Knowledge

Schur's property

Source 📝

359: 415:
For the group Z (the group of integers under addition), every irreducible representation is 1-dimensional. If V and W are 1-dimensional representations of Z, then Schur’s Lemma implies that any homomorphism between them is an isomorphism (unless the homomorphism is zero, which is not possible in this
406:
Consider the symmetric group S3. This group has irreducible representations of dimensions 1 and 2 over C. If ρ is an irreducible representation of S3 of dimension 1 (trivial representation), then Schur's Lemma tells us that any S3-homomorphism from this representation to any other representation
407:(including itself) is either an isomorphism or zero. In particular, if ρ is a 1-dimensional representation and σ is a 2-dimensional representation, any homomorphism from ρ to σ must be zero because these two representations are not isomorphic. 344: 346:. In other words, the weak and strong topologies share the same convergent sequences. Note however that weak and strong topologies are always distinct in infinite-dimensional space. 150: 263: 222: 83: 283: 185: 123: 103: 105:, then a natural question arises. Does the sequence converge in perhaps a more desirable manner? That is, does the sequence converge to 498: 288: 522: 125:
in norm? A canonical example of this property, and commonly used to illustrate the Schur property, is the
527: 441: 29: 447: 128: 494: 235: 194: 55: 486: 506: 268: 170: 152: 108: 88: 358: 516: 33: 465:
J. Schur, "Über lineare Transformationen in der Theorie der unendlichen Reihen",
425: 25: 17: 393:
of sequences whose series is absolutely convergent has the Schur property.
424:
This property was named after the early 20th century mathematician
509:(2015), Representations of Finite and Compact Groups. Springer. 353: 339:{\displaystyle \lim _{n\to \infty }\Vert x_{n}-x\Vert =0} 370: 291: 271: 238: 197: 173: 131: 111: 91: 58: 338: 277: 257: 216: 179: 144: 117: 97: 77: 293: 224:an arbitrary sequence in the space. We say that 493:, New York Berlin Heidelberg: Springer-Verlag, 467:Journal für die reine und angewandte Mathematik 8: 327: 308: 432:had the above property in his 1921 paper. 315: 296: 290: 270: 246: 237: 205: 196: 172: 136: 130: 110: 90: 66: 57: 396: 458: 444:for a similar property of normed spaces 491:An Introduction to Banach Space Theory 48:When we are working in a normed space 163:Suppose that we have a normed space ( 7: 303: 14: 397:Schur's Property in Group Theory 357: 32:that is satisfied precisely if 300: 252: 239: 211: 198: 72: 59: 40:entails convergence in norm. 1: 544: 145:{\displaystyle \ell _{1}} 85:that converges weakly to 258:{\displaystyle (x_{n})} 217:{\displaystyle (x_{n})} 187:an arbitrary member of 78:{\displaystyle (x_{n})} 52:and we have a sequence 340: 279: 259: 218: 181: 146: 119: 99: 79: 341: 280: 265:converging weakly to 260: 219: 182: 147: 120: 100: 80: 28:, is the property of 487:Megginson, Robert E. 442:Radon-Riesz property 289: 269: 236: 195: 171: 129: 109: 89: 56: 523:Functional analysis 369:. You can help by 336: 307: 275: 255: 214: 177: 142: 115: 95: 75: 473:(1921) pp. 79-111 387: 386: 292: 278:{\displaystyle x} 180:{\displaystyle x} 118:{\displaystyle x} 98:{\displaystyle x} 535: 503: 474: 463: 428:who showed that 382: 379: 361: 354: 345: 343: 342: 337: 320: 319: 306: 284: 282: 281: 276: 264: 262: 261: 256: 251: 250: 230:Schur's property 223: 221: 220: 215: 210: 209: 186: 184: 183: 178: 151: 149: 148: 143: 141: 140: 124: 122: 121: 116: 104: 102: 101: 96: 84: 82: 81: 76: 71: 70: 34:weak convergence 22:Schur's property 543: 542: 538: 537: 536: 534: 533: 532: 513: 512: 501: 485: 482: 477: 464: 460: 456: 448:Schur's theorem 438: 422: 413: 411:Infinite Groups 404: 399: 383: 377: 374: 367:needs expansion 352: 311: 287: 286: 267: 266: 242: 234: 233: 201: 193: 192: 169: 168: 161: 132: 127: 126: 107: 106: 87: 86: 62: 54: 53: 46: 12: 11: 5: 541: 539: 531: 530: 525: 515: 514: 511: 510: 504: 499: 481: 478: 476: 475: 457: 455: 452: 451: 450: 445: 437: 434: 421: 418: 412: 409: 403: 400: 398: 395: 385: 384: 364: 362: 351: 348: 335: 332: 329: 326: 323: 318: 314: 310: 305: 302: 299: 295: 274: 254: 249: 245: 241: 213: 208: 204: 200: 176: 160: 157: 153:sequence space 139: 135: 114: 94: 74: 69: 65: 61: 45: 42: 24:, named after 13: 10: 9: 6: 4: 3: 2: 540: 529: 526: 524: 521: 520: 518: 508: 505: 502: 500:0-387-98431-3 496: 492: 488: 484: 483: 479: 472: 468: 462: 459: 453: 449: 446: 443: 440: 439: 435: 433: 431: 427: 419: 417: 410: 408: 402:Finite Groups 401: 394: 392: 381: 378:February 2021 372: 368: 365:This section 363: 360: 356: 355: 349: 347: 333: 330: 324: 321: 316: 312: 297: 285:implies that 272: 247: 243: 231: 227: 206: 202: 190: 174: 166: 158: 156: 154: 137: 133: 112: 92: 67: 63: 51: 43: 41: 39: 35: 31: 30:normed spaces 27: 23: 19: 490: 470: 466: 461: 429: 423: 414: 405: 390: 388: 375: 371:adding to it 366: 229: 225: 188: 164: 162: 49: 47: 37: 21: 15: 528:Issai Schur 426:Issai Schur 26:Issai Schur 18:mathematics 517:Categories 480:References 389:The space 167:, ||·||), 159:Definition 44:Motivation 507:Simon, B. 328:‖ 322:− 309:‖ 304:∞ 301:→ 134:ℓ 38:sequences 489:(1998), 436:See also 350:Examples 416:case). 497:  191:, and 454:Notes 495:ISBN 420:Name 228:has 471:151 373:. 294:lim 232:if 36:of 16:In 519:: 469:, 155:. 20:, 430:ℓ 391:ℓ 380:) 376:( 334:0 331:= 325:x 317:n 313:x 298:n 273:x 253:) 248:n 244:x 240:( 226:X 212:) 207:n 203:x 199:( 189:X 175:x 165:X 138:1 113:x 93:x 73:) 68:n 64:x 60:( 50:X

Index

mathematics
Issai Schur
normed spaces
weak convergence
sequence space

adding to it
Issai Schur
Radon-Riesz property
Schur's theorem
Megginson, Robert E.
ISBN
0-387-98431-3
Simon, B.
Categories
Functional analysis
Issai Schur

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.