Knowledge (XXG)

Sediment–water interface

Source 📝

1387:
often the final scavenging process that takes trace chemicals and elements out of the water column. Sediments at this interface are more porous and can hold a larger volume of pore water in the interstitial sites due to high organic matter content and lack of settling. Therefore, chemical compounds in the water can undergo two main processes here: 1) diffusion and 2) biological mixing. Chemical diffusion into and out of the interstitial sites occurs primary through random molecular movement. While diffusion is the primary mode through which chemicals interact with the sediments, there are a number of physical mixing processes which facilitate this process (see Physical Processes section). Chemical fluxes are dependent on several gradients such as, pH and chemical potential. Based on a specific chemical's partitioning parameters, the chemical may stay suspended in the water column, partition to biota, partition to suspended solids, or partition into the sediment. In addition, Fick's first law of diffusion states that the rate of diffusion is a function of distance; as time goes on, the concentration profile becomes linear. The availability of a variety of lake contaminants is determined by which reactions are taking place within the freshwater system.
1251: 1259: 1498:). These constituents, diffused from the overlying water or the underlying sediment, can be used and/or formed during bacterial metabolism by different organisms or be released back into the water column. The steep redox gradients present at/within the sediment-water interface allow for a variety of aerobic and anaerobic organisms to survive and a variety of redox transformations to take place. Here are just a few of the microbial-mediated redox reactions that can take place within the sediment water interface. 1275: 44: 1159: 1265: 1264: 1261: 1260: 1266: 1263: 20: 1282:
Physical movement of water and sediments alter the thickness and topography of the sediment-water interface. Sediment resuspension by waves, tides, or other disturbing forces (e.g. human feet at a beach) allows sediment pore water and other dissolved components to diffuse out of the sediments and mix
1287:
that is greater than the bed shear stress. For example, a very consolidated bed would only be resuspended under a high critical shear stress, while a "fluff layer" of very loose particles could be resuspended under a low critical shear stress. Depending on the type of lake, there can be a number of
1386:
Chemical reactions can occur at the sediment-water interface, abiotically. Examples of this would include the oxygenation of lake sediments as a function of free iron content in the sediment (i.e. pyrite formation in sediments), as well as sulfur availability via the sulfur cycle. Sedimentation is
1333:
Interactions between sediments and organisms living within sediments can also alter the fluxes of oxygen and other dissolved components in and out of the sediment-water interface. Animals like worms, mollusks and echinoderms can enhance resuspension and mixing through movement and construction of
1453:
When moving from the overlying waters to the sediment-water interface there is a 3-5 order of magnitude increase in the number of bacteria. While bacteria are present at the interface throughout the lake basin, their distributions and function vary with substrate, vegetation, and sunlight. For
1219:
and the overlying water column. The term usually refers to a thin layer (approximately 1 cm deep, though variable) of water at the very surface of sediments on the seafloor. In the ocean, estuaries, and lakes, this layer interacts with the water above it through physical flow and chemical
1241:
The location of the top of the sediment-water interface in the water column is defined as the break in the vertical gradient of some dissolved component, such as oxygen, where the concentration transitions from higher concentration in the well-mixed water above to a lower concentration at the
1378:) reactions can occur simply through the reactions of elements, or by oxidizing/reducing bacteria. The transformations and turnover of elements between sediments and water occur through abiotic chemical processes and microbiological chemical processes. 1262: 1292:
lakes do not mix. Polymictic lakes undergo frequent mixing and dimictic lakes mix twice a year. This type of lake mixing is a physical process that can be driven by overlaying winds, temperature differences, or shear stress within the lake.
1232:
generating mounds or trenches). Physical, biological, and chemical processes occur at the sediment-water interface as a result of a number of gradients such as chemical potential gradients, pore water gradients, and oxygen gradients.
1477:
Even though basin morphometry plays a role in the partitioning of bacteria within the lake, bacterial populations and functions are primarily driven by the availability of specific oxidants/electron acceptors
1374:
There are several chemical processes that happen abiotically (chemical reactions), as well as biotically (microbial or enzyme mediated reactions). For example, oxidation-reduction (
2015: 571: 23:
The flux of oxygenated water into and out of the sediments is mediated by bioturbation or mixing of the sediments, for example, via the construction of worm tubes.
