 2576: 2527: 2402: 2326: 2263: 2179: 2073: 1891: 1728: 1690: 1613: 1533: 1441: 1352: 1235: 1153: 1151:{\displaystyle U=mgh} 1113: 1105: 1013: 881: 559: 500: 456: 372: 258:Cartesian coordinates 236: 75: 3021:at Wikimedia Commons 2960:Goldstein, Herbert. 2706: 2596: 2539: 2411: 2347: 2286: 2208: 2202:Dirac delta function 2190:fundamental solution 2119: 2078:This holds provided 1917: 1748: 1708: 1635: 1578: 1450: 1391: 1257: 1189: 1130: 1039:is, in essence, the 913: 737: 471: 420: 293: 126: 43:mathematical physics 2962:Classical Mechanics 2335:invariant potential 2186:Newtonian potential 1124:gravitational field 818: 708:partial derivatives 635:classical mechanics 599:electrostatic force 585:per unit mass. In 313: 2883: 2677: 2571: 2522: 2397: 2321: 2258: 2174: 2068: 1886: 1723: 1685: 1608: 1528: 1436: 1347: 1230: 1148: 1120: 1108: 1008: 876: 804: 652:conservative force 591:electric potential 571: 543:. A vector field 495: 451: 367: 299: 231: 78: 51:potential energies 32:electric potential 3017:Media related to 2971:978-0-201-02918-5 2855: 2749: 2675: 2172: 2152: 2043: 1958: 1861: 1781: 1523: 1434: 1324: 1300: 1288: 1220: 1116:inflection points 639:quantum mechanics 597:, i.e., with the 575:gravity potential 221: 198: 175: 16:(Redirected from 3052: 3019:Scalar potential 3016: 3000: 2994: 2989:Louis Leithold, 2982: 2976: 2975: 2957: 2940: 2929: 2902:Gradient theorem 2892: 2890: 2889: 2884: 2876: 2872: 2856: 2854: 2853: 2852: 2843: 2839: 2830: 2821: 2817: 2813: 2804: 2790: 2786: 2777: 2771: 2769: 2768: 2767: 2766: 2761: 2750: 2748: 2747: 2746: 2730: 2719: 2697: 2693: 2686: 2684: 2683: 2678: 2676: 2674: 2673: 2672: 2657: 2649: 2648: 2617: 2609: 2591: 2584: 2580: 2578: 2577: 2572: 2561: 2531: 2529: 2528: 2523: 2521: 2504: 2490: 2489: 2477: 2460: 2452: 2451: 2430: 2406: 2404: 2403: 2398: 2390: 2385: 2380: 2372: 2364: 2359: 2358: 2342: 2330: 2328: 2327: 2322: 2308: 2281: 2277: 2267: 2265: 2264: 2259: 2248: 2231: 2220: 2219: 2199: 2194:Laplace equation 2183: 2181: 2180: 2175: 2173: 2171: 2167: 2155: 2153: 2151: 2140: 2132: 2111: 2104: 2094: 2083: 2077: 2075: 2074: 2069: 2064: 2060: 2044: 2042: 2038: 2037: 2033: 2024: 2014: 2010: 2006: 1997: 1985: 1983: 1982: 1981: 1980: 1975: 1964: 1959: 1957: 1946: 1935: 1924: 1912: 1906: 1895: 1893: 1892: 1887: 1882: 1878: 1862: 1860: 1856: 1855: 1851: 1842: 1832: 1828: 1824: 1815: 1803: 1801: 1800: 1799: 1798: 1793: 1782: 1780: 1769: 1761: 1743: 1734: 1732: 1730: 1729: 1724: 1722: 1721: 1716: 1694: 1692: 1691: 1686: 1681: 1663: 1662: 1647: 1646: 1617: 1615: 1614: 1609: 1592: 1591: 1590: 1553: 1544: 1537: 1535: 1534: 1529: 1524: 1522: 1521: 1520: 1505: 1504: 1491: 1476: 1462: 1461: 1445: 1443: 1442: 1437: 