Knowledge (XXG)

Sea urchin skeletogenesis

Source đź“ť

92:. The filopodia are 250 nm in diameter and 25 um long. At this point, the filopodia appear to move randomly along the surface of the inner blastocoel, making and breaking filopodial connections to the blastocoel wall. During the gastrula stage, once the blastopore has formed, the PMCs are localized within the prospective ventrolateral (from front to side) region of the blastocoel. It is here that they fuse into 80:
embryo, skeletal elements are exclusively produced by PMCs. Due to their nature in giving rise to the larval skeleton, they are sometimes called the skeletogenic mesenchyme. Certain SMCs have a skeletogenic potential, however, signals transmitted by the PMCs suppress this potential in the SMCs and
157:
The extent to which the molecular mechanisms underlying skeletogenesis in larval sea urchins has been characterized has led to comparative evolutionary developmental studies in distantly-related sea urchins, as well as other echinoderms, with the aim of understanding how this character has evolved.
145:
proteins has yet to be fully elucidated, but it is thought that they may function in the nucleation or orientation of crystal growth. It has also been found that the msp130 gene exhibits a complex pattern of spatial regulation within the PMC syncytium during skeletogenesis. It is suggested that the
131:
is also found associated with the syncytia and blastocoel wall. From gastrula to pluteus stages the skeleton grows in both size and complexity. Once the organism undergoes metamorphosis to form the juvenile sea urchin, the larval skeleton is “lost”, making its existence critical yet seemingly
174:
driving skeletogenic specification. However, there are also striking similarities in the signaling systems that position these cells in the embryo. Despite differences in timing of mesodermal ingression into the blastocoel and spatiotemporal differences in transcription factor gene expression,
144:
which has been implicated in calcium uptake and deposition, and SM50, SM30, and PM27 which are three proteins of the spicule matrix. SM50 and PM27 are thought to be structurally similar, nonglycosylated, basic proteins whereas SM30 is an acidic glycoprotein. The specific roles of these matrix
132:
transient in the overall life cycle of the sea urchin. The skeleton of the pluteus does, however, give rise to the spines of the juvenile sea urchin. These spines usually measure 1-3 centimeters in length and 1-2 millimeters thick, and in some species, may be poisonous.
175:
ancestral state reconstruction of genes critical to the specification of sea urchin skeletogenic cells supports the homology of this cell type, suggesting it arose some time before the divergence of cidaroids and euechinoids over 268 million years ago.
512:
Erkenbrack, E. M.; Ako-Asare, K.; Miller, E.; Tekelenburg, S.; Thompson, J. R.; Romano, L. (2016). "Ancestral state reconstruction by comparative analysis of a GRN kernel operating in echinoderms".
622:"A conserved role for VEGF signaling in specification of homologous mesenchymal cell types positioned at spatially distinct developmental addresses in early development of sea urchins" 349:"Skeletal morphogenesis in the sea urchin embryo: regulation of primary mesenchyme gene expression and skeletal rod growth by ectoderm-derived cues" 298:
Ettensohn CA, Ruffins SW. (1993). "Mesodermal cell interactions in the sea urchin embryo: properties of skeletogenic secondary mesenchyme cells".
149:
may play a role in controlling skeletal morphogenesis by regulating the expression of PMC-specific gene products involved in spicule biogenesis.
34:. The larval sea urchin does not resemble its adult form, because the sea urchin is an indirect developer, meaning its larva form must undergo 61: 812: 76:
cells in the sea urchin embryo, PMCs and secondary mesenchyme cells (SMCs), that regulates SMC fates and the process of skeletogenesis. In a
449:"Reorganization of sea urchin gene regulatory networks at least 268 million years ago as revealed by oldest fossil cidaroid echinoid" 279: 140:
The molecular mechanisms of skeletogenesis involve several PMC-specific gene products. These include Msp30, a sulfate cell-surface