1254:
Waves and tidal currents can alter the topography of the sediment-water interface by forming sand ripples, like the ones shown here that are exposed at low tide.
1270:
Bioturbation mixes sediments and changes the topography of the sediment-water interface, as shown by time lapse photography of lugworms moving through sediment.
1338:. These microalgal mats' stabilizing effect is in part due to the stickiness of the exopolymeric substances (EPS) or biochemical "glue" that they secrete. 1190: 1250: 888: 472: 1462:, due to higher organic matter content in the former. And, a functional artifact of heavy vegetation at the interface might be a greater number of 1334:
burrows. Microorganisms such as benthic algae can stabilize sediments and keep the sediment-water interface in a more stable condition by building
1278:
The sulfur cycle is a great example of lake nutrient cycling that occurs via biologically mediated processes as well as chemical redox reactions.
1919:
Tolhurst, T.J.; Gust, G.; Paterson, D.M. (2002). "The influence of an extracellular polymeric substance (EPS) on cohesive sediment stability".
2109: 2074: 1722:
Gundersen, Jens K.; Jorgensen, Bo Barker (June 1990). "Microstructure of diffusive boundary layers and the oxygen uptake of the sea floor".
1773:
Phillips, Matthew C.; Solo-Gabriele, Helena M.; Reniers, Adrianus J. H. M.; Wang, John D.; Kiger, Russell T.; Abdel-Mottaleb, Noha (2011).
462: 1088: 2143: 1936: 1855: 1698: 1600:; Höhener, Patrick; Benoit, Gaboury; Brink, Marilyn Buchholtz-ten (1990). "Chemical processes at the sediment-water interface". 1220:
reactions mediated by the micro-organisms, animals, and plants living at the bottom of the water body. The topography of this
1083: 1898: 1015: 1283:
with the water above. For resuspension to occur the movement of water has to be powerful enough to have a strong critical
758: 566: 1288:
mixing events each year that can influence the sediment interface. Amictic lakes are permanently stratified, similarly,
1078: 1053: 1010: 627: 440: 2161:"The Modulating Role of Dissolved Organic Matter on Spatial Patterns of Microbial Metabolism in Lake Erie Sediments" 1183: 652: 265: 1176: 1130: 763: 2229: 1063: 1058: 657: 1553: 956: 608: 378: 370: 219: 2219: 2009: 1313: 1274: 1221: 507: 1965: 1838:
Mehta, Ashish J.; Partheniades, Emmanuel (1982). "Resuspension of Deposited Cohesive Sediment Beds".
1786: 1731: 1655: 1609: 1558: 1502: 1303: 1095: 710: 684: 305: 59: 43: 840: 94: 1953: 2224: 2196: 1755: 1578: 1309: 1163: 1048: 810: 789: 745: 502: 356: 330: 260: 251: 99: 64: 1874: 1642:
Santschi, Peter; Höhener, Patrick; Benoit, Gaboury; Buchholtz-ten Brink, Marilyn (1990-01-01).
1341:
Biological processes that affect the sediment-water interface include, but are not limited to:
2188: 2180: 2139: 2105: 2070: 1932: 1851: 1820: 1802: 1747: 1704: 1694: 1671: 1507: 1319: 850: 726: 679: 457: 320: 291: 286: 210: 134: 2029: 1296:
Physical processes that affect the sediment-water interface include, but are not limited to:
2172: 2131: 2062: 1924: 1843: 1810: 1794: 1739: 1663: 1617: 1362: 917: 695: 672: 637: 118: 1990: 1568: 1563: 1512: 1289: 1242:
sediment surface. This can include less than 1 mm to several mm of the water column.