1435: 1433: 1425: 1417: 1412: 1411: 1386: 1379: 1369: 1365: 1356: 1354: 1353: 1348: 1325: 1317: 1298: 1286: 1273: 1272: 1271: 1265: 1252: 1243: 1239: 1237: 1236: 1231: 1218: 1205: 1204: 1203: 1197: 1180: 1174: 1165: 1161: 1157: 1155: 1154: 1149: 1087: 1078: 1074: 1070: 1064: 1060: 1050: 1047:implies that if 1038: 1032: 1023: 1017: 1015: 1014: 1009: 1004: 987: 979: 978: 977: 955: 920: 908: 902: 889: 885: 883: 882: 877: 856: 852: 831: 823: 817: 812: 797: 782: 774: 769: 768: 750: 728: 719: 683: 664:vector potential 656:solenoidal field 633:formulations of 623:Yukawa potential 569: 553:(conservative). 548: 538: 528: 522: 504: 502: 501: 496: 488: 487: 478: 460: 458: 457: 452: 441: 430: 413: 407: 403: 392: 386: 376: 374: 373: 368: 360: 343: 329: 318: 312: 307: 285: 276: 272: 266: 262: 255: 247: 240: 238: 237: 232: 227: 223: 222: 220: 212: 204: 199: 197: 189: 181: 176: 174: 166: 158: 133: 121: 117: 102:vector potential 47:scalar potential 21: 18:Scalar Potential 3060: 3059: 3055: 3054: 3053: 3051: 3050: 3049: 3040:Vector calculus 3025: 3024: 3009: 3004: 3003: 2988: 2983: 2979: 2972: 2959: 2958: 2954: 2949: 2944: 2943: 2930: 2926: 2921: 2898: 2867: 2844: 2834: 2822: 2808: 2781: 2772: 2756: 2751: 2738: 2734: 2704: 2703: 2695: 2692: 2688: 2658: 2640: 2621: 2594: 2593: 2586: 2582: 2537: 2536: 2481: 2443: 2409: 2408: 2350: 2345: 2344: 2338: 2284: 2283: 2279: 2273: 2211: 2206: 2205: 2197: 2188:. This is the 2159: 2144: 2117: 2116: 2106: 2100: 2089: 2079: 2055: 2028: 2019: 2015: 2001: 1986: 1970: 1965: 1950: 1915: 1914: 1908: 1897: 1873: 1846: 1837: 1833: 1819: 1804: 1788: 1783: 1773: 1746: 1745: 1739: 1711: 1706: 1705: 1703: 1700: 1654: 1638: 1633: 1632: 1582: 1576: 1575: 1564:fluid mechanics 1560: 1552: 1546: 1539: 1512: 1496: 1492: 1477: 1453: 1448: 1447: 1426: 1418: 1400: 1389: 1388: 1381: 1374: 1370:is 45 degrees. 1367: 1364: 1358: 1260: 1255: 1254: 1251: 1245: 1241: 1192: 1187: 1186: 1176: 1172: 1163: 1159: 1128: 1127: 1100: 1094: 1086: 1080: 1076: 1072: 1066: 1062: 1052: 1048: 1034: 1031: 1025: 1021: 969: 911: 910: 904: 901: 895: 887: 847: 760: 735: 734: 727: 721: 715: 679: 676: 615:Laplacian field 611:lamellar fields 609:, irrotational 561: 544: 534: 524: 520: 469: 468: 418: 417: 409: 405: 394: 388: 382: 291: 290: 281: 274: 268: 264: 260: 253: 242: 213: 205: 190: 182: 167: 159: 156: 152: 124: 123: 119: 113: 95:(the adjective 89:vector analysis 39: 28: 23: 22: 15: 12: 11: 5: 3058: 3056: 3048: 3047: 3042: 3037: 3027: 3026: 3023: 3022: 3008: 3007:External links 3005: 3002: 3001: 2977: 2970: 2951: 2950: 2948: 2945: 2942: 2941: 2923: 2922: 2920: 2917: 2916: 2915: 2909: 2904: 2897: 2894: 2882: 2879: 2875: 2871: 2866: 2863: 2860: 2851: 2847: 