Knowledge (XXG)

Schönberg–Chandrasekhar limit

Source 📝

229:, the star leaves the main sequence with a core mass already greater than the Schönberg–Chandrasekhar limit so its core is never isothermal before helium fusion. In the remaining case, where the mass is between 1.5 and 6 solar masses, the core will grow until the limit is reached, at which point it will contract rapidly until helium starts to fuse in the core. 155: 220:
at the center of the star. The star then contracts until hydrogen fuses in a shell surrounding a helium-rich core, both of which are surrounded by an envelope consisting primarily of hydrogen. The core increases in mass as the shell burns its way outwards through the star. If the star's mass is
42:
core that can support an enclosing envelope. It is expressed as the ratio of the core mass to the total mass of the core and envelope. Estimates of the limit depend on the models used and the assumed chemical compositions of the core and envelope; typical values given are from 0.10 to 0.15 (10% to
43:
15% of the total stellar mass). This is the maximum to which a helium-filled core can grow, and if this limit is exceeded, as can only happen in massive stars, the core collapses, releasing energy that causes the outer layers of the star to expand to become a red giant. It is named after the
57: 199: 177: 150:{\displaystyle \operatorname {\left({\frac {\operatorname {M} _{c}}{M}}\right)} _{SC}=0.37\left({\frac {\operatorname {\mu } _{e}}{\operatorname {\mu } _{c}}}\right)^{2}} 306: 225:, the core will become degenerate before the Schönberg–Chandrasekhar limit is reached, and, on the other hand, if the mass is greater than approximately 6 303: 334: 47: 339: 268: 182: 329: 162: 313:, lecture notes, Vik Dhillon, Physics 213, University of Sheffield. Accessed on line April 27, 2007. 213: 51: 17: 310: 44: 323: 284: 31: 248:
The Schoenberg–Chandrasekhar limit: A polytropic approximation, Martin Beech,
226: 222: 39: 217: 256: 54:, who estimated its value in a 1942 paper. They estimated it to be 212:
The Schönberg–Chandrasekhar limit comes into play when fusion in a
28: 273:
The Encyclopedia of Astrobiology, Astronomy, and Spaceflight
185: 165: 60: 275:, David Darling. Accessed on line April 27, 2007. 193: 171: 149: 8: 285:On the Evolution of the Main-Sequence Stars 294:, #2 (September 1942), pp. 161–172. 186: 184: 164: 141: 129: 124: 117: 112: 109: 89: 73: 67: 62: 59: 238: 255:, #2 (August 1988), pp. 219–227. DOI 244: 242: 287:, M. Schönberg and S. Chandrasekhar, 194:{\displaystyle \operatorname {\mu } } 38:is the maximum mass of a non-fusing, 7: 201:is the mean molecular weight, index 172:{\displaystyle \operatorname {M} } 166: 79: 74: 70: 25: 304:the evolution of high-mass stars 250:Astrophysics and Space Science 1: 269:Schönberg–Chandrasekhar limit 205:denotes the core, and index 36:Schönberg–Chandrasekhar limit 18:Schönberg-Chandrasekhar limit 221:less than approximately 1.5 356: 48:Subrahmanyan Chandrasekhar 195: 173: 151: 289:Astrophysical Journal 196: 174: 152: 183: 163: 58: 309:2007-10-13 at the 257:10.1007/BF00645666 214:main-sequence star 191: 169: 147: 335:Stellar astronomy 209:is the envelope. 135: 82: 16:(Redirected from 347: 340:Stellar dynamics 314: 301: 295: 282: 276: 266: 260: 246: 200: 198: 197: 192: 190: 178: 176: 175: 170: 156: 154: 153: 148: 146: 145: 140: 136: 134: 133: 128: 122: 121: 116: 110: 97: 96: 88: 87: 83: 78: 77: 68: 21: 355: 354: 350: 349: 348: 346: 345: 344: 320: 319: 318: 317: 311:Wayback Machine 302: 298: 283: 279: 267: 263: 247: 240: 235: 181: 180: 161: 160: 123: 111: 105: 104: 69: 63: 61: 56: 55: 52:Mario Schönberg 45:astrophysicists 23: 22: 15: 12: 11: 5: 353: 351: 343: 342: 337: 332: 322: 321: 316: 315: 296: 277: 261: 237: 236: 234: 231: 189: 168: 144: 139: 132: 127: 120: 115: 108: 103: 100: 95: 92: 86: 81: 76: 72: 66: 24: 14: 13: 10: 9: 6: 4: 3: 2: 352: 341: 338: 336: 333: 331: 328: 327: 325: 312: 308: 305: 300: 297: 293: 290: 286: 281: 278: 274: 270: 265: 262: 258: 254: 251: 245: 243: 239: 232: 230: 228: 224: 219: 216:exhausts the 215: 210: 208: 204: 187: 179:is the mass, 157: 142: 137: 130: 125: 118: 113: 106: 101: 98: 93: 90: 84: 64: 53: 49: 46: 41: 37: 33: 30: 19: 330:Astrophysics 299: 291: 288: 280: 272: 264: 252: 249: 227:solar masses 223:solar masses 211: 206: 202: 158: 35: 32:astrophysics 26: 324:Categories 233:References 40:isothermal 188:μ 126:μ 114:μ 307:Archived 218:hydrogen 29:stellar 159:where 34:, the 102:0.37 50:and 253:147 27:In 326:: 292:96 271:, 241:^ 259:. 207:e 203:c 167:M 143:2 138:) 131:c 119:e 107:( 99:= 94:C 91:S 85:) 80:M 75:c 71:M 65:( 20:)

Index

Schönberg-Chandrasekhar limit
stellar
astrophysics
isothermal
astrophysicists
Subrahmanyan Chandrasekhar
Mario Schönberg
main-sequence star
hydrogen
solar masses
solar masses


10.1007/BF00645666
Schönberg–Chandrasekhar limit
On the Evolution of the Main-Sequence Stars
the evolution of high-mass stars
Archived
Wayback Machine
Categories
Astrophysics
Stellar astronomy
Stellar dynamics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.