1100: 1070: 940: 864: 779: 753: 585: 514: 420: 1969: 1790: 1735: 1659: 1613: 1815: 1774: 1597: 1526: 1459: 1137: 1025: 930: 830: 784: 774: 721: 425: 415: 398: 315: 1928: 1643: 2213: 1667: 1621: 1538: 1455: 1335: 1225: 1120: 1105: 845: 647: 632: 603: 561: 556: 536: 435: 388: 346: 246: 238: 2200: 1798: 1759: 1548: 1345: 1284: 1229: 1204: 1142: 1125: 1110: 951: 835: 731: 541: 519: 467: 430: 410: 403: 325: 296: 2066: 1454:
example, the bacterial population at the sediment-water interface in a vegetative
2099: 2054: 1463: 1020: 893: 880: 859: 805: 794: 667: 620: 593: 497: 447: 335: 2176: 2098:
Schwarzenbach, René P.; Gschwend, Philip M.; Imboden, Dieter M. (2016-10-12).
1847: 1115: 705: 529: 524: 310: 276: 108: 2184: 1806: 1751: 1675: 2160: 2135: 1708: 1208: 1005: 990: 974: 935: 700: 662: 598: 351: 2192: 1824: 2125: 1390:
Chemical reactions at the sediment water interface are listed here below:
1216: 925: 383: 224: 35: 1543: 1350: 979: 969: 642: 615: 281: 164: 113: 1743: 1573: 178: 129: 124: 19: 1375: 1356: 1273: 1257: 1249: 1000: 995: 551: 546: 393: 183: 18: 1897:
Gingras, Murray K.; Pemberton, S. George; Smith, Michael (2015).
1693:. Gruber, Nicolas, 1968-. Princeton: Princeton University Press. 1228:
causing rippling or resuspension) and biological processes (e.g.
1923:. Proceedings in Marine Science. Vol. 5. pp. 409–425. 1224:
is often dynamic, as it is affected by physical processes (e.g.
903: 898: 492: 188: 159: 154: 149: 16:
The boundary between bed sediment and the overlying water column
1775:"Pore Water Transport of Enterococci out of Beach Sediments" 1899:"Bioturbation: Reworking Sediments for Better or Worse" 2059:
Encyclopedia of Sustainability Science and Technology
1458:
tends to be larger than the population of the deeper
1644:"Chemical processes at the sediment-water interface" 2159:Hoostal, Matthew J.; Bouzat, Juan L. (2008-02-01). 1998:International Journal of Air and Water Pollution 1921:Fine Sediment Dynamics in the Marine Environment 1355:Bacterial use of different chemical "food" (see 2053:Thibodeaux, Louis J.; Germano, Joseph (2012), 2055:"Sediment–Water Interfaces, Chemical Flux at" 1184: 8: 2014:: CS1 maint: multiple names: authors list ( 1191: 1177: 26: 2030:"NetLogo Models Library: Solid Diffusion" 1814: 1589: 34: 2007: 2093: 2091: 1989:Gardner, Wayne, Lee, G. Fred (1965). 7: 1869: 1867: 1637: 1635: 1633: 1631: 1466:, a genus of bacteria that can fix N 1908:. Oilfield Review. pp. 46–58. 14: 1415:Manganese reduction- Mn --> Mn 2061:, Springer, pp. 9128–9145, 1158: 1157: 42: 2101:Environmental Organic Chemistry 1991:"Oxygenation of Lake Sediments" 1799:10.1016/j.marpolbul.2011.08.049 1689:Sarmiento, Jorge Louis (2006). 