2842: 2838: 2833: 2829: 2825: 2820: 2816: 2812: 2807: 2803: 2799: 2796: 2793: 2789: 2785: 2780: 2776: 2765: 2760: 2754: 2745: 2741: 2737: 2733: 2728: 2725: 2722: 2718: 2714: 2711: 2690: 2671: 2668: 2665: 2661: 2656: 2652: 2647: 2643: 2639: 2636: 2633: 2630: 2627: 2624: 2620: 2615: 2612: 2608: 2604: 2601: 2570: 2567: 2564: 2560: 2556: 2553: 2550: 2547: 2544: 2520: 2516: 2513: 2510: 2507: 2503: 2499: 2496: 2493: 2488: 2484: 2480: 2476: 2472: 2469: 2466: 2463: 2459: 2455: 2450: 2446: 2442: 2439: 2436: 2433: 2429: 2425: 2422: 2419: 2416: 2396: 2393: 2389: 2383: 2379: 2375: 2371: 2367: 2363: 2357: 2353: 2320: 2317: 2314: 2311: 2307: 2303: 2300: 2297: 2294: 2291: 2257: 2254: 2251: 2247: 2243: 2240: 2237: 2234: 2230: 2226: 2223: 2218: 2214: 2170: 2166: 2162: 2158: 2150: 2147: 2143: 2138: 2135: 2131: 2127: 2124: 2067: 2063: 2059: 2054: 2051: 2048: 2041: 2036: 2032: 2027: 2023: 2018: 2013: 2009: 2005: 2000: 1996: 1992: 1989: 1979: 1974: 1968: 1963: 1956: 1953: 1949: 1944: 1941: 1938: 1934: 1930: 1927: 1923: 1885: 1881: 1877: 1872: 1869: 1866: 1859: 1854: 1850: 1845: 1841: 1836: 1831: 1827: 1823: 1818: 1814: 1810: 1807: 1797: 1792: 1786: 1779: 1776: 1772: 1767: 1764: 1760: 1756: 1753: 1720: 1715: 1699: 1696: 1684: 1680: 1676: 1672: 1669: 1666: 1661: 1657: 1653: 1650: 1645: 1641: 1607: 1604: 1601: 1598: 1595: 1589: 1585: 1559: 1556: 1550: 1527: 1519: 1515: 1511: 1508: 1503: 1499: 1495: 1490: 1487: 1483: 1480: 1474: 1471: 1468: 1465: 1460: 1456: 1432: 1429: 1424: 1421: 1415: 1410: 1407: 1403: 1399: 1396: 1362: 1346: 1343: 1340: 1337: 1334: 1331: 1328: 1323: 1320: 1315: 1312: 1309: 1306: 1303: 1297: 1294: 1291: 1285: 1282: 1279: 1276: 1270: 1264: 1249: 1229: 1226: 1223: 1217: 1214: 1211: 1208: 1202: 1196: 1147: 1144: 1141: 1138: 1135: 1096:Main article: 1093: 1090: 1084: 1029: 1007: 1003: 999: 996: 993: 990: 986: 982: 976: 972: 967: 964: 961: 958: 954: 950: 947: 944: 941: 938: 935: 932: 929: 926: 923: 919: 899: 875: 872: 869: 865: 862: 859: 855: 851: 846: 843: 840: 837: 834: 830: 826: 822: 816: 811: 807: 803: 800: 796: 792: 788: 785: 781: 777: 773: 767: 763: 759: 756: 753: 749: 745: 742: 725: 675: 672: 607:fluid dynamics 595:electric field 587:electrostatics 514:differentiable 506: 505: 494: 491: 486: 481: 477: 466: 450: 447: 444: 440: 436: 433: 429: 425: 415: 366: 363: 359: 355: 352: 349: 346: 342: 338: 335: 332: 328: 324: 321: 317: 311: 306: 302: 298: 230: 226: 219: 216: 211: 208: 202: 196: 193: 188: 185: 179: 173: 170: 165: 162: 155: 151: 148: 145: 142: 139: 136: 132: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3057: 3046: 3043: 3041: 3038: 3036: 3033: 3032: 3030: 3020: 3015: 3011: 3010: 3006: 2998: 2992: 2986: 2981: 2978: 2973: 2967: 2963: 2956: 2953: 2946: 2938: 2934: 2928: 2925: 2918: 2913: 2912:Equipotential 2910: 2908: 2905: 2903: 2900: 2899: 2895: 2893: 2880: 2873: 2861: 2858: 2849: 2840: 2831: 2814: 2805: 2794: 2787: 2763: 2752: 2743: 2739: 2735: 2731: 2726: 2723: 2701: 2669: 2666: 2663: 2645: 2641: 2634: 2631: 2628: 2622: 2618: 2613: 2589: 2562: 2551: 2548: 2545: 2533: 2532:as required. 