447:
Thompson, Jeffrey R.; Petsios, Elizabeth; Davidson, Eric H.; Erkenbrack, Eric M.; Gao, Feng; Bottjer, David J. (2015-10-21).
163: 40: 736:"Paleogenomics of echinoids reveals an ancient origin for the double-negative specification of micromeres in sea urchins" 565:"Conserved regulatory state expression controlled by divergent developmental gene regulatory networks in echinoids" 272: 171: 621: 158:
These studies, and others, have revealed that numerous differences have arisen during the evolution of the
679:"Cell type phylogenetics informs the evolutionary origin of echinoderm larval skeletogenic cell identity" 734:
Thompson, J. R.; Erkenbrack, E. M.; Hinman, V. F.; McCauley, B. R.; Petsios, E.; Bottjer, D. J. (2017).
167: 747: 633: 460: 401: 128: 390:"Evolutionary rewiring of gene regulatory network linkages at divergence of the echinoid subclasses" 807: 545: 30:
and is of equal, although transient, importance in the development of the sea urchin, a marine
783: 765: 716: 698: 659: 651: 602: 584: 537: 529: 494: 476: 429: 370: 315: 275: 241: 236:
Ettensohn CA. (1992). "Cell interactions and mesodermal cell fates in the sea urchin embryo".
218: 120: 97: 773: 755: 706: 690: 641: 592: 576: 521: 484: 468: 419: 409: 360: 307: 264: 210: 38:
to form the juvenile adult. Here, the focus is on skeletogenesis in the sea urchin species
751: 637: 464: 405: 778: 735: 711: 678: 597: 564: 489: 448: 424: 389: 801: 116: 60:
cells (PMCs), the sole descendants of the large micromere daughter cells, undergo an
35: 23: 549: 141: 69: 31: 127:. Upon reaching the pluteus stage (24 hours post fertilization), an abundance of 333: 124: 27: 694: 525: 159: 85: 73: 65: 57: 769: 702: 655: 588: 533: 480: 760: 414: 365: 348: 93: 89: 77: 787: 720: 663: 606: 541: 498: 433: 311: 115:
of the larval skeletal rods, 13.5 hours post fertilization. Both optical
374: 319: 245: 222: 214: 201:
Decker GL, Lennarz WJ. (1988). "Skeletogenesis in the sea urchin embryo".
112: 146: 53: 646: 580: 88:, the mesenchyme cells extend and contract long, thin processes called 472: 44:, as this species has been most thoroughly studied and characterized. 72:. It is a key interaction between the two principal populations of 105: 64:(EMT) and break away from the apical layer, thus entering the 81:
direct these cells into alternative developmental pathways.
563:
Erkenbrack, E. M.; Davidson, E. H.; Peter, I. S. (2018).
740:
Proceedings of the National Academy of Sciences USA
394:
Proceedings of the National Academy of Sciences USA
56:(9–10 hours post fertilization) when the primary 16:Embryonic developmental stage of the sea urchin 52:Skeletogenesis begins in the early sea urchin 293: 291: 196: 194: 192: 190: 188: 8: 677:Erkenbrack, E. M.; Thompson, J. R. (2019). 777: 759: 710: 645: 596: 488: 423: 413: 364: 259: 257: 255: 620:Erkenbrack, E. M.; Petsios, E. (2017). 184: 626:Journal of Experimental Zoology Part B 26:event in the embryonic development of 269:Developmental Biology: Eighth Edition 7: 388:Erkenbrack EM, Davidson EH. (2015). 14: 96:cables, forming the axis for the 62:epithelial–mesenchymal transition 123:indicated that the spicules are 68:, forming a cell cluster at the 514:Development Genes and Evolution 347:Guss KA, Ettensohn CA. (1997). 164:spatiotemporal gene expression 104:) (and a small amount, 5%, of 1: 271:. Sunderland, Massachusetts: 41:Strongylocentrotus purpuratus 813:Animal developmental biology 829: 695:10.1038/s42003-019-0417-3 526:10.1007/s00427-015-0527-y 273:Sinauer Associates, Inc. 761:10.1073/pnas.1610603114 415:10.1073/pnas.1509845112 366:10.1242/dev.124.10.1899 172:gene regulatory network 683:Communications Biology 312:10.1242/dev.117.4.1275 334:"SUE - P2M Animation" 215:10.1242/dev.103.2.231 168:transcription factors 48:Morphological changes 136:Molecular regulation 129:extracellular matrix 752:2017PNAS..114.5870T 647:10.1002/jez.b.22743 638:2017JEZB..328..423E 465:2015NatSR...515541T 406:2015PNAS..112E4075E 581:10.1242/dev.167288 453:Scientific Reports 746:(23): 5870–5877. 575:(24): dev167288. 473:10.1038/srep15541 359:(10): 1899–1908. 265:Gilbert, Scott F. 121:X-ray diffraction 98:calcium carbonate 820: 792: 791: 781: 763: 731: 725: 724: 714: 674: 668: 667: 649: 617: 611: 610: 600: 560: 554: 553: 509: 503: 502: 492: 444: 438: 437: 427: 417: 400:(30): E4075-84. 