572:Microbial calcite precipitation 2057:, in Meyers, Robert A. (ed.), 1365:of organic carbon and detritus 1: 2067:10.1007/978-1-4419-0851-3_645 1929:10.1016/s1568-2692(02)80030-4 1691:Ocean biogeochemical dynamics 287:Aeolian (windborne) transport 1668:10.1016/0304-4203(90)90076-O 1622:10.1016/0304-4203(90)90076-o 1418:Iron reduction- Fe --> Fe 1215:is the boundary between bed 1079:cross-cutting relationships 628:Amorphous calcium carbonate 2246: 1958:AGU Fall Meeting Abstracts 653:Coastal sediment transport 2177:10.1007/s00248-007-9281-7 2104:. John Wiley & Sons. 1848:10.1061/9780872623736.095 1779:Marine Pollution Bulletin 463:Soft-sediment deformation 60:Terrigenous (lithogenous) 1840:Coastal Engineering 1982 1213:sediment–water interface 764:calcareous nannoplankton 453:Sediment–water interface 2136:10.1016/c2009-0-02112-6 1308:Rippling (either small 658:Coastal sediment supply 431:Paleocurrent indicators 1554:Benthic boundary layer 1279: 1271: 1255: 1089:original horizontality 759:biogenic calcification 609:oolitic aragonite sand 379:Sedimentary structures 220:Oolitic aragonite sand 24: 1470:to ionic ammonium (NH 1444:Biologically mediated 1428:Methane formation- CH 1421:Sulfate reduction- SO 1394:Oxygen consumption- O 1314:giant current ripples 1277: 1269: 1253: 22: 2034:ccl.northwestern.edu 1952:Bada, J. L. (2001). 1559:Biogeochemical cycle 1329:Biological processes 1970:2001AGUFM.U51A..11B 1791:2011MarPB..62.2293P 1736:1990Natur.345..604G 1660:1990MarCh..30..269S 1614:1990MarCh..30..269S 1517:Manganese reduction 1503:Aerobic respiration 1405:Denitrification- NO 889:Soil carbon storage 824:Sedimentary ecology 746:Biogenous sediments 30:Part of a series on 1579:Sediment transport 1370:Chemical processes 1320:Turbidity currents 1280: 1272: 1256: 1246:Physical processes 1131:carbonate-silicate 1101:Sedimentary record 1084:lateral continuity 881:Sedimentary carbon 811:Reverse weathering 790:diatomaceous earth 473:Vegetation-induced 357:Turbidity currents 331:ice-sheet dynamics 261:Sediment transport 252:Sedimentary budget 25: 2165:Microbial Ecology 2111:978-1-118-76704-7 2076:978-1-4419-0851-3 1785:(11): 2293–2298. 1730:(6276): 604–607. 1523:Sulfate reduction 1508:Nitrogen fixation 1324:Bed consolidation 1267: 1201: 1200: 851:Soil biodiversity 727:Sedimentary basin 680:Marine regression 458:Sedimentary basin 321:Fluvial processes 292:Biomineralization 211:Manganese nodules 2237: 2205: 2204: 2156: 2150: 2149: 2122: 2116: 2115: 2095: 2086: 2085: 2084: 2083: 2050: 2044: 2043: 2041: 2040: 2026: 2020: 2019: 2013: 2005: 1995: 1986: 1980: 1979: 1977: 1976: 1949: 1943: 1942: 1916: 1910: 1909: 1903: 1894: 1888: 1887: 1886: 1885: 1871: 1862: 1861: 1835: 1829: 1828: 1818: 1770: 1764: 1763: 1744:10.1038/345604a0 1719: 1713: 1712: 1686: 1680: 1679: 1648:Marine Chemistry 1639: 1626: 1625: 1602:Marine Chemistry 1594: 1363:Remineralization 1268: 1193: 1186: 1179: 1166: 1161: 1160: 918:Sedimentary rock 673:pelagic red clay 638:Continental rise 46: 