2514: 2511: 2508: 2505: 2497: 2494: 2486: 2478: 2470: 2461: 2448: 2440: 2431: 2420: 2417: 2394: 2381: 2365: 2355: 2341: 2336: 2331: 2318: 2309: 2298: 2295: 2292: 2276: 2271: 2255: 2252: 2238: 2235: 2216: 2203: 2195: 2191: 2187: 2156: 2148: 2145: 2141: 2136: 2113: 2110: 2103: 2098: 2093: 2087: 2082: 2061: 2049: 2046: 2034: 2025: 2007: 1990: 1987: 1977: 1966: 1954: 1951: 1947: 1942: 1939: 1928: 1925: 1911: 1904: 1900: 1879: 1867: 1864: 1852: 1843: 1825: 1808: 1805: 1795: 1784: 1777: 1774: 1770: 1765: 1742: 1738: 1718: 1697: 1695: 1682: 1674: 1670: 1667: 1659: 1655: 1651: 1648: 1643: 1639: 1629: 1627: 1622: 1618: 1605: 1602: 1596: 1593: 1573: 1569: 1568:buoyant force 1565: 1557: 1555: 1549: 1543: 1525: 1517: 1513: 1506: 1501: 1497: 1488: 1481: 1472: 1469: 1466: 1463: 1458: 1454: 1430: 1422: 1413: 1408: 1405: 1401: 1397: 1394: 1385: 1378: 1371: 1361: 1344: 1341: 1338: 1335: 1332: 1329: 1326: 1321: 1318: 1313: 1310: 1307: 1304: 1301: 1295: 1292: 1289: 1283: 1280: 1277: 1274: 1248: 1227: 1224: 1221: 1215: 1212: 1209: 1206: 1184: 1179: 1169: 1145: 1142: 1139: 1136: 1133: 1125: 1117: 1112: 1104: 1099: 1091: 1089: 1083: 1069: 1059: 1055: 1046: 1042: 1037: 1028: 1018: 1005: 997: 991: 980: 965: 959: 948: 945: 942: 939: 936: 933: 930: 924: 907: 898: 893: 873: 870: 867: 860: 853: 844: 835: 814: 809: 805: 801: 798: 790: 786: 765: 761: 757: 754: 740: 732: 731:line integral 724: 718: 713: 709: 706: 702: 698: 696: 691: 688:(also called 687: 682: 673: 671: 669: 665: 661: 657: 653: 649: 648: 642: 640: 636: 632: 628: 624: 620: 619:nuclear force 616: 612: 608: 604: 600: 596: 592: 588: 584: 580: 576: 568: 564: 558: 554: 552: 547: 542: 537: 532: 527: 519:scalar field 518: 517:single valued 515: 511: 492: 489: 479: 467: 464: 448: 445: 442: 434: 431: 423: 416: 412: 401: 397: 391: 385: 380: 364: 350: 347: 333: 330: 322: 319: 309: 304: 300: 296: 289: 288: 287: 284: 280:In order for 278: 271: 259: 251: 246: 228: 224: 217: 209: 200: 194: 186: 177: 171: 163: 153: 149: 146: 143: 137: 134: 116: 112: 108: 104: 103: 98: 94: 90: 86: 85: 74: 70: 68: 64: 60: 56: 52: 48: 44: 37: 33: 19: 2996: 2990: 2980: 2961: 2955: 2932: 2927: 2587: 2534: 2339: 2332: 2274: 2114: 2108: 2101: 2091: 2080: 1909: 1902: 1898: 1744:is given by 1740: 1701: 1630: 1623: 1619: 1561: 1547: 1541: 1383: 1376: 1372: 1359: 1246: 