385: 379: 378: 368: 344: 338: 337: 330: 324: 323: 306:(4): 1275–1285. 295: 286: 285: 261: 250: 249: 233: 227: 226: 198: 828: 827: 823: 822: 821: 819: 818: 817: 798: 797: 796: 795: 733: 732: 728: 676: 675: 671: 619: 618: 614: 562: 561: 557: 511: 510: 506: 446: 445: 441: 387: 386: 382: 346: 345: 341: 332: 331: 327: 297: 296: 289: 282: 263: 262: 253: 235: 234: 230: 200: 199: 186: 181: 170:comprising the 155: 138: 109: 103: 50: 17: 12: 11: 5: 826: 824: 816: 815: 810: 800: 799: 794: 793: 726: 669: 632:(5): 423–432. 612: 555: 504: 439: 380: 339: 325: 287: 280: 251: 228: 209:(2): 231–247. 183: 182: 180: 177: 154: 151: 137: 134: 107: 101: 49: 46: 20:Skeletogenesis 15: 13: 10: 9: 6: 4: 3: 2: 825: 814: 811: 809: 806: 805: 803: 789: 785: 780: 775: 771: 767: 762: 757: 753: 749: 745: 741: 737: 730: 727: 722: 718: 713: 708: 704: 700: 696: 692: 688: 684: 680: 673: 670: 665: 661: 657: 653: 648: 643: 639: 635: 631: 627: 623: 616: 613: 608: 604: 599: 594: 590: 586: 582: 578: 574: 570: 566: 559: 556: 551: 547: 543: 539: 535: 531: 527: 523: 519: 515: 508: 505: 500: 496: 491: 486: 482: 478: 474: 470: 466: 462: 458: 454: 450: 443: 440: 435: 431: 426: 421: 416: 411: 407: 403: 399: 395: 391: 384: 381: 376: 372: 367: 362: 358: 354: 350: 343: 340: 335: 329: 326: 321: 317: 313: 309: 305: 301: 294: 292: 288: 283: 281:0-87893-250-X 277: 274: 270: 266: 260: 258: 256: 252: 247: 243: 239: 232: 229: 224: 220: 216: 212: 208: 204: 197: 195: 193: 191: 189: 185: 178: 176: 173: 169: 165: 161: 152: 150: 148: 143: 135: 133: 130: 126: 122: 118: 117:birefringence 114: 110: 99: 95: 91: 87: 82: 79: 75: 71: 67: 63: 59: 55: 47: 45: 43: 42: 37: 36:metamorphosis 33: 29: 25: 24:morphogenetic 21: 743: 739: 729: 686: 682: 672: 629: 625: 615: 572: 568: 558: 520:(1): 37–45. 517: 513: 507: 456: 452: 442: 397: 393: 383: 356: 352: 342: 328: 303: 299: 268: 237: 231: 206: 202: 156: 142:glycoprotein 139: 84:Once in the 83: 70:vegetal pole 51: 39: 32:invertebrate 19: 18: 569:Development 353:Development 300:Development 238:Dev. Suppl. 203:Development 166:of several 125:crystalline 28:vertebrates 808:Echinoidea 802:Categories 179:References 160:sea urchin 86:blastocoel 74:mesodermal 66:blastocoel 58:mesenchyme 770:1091-6490 703:2399-3642 656:1552-5015 589:0950-1991 534:0949-944X 481:2045-2322 459:: 15541. 240:: 43–51. 162:clade in 153:Evolution 94:syncytial 90:filopodia 78:wild type 22:is a key 788:28584090 721:31069269 664:28544452 607:30470703 542:26781941 499:26486232 434:26170318 267:(2006). 147:ectoderm 113:spicules 54:blastula 779:5468677 748:Bibcode 712:6499829 689:: 160. 634:Bibcode 598:6307887 550:6067524 490:4614444 461:Bibcode 425:4522742 402:Bibcode 375:9169837 320:8404530 246:1299367 223:3066610 786:  776:  768:  719:  709:  701:  662:  654:  605:  595:  587:  548:  540:  532:  497:  487:  479:  432:  422:  373:  318:  278:  244:  221:  546:S2CID 100:(CaCO 784:PMID 766:ISSN 717:PMID 699:ISSN 660:PMID 652:ISSN 603:PMID 585:ISSN 538:PMID 530:ISSN 495:PMID 477:ISSN 430:PMID 371:PMID 316:PMID 276:ISBN 242:PMID 219:PMID 119:and 106:MgCO 774:PMC 756:doi 744:114 707:PMC 691:doi 642:doi 630:328 593:PMC 577:doi 573:145 522:doi 518:226 485:PMC 469:doi 420:PMC 410:doi 398:112 361:doi 357:124 308:doi 304:117 211:doi 207:103 804:: 782:. 772:. 764:. 754:. 742:. 738:. 715:. 705:. 697:. 685:. 681:. 658:. 650:. 640:. 628:. 624:. 601:. 591:. 583:. 571:. 567:. 544:. 536:. 528:. 516:. 493:. 483:. 475:. 467:. 455:. 451:. 428:. 418:. 408:. 396:. 392:. 369:. 355:. 351:. 314:. 302:. 290:^ 254:^ 217:. 205:. 187:^ 111:) 790:. 758:: 750:: 723:. 693:: 687:2 666:. 644:: 636:: 609:. 579:: 552:. 524:: 501:. 471:: 463:: 457:5 436:. 412:: 404:: 377:. 363:: 336:. 322:. 310:: 284:. 248:. 225:. 213:: 108:3 102:3

Index

morphogenetic
vertebrates
invertebrate
metamorphosis
Strongylocentrotus purpuratus
blastula
mesenchyme
epithelial–mesenchymal transition
blastocoel
vegetal pole
mesodermal
wild type
blastocoel
filopodia
syncytial
calcium carbonate
MgCO3
spicules
birefringence
X-ray diffraction
crystalline
extracellular matrix
glycoprotein
ectoderm
sea urchin
spatiotemporal gene expression
transcription factors
gene regulatory network

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