27: 2245: 2244: 2240: 2239: 2238: 2236: 2235: 2234: 2210: 2209: 2208: 2158: 2157: 2153: 2146: 2124: 2123: 2119: 2112: 2097: 2096: 2089: 2081: 2079: 2077: 2052: 2051: 2047: 2038: 2036: 2028: 2027: 2023: 2006: 1993: 1988: 1987: 1983: 1974: 1972: 1951: 1950: 1946: 1939: 1918: 1917: 1913: 1901: 1896: 1895: 1891: 1883: 1881: 1879:Knowledge (XXG) 1873: 1872: 1865: 1858: 1837: 1836: 1832: 1772: 1771: 1767: 1721: 1720: 1716: 1701: 1688: 1687: 1683: 1641: 1640: 1629: 1598:Santschi, Peter 1596: 1595: 1591: 1587: 1569:Nepheloid layer 1564:Marine sediment 1535: 1513:Denitrification 1497: 1493: 1489: 1485: 1473: 1469: 1451: 1446: 1439: 1435: 1431: 1424: 1412: 1408: 1401: 1397: 1384: 1372: 1331: 1258: 1248: 1239: 1197: 1156: 1149: 1148: 1147: 1071:Legacy sediment 1040: 1032: 1031: 1030: 986: 963: 947: 920: 910: 909: 908: 883: 873: 872: 871: 865:root microbiome 855: 825: 817: 816: 815: 801: 780:biogenic silica 770: 754:Calcareous ooze 748: 738: 737: 736: 717: 691: 588: 586:Marine sediment 578: 577: 576: 487: 479: 478: 477: 373: 363: 362: 361: 342: 301: 272: 256: 241: 231: 230: 229: 215: 205: 197: 196: 195: 171: 143: 121: 104: 89: 81: 80: 79: 69: 54: 17: 12: 11: 5: 2243: 2241: 2233: 2232: 2230:Marine geology 2227: 2222: 2212: 2211: 2207: 2206: 2171:(2): 358–368. 2151: 2144: 2117: 2110: 2087: 2075: 2045: 2021: 1981: 1944: 1937: 1911: 1889: 1875:"Book sources" 1863: 1856: 1830: 1765: 1714: 1699: 1681: 1627: 1588: 1586: 1583: 1582: 1581: 1576: 1571: 1566: 1561: 1556: 1551: 1546: 1541: 1534: 1531: 1530: 1529: 1527:Methanogenesis 1524: 1521: 1520:Iron reduction 1518: 1515: 1510: 1505: 1495: 1491: 1487: 1483: 1471: 1467: 1460:profundal zone 1450: 1447: 1445: 1442: 1441: 1440: 1437: 1433: 1429: 1426: 1422: 1419: 1416: 1413: 1410: 1406: 1403: 1399: 1395: 1383: 1380: 1371: 1368: 1367: 1366: 1360: 1353: 1348: 1330: 1327: 1326: 1325: 1322: 1317: 1306: 1301: 1247: 1244: 1238: 1235: 1199: 1198: 1196: 1195: 1188: 1181: 1173: 1170: 1169: 1168: 1167: 1151: 1150: 1146: 1145: 1140: 1138:Paleolimnology 1135: 1134: 1133: 1128: 1123: 1113: 1108: 1103: 1098: 1093: 1092: 1091: 1086: 1081: 1073: 1068: 1067: 1066: 1061: 1056: 1051: 1042: 1041: 1038: 1037: 1034: 1033: 1029: 1028: 1023: 1018: 1013: 1008: 1003: 998: 993: 987: 985: 984: 983: 982: 977: 972: 964: 962: 961: 960: 959: 948: 946: 945: 944: 943: 938: 928: 922: 921: 916: 915: 912: 911: 907: 906: 901: 896: 891: 885: 884: 879: 878: 875: 874: 870: 869: 868: 867: 856: 854: 853: 848: 843: 841:soil pathogens 838: 833: 831:Soil biomantle 827: 826: 823: 822: 819: 818: 814: 813: 808: 802: 800: 799: 798: 797: 792: 787: 785:silicification 782: 775:Siliceous ooze 771: 769: 768: 767: 766: 761: 750: 749: 744: 743: 740: 739: 735: 734: 729: 724: 722:Salt tectonics 718: 716: 715: 714: 713: 708: 703: 692: 690: 689: 688: 687: 677: 676: 675: 665: 660: 655: 650: 645: 640: 635: 630: 625: 624: 