1183:normal force 1177: 1121: 1081: 1067: 1057: 1053: 1040: 1035: 1026: 1019: 905: 896: 892:parametrized 722: 716: 711: 700: 693: 690:irrotational 689: 680: 677: 647:conservative 645: 643: 579:acceleration 572: 566: 562: 551:irrotational 545: 535: 525: 507: 463:Jordan curve 410: 399: 395: 389: 387:to location 383: 282: 279: 269: 244: 114: 111:vector field 107:scalar field 100: 96: 81: 79: 55:scalar field 46: 40: 2270:convolution 2095:and if the 1357:This force 1168:contour map 631:Hamiltonian 59:three-space 3035:Potentials 3029:Categories 2947:References 2097:divergence 2086:continuous 1061:, so that 894:path from 705:continuous 627:Lagrangian 539:using the 379:Jordan arc 109:. Given a 2997:potential 2846:‖ 2832:− 2824:‖ 2806:− 2795:⋅ 2753:∫ 2740:ω 2727:− 2710:Φ 2667:− 2660:‖ 2651:‖ 2642:ω 2632:− 2600:Γ 2581:holds in 2566:Γ 2563:∗ 2552:⁡ 2543:Φ 2515:− 2509:δ 2506:∗ 2498:− 2492:Γ 2483:∇ 2479:∗ 2465:Γ 2462:∗ 2445:∇ 2435:Γ 2432:∗ 2421:⁡ 2415:∇ 2382:⋅ 2378:∇ 2370:∇ 2352:∇ 2313:Γ 2310:∗ 2299:⁡ 2290:Φ 2239:δ 2222:Γ 2213:∇ 2169:‖ 2161:‖ 2149:π 2123:Γ 2026:− 1991:⁡ 1967:∫ 1962:∇ 1955:π 1943:− 1937:Φ 1933:∇ 1929:− 1844:− 1809:⁡ 1785:∫ 1778:π 1752:Φ 1671:⋅ 1665:∇ 1656:∮ 1652:− 1600:∇ 1597:− 1510:Δ 1494:Δ 1486:Δ 1479:Δ 1467:− 1428:Δ 1420:Δ 1414:⁡ 1406:− 1395:θ 1342:θ 1336:⁡ 1314:− 1308:θ 1305:⁡ 1296:θ 1293:⁡ 1278:− 1228:θ 1225:⁡ 1210:− 943:≤ 937:≤ 845:⋅ 806:∫ 802:− 787:⋅ 762:∫ 758:− 712:potential 701:potential 601:per unit 480:× 476:∇ 432:⋅ 424:∮ 348:− 320:⋅ 301:∫ 297:− 215:∂ 207:∂ 192:∂ 184:∂ 169:∂ 161:∂ 150:− 141:∇ 138:− 84:potential 36:potential 2896:See also 2874:′ 2841:′ 2815:′ 2788:′ 2702:) gives 2062:′ 2040:‖ 2035:′ 2017:‖ 2008:′ 1913:. Then 1880:′ 1858:‖ 1853:′ 1835:‖ 1826:′ 1572:pressure 1446:so that 854:′ 250:gradient 2192:of the 2184:be the 1733:⁠ 1704:⁠ 261:x, y, z 248:is the 93:physics 82:scalar 2968:  2687:where 2590:> 2 2407:Hence 2280:Γ 1896:where 1626:vortex 1299:  1287:  1240:where 1219:  1158:where 886:where 710:, the 603:charge 241:where 97:scalar 63:scalar 2919:Notes 2278:with 890:is a 699:, or 697:-free 684:is a 2984:See 2966:ISBN 2933:only 1373:Let 1056:= –∇ 1033:and 695:curl 629:and 589:the 565:= –∇ 531:curl 393:and 91:and 2549:div 2418:div 2296:div 2272:of 2099:of 2084:is 1988:div 1806:div 1562:In 1402:tan 1333:sin 1302:cos 1290:sin 1222:sin 903:to 714:of 678:If 533:of 404:is 252:of 57:in 41:In 3031:: 2282:: 2256:0. 2204:: 2112:. 2107:1/ 2090:1/ 1910:r' 1903:r' 1899:dV 1574:: 1088:. 909:, 733:: 692:, 670:. 641:. 493:0. 80:A 69:. 45:, 2974:. 2939:. 2881:. 