623: 613: 612: 611: 606: 596: 590: 589: 584: 583: 580: 579: 575: 574: 569: 567:Mineralization 564: 559: 554: 549: 544: 539: 534: 533: 532: 527: 522: 512: 511: 510: 505: 500: 489: 488: 485: 484: 481: 480: 476: 475: 470: 465: 460: 455: 450: 445: 444: 443: 438: 428: 423: 418: 416:Alluvial river 413: 408: 407: 406: 401: 399:graded bedding 396: 391: 381: 375: 374: 369: 368: 365: 364: 360: 359: 354: 349: 343: 341: 340: 339: 338: 333: 323: 318: 316:Exner equation 313: 308: 302: 300: 299: 294: 289: 284: 279: 273: 271: 270: 269: 268: 257: 255: 254: 249: 243: 242: 237: 236: 233: 232: 228: 227: 222: 216: 214: 213: 207: 206: 204:By composition 203: 202: 199: 198: 194: 193: 192: 191: 186: 181: 172: 170: 169: 168: 167: 162: 157: 152: 144: 142: 141: 140: 139: 138: 137: 132: 122: 116: 105: 103: 102: 97: 91: 90: 87: 86: 83: 82: 78: 77: 74: 70: 68: 67: 62: 56: 55: 52: 51: 48: 47: 39: 38: 32: 31: 15: 13: 10: 9: 6: 4: 3: 2: 2242: 2231: 2228: 2226: 2223: 2221: 2218: 2217: 2215: 2202: 2198: 2194: 2190: 2186: 2182: 2178: 2174: 2170: 2166: 2162: 2155: 2152: 2147: 2145:9780127447605 2141: 2137: 2133: 2129: 2128: 2121: 2118: 2113: 2107: 2103: 2102: 2094: 2092: 2088: 2078: 2072: 2068: 2064: 2060: 2056: 2049: 2046: 2035: 2031: 2025: 2022: 2017: 2011: 2003: 1999: 1992: 1985: 1982: 1971: 1967: 1963: 1959: 1955: 1948: 1945: 1940: 1938:9780444511362 1934: 1930: 1926: 1922: 1915: 1912: 1907: 1900: 1893: 1890: 1880: 1876: 1870: 1868: 1864: 1859: 1857:9780872623736 1853: 1849: 1845: 1842:: 1569–1588. 1841: 1834: 1831: 1826: 1822: 1817: 1812: 1808: 1804: 1800: 1796: 1792: 1788: 1784: 1780: 1776: 1769: 1766: 1761: 1757: 1753: 1749: 1745: 1741: 1737: 1733: 1729: 1725: 1718: 1715: 1710: 1706: 1702: 1700:9780691017075 1696: 1692: 1685: 1682: 1677: 1673: 1669: 1665: 1661: 1657: 1653: 1649: 1645: 1638: 1636: 1634: 1632: 1628: 1623: 1619: 1615: 1611: 1607: 1603: 1599: 1593: 1590: 1584: 1580: 1577: 1575: 1572: 1570: 1567: 1565: 1562: 1560: 1557: 1555: 1552: 1550: 1547: 1545: 1542: 1540: 1539:Anoxic waters 1537: 1536: 1532: 1528: 1525: 1522: 1519: 1516: 1514: 1511: 1509: 1506: 1504: 1501: 1500: 1499: 1481: 1475: 1465: 1461: 1457: 1456:littoral zone 1448: 1443: 1427: 1420: 1417: 1414: 1404: 1393: 1392: 1391: 1388: 1381: 1379: 1377: 1369: 1364: 1361: 1358: 1354: 1352: 1349: 1347: 1344: 1343: 1342: 1339: 1337: 1328: 1323: 1321: 1318: 1315: 1311: 1307: 1305: 1302: 1299: 1298: 1297: 1294: 1291: 1286: 1276: 1252: 1245: 1243: 1236: 1234: 1231: 1227: 1223: 1218: 1214: 1210: 1206: 1194: 1189: 1187: 1182: 1180: 1175: 1174: 1172: 1171: 1165: 1155: 1154: 1153: 1152: 1144: 1141: 1139: 1136: 1132: 1129: 1127: 1124: 1122: 1119: 1118: 1117: 1114: 1112: 1109: 1107: 1106:Sedimentology 1104: 1102: 1099: 1097: 1094: 1090: 1087: 1085: 1082: 1080: 1077: 1076: 1074: 1072: 1069: 1065: 1062: 1060: 1057: 1055: 1052: 1050: 1047: 1046: 1044: 1043: 1036: 1035: 