2878:) 2870:r 2865:( 2862:V 2859:d 2850:n 2837:r 2828:r 2819:) 2811:r 2802:r 2798:( 2792:) 2784:r 2779:( 2775:E 2764:n 2759:R 2744:n 2736:n 2732:1 2724:= 2721:) 2717:r 2713:( 2696:n 2691:n 2689:ω 2670:2 2664:n 2655:r 2646:n 2638:) 2635:2 2629:n 2626:( 2623:n 2619:1 2614:= 2611:) 2607:r 2603:( 2588:n 2583:n 2569:) 2559:E 2555:( 2546:= 2519:E 2512:= 2502:E 2495:= 2487:2 2475:E 2471:= 2468:) 2458:E 2454:( 2449:2 2441:= 2438:) 2428:E 2424:( 2395:. 2392:) 2388:G 2374:( 2366:= 2362:G 2356:2 2340:G 2319:. 2316:) 2306:E 2302:( 2293:= 2275:E 2253:= 2250:) 2246:r 2242:( 2236:+ 2233:) 2229:r 2225:( 2217:2 2198:Γ 2165:r 2157:1 2146:4 2142:1 2137:= 2134:) 2130:r 2126:( 2109:r 2102:E 2092:r 2081:E 2066:) 2058:r 2053:( 2050:V 2047:d 2031:r 2022:r 2012:) 2004:r 1999:( 1995:E 1978:3 1973:R 1952:4 1948:1 1940:= 1926:= 1922:E 1905:) 1901:( 1884:) 1876:r 1871:( 1868:V 1865:d 1849:r 1840:r 1830:) 1822:r 1817:( 1813:E 1796:3 1791:R 1775:4 1771:1 1766:= 1763:) 1759:r 1755:( 1741:E 1719:3 1714:R 1683:. 1679:S 1675:d 1668:p 1660:S 1649:= 1644:B 1640:F 1606:. 1603:p 1594:= 1588:B 1584:f 1551:P 1548:F 1542:x 1540:Δ 1526:. 1518:2 1514:h 1507:+ 1502:2 1498:x 1489:h 1482:x 1473:g 1470:m 1464:= 1459:P 1455:F 1431:x 1423:h 1409:1 1398:= 1384:x 1382:Δ 1377:h 1375:Δ 1368:θ 1363:P 1360:F 1345:. 1339:2 1330:g 1327:m 1322:2 1319:1 1311:= 1284:g 1281:m 1275:= 1269:P 1263:F 1250:S 1247:F 1242:θ 1216:g 1213:m 1207:= 1201:S 1195:F 1178:F 1173:U 1164:h 1160:U 1146:h 1143:g 1140:m 1137:= 1134:U 1085:0 1082:r 1077:V 1073:V 1068:F 1063:V 1058:V 1054:F 1049:V 1036:r 1030:0 1027:r 1022:C 1006:. 1002:r 998:= 995:) 992:b 989:( 985:r 981:, 975:0 971:r 966:= 963:) 960:a 957:( 953:r 949:, 946:b 940:t 934:a 931:, 928:) 925:t 922:( 918:r 906:r 900:0 897:r 888:C 874:, 871:t 868:d 864:) 861:t 858:( 850:r 842:) 839:) 836:t 833:( 829:r 825:( 821:F 815:b 810:a 799:= 795:r 791:d 784:) 780:r 776:( 772:F 766:C 755:= 752:) 748:r 744:( 741:V 726:0 723:r 717:F 681:F 567:P 563:F 546:F 536:F 526:F 521:P 490:= 485:F 465:. 449:, 446:0 443:= 439:l 435:d 428:F 414:. 411:b 406:P 402:) 400:b 398:( 396:P 390:b 384:a 365:, 362:) 358:a 354:( 351:P 345:) 341:b 337:( 334:P 331:= 327:l 323:d 316:F 310:b 305:a 283:F 275:P 270:F 265:P 254:P 245:P 243:∇ 229:, 225:) 218:z 210:P 201:, 195:y 187:P 178:, 172:x 164:P 154:( 147:= 144:P 135:= 131:F 120:P 115:F 38:. 20:)

Index

Scalar Potential
electric potential
potential
mathematical physics
potential energies
scalar field
three-space
scalar
potential energy due to gravity

potential
vector analysis
physics
vector potential
scalar field
vector field
gradient
Cartesian coordinates
Jordan arc
Jordan curve
fundamental theorem of the gradient
differentiable
single valued
curl
fundamental theorem of the curl
irrotational

gravity potential
acceleration
gravitational potential energy

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.