1027: 1024: 1022: 1019: 1017: 1014: 1012: 1009: 1007: 1004: 1002: 999: 997: 994: 992: 989: 988: 981: 978: 976: 973: 971: 968: 967: 966: 965: 958: 955: 954: 953: 950: 949: 942: 939: 937: 934: 933: 932: 929: 927: 924: 923: 919: 914: 913: 905: 902: 900: 897: 895: 892: 890: 887: 886: 882: 877: 876: 866: 863: 862: 861: 858: 857: 852: 849: 847: 846:Pedodiversity 844: 842: 839: 837: 834: 832: 829: 828: 821: 820: 812: 809: 807: 804: 803: 796: 793: 791: 788: 786: 783: 781: 778: 777: 776: 773: 772: 765: 762: 760: 757: 756: 755: 752: 751: 747: 742: 741: 733: 730: 728: 725: 723: 720: 719: 712: 709: 707: 704: 702: 699: 698: 697: 694: 693: 686: 685:transgression 683: 682: 681: 678: 674: 671: 670: 669: 666: 664: 661: 659: 656: 654: 651: 649: 648:Bioirrigation 646: 644: 641: 639: 636: 634: 633:Calcification 631: 629: 626: 622: 619: 618: 617: 614: 610: 607: 605: 604:aragonite sea 602: 601: 600: 597: 595: 592: 591: 587: 582: 581: 573: 570: 568: 565: 563: 562:Hydropedology 560: 558: 557:Soil salinity 555: 553: 550: 548: 545: 543: 540: 538: 535: 531: 528: 526: 523: 521: 518: 517: 516: 513: 509: 506: 504: 501: 499: 496: 495: 494: 491: 490: 486:Soil sediment 483: 482: 474: 471: 469: 466: 464: 461: 459: 456: 454: 451: 449: 446: 442: 439: 437: 436:sole markings 434: 433: 432: 429: 427: 424: 422: 419: 417: 414: 412: 409: 405: 402: 400: 397: 395: 392: 390: 389:cross-bedding 387: 386: 385: 382: 380: 377: 376: 372: 367: 366: 358: 355: 353: 350: 348: 347:Lithification 345: 344: 337: 334: 332: 329: 328: 327: 324: 322: 319: 317: 314: 312: 309: 307: 304: 303: 298: 295: 293: 290: 288: 285: 283: 280: 278: 275: 274: 267: 264: 263: 262: 259: 258: 253: 250: 248: 247:Sedimentation 245: 244: 240: 235: 234: 226: 223: 221: 218: 217: 212: 209: 208: 201: 200: 190: 187: 185: 182: 180: 177: 176: 174: 173: 166: 163: 161: 158: 156: 153: 151: 148: 147: 146: 145: 136: 133: 131: 128: 127: 126: 123: 120: 117: 115: 112: 111: 110: 107: 106: 101: 98: 96: 93: 92: 85: 84: 75: 72: 71: 66: 63: 61: 58: 57: 50: 49: 45: 41: 40: 37: 33: 29: 28: 21: 2220:Oceanography 2168: 2164: 2154: 2126: 2120: 2100: 2080:, retrieved 2058: 2048: 2037:. Retrieved 2033: 2024: 2010:cite journal 2001: 1997: 1984: 1973:. Retrieved 1961: 1957: 1947: 1920: 1914: 1906:Schlumberger 1905: 1892: 1882:, retrieved 1878: 1839: 1833: 1782: 1778: 1768: 1727: 1723: 1717: 1690: 1684: 1651: 1647: 1605: 1601: 1592: 1549:Benthic zone 1479: 1476: 1452: 1389: 1385: 1373: 1346:Bioturbation 1340: 1332: 1310:wave ripples 1300:Resuspension 1295: 1285:shear stress 1281: 1240: 1230:bioturbation 1212: 1205:oceanography 1202: 1143:Biosignature 1111:Stratigraphy 1064:soil science 1059:paleontology 1016:Organic-rich 957:conglomerate 836:Soil zoology 732:Tidal bundle 711:hemipelagite 542:Soil horizon 508:permeability 468:Unconformity 452: 411:Alluvial fan 404:ripple marks 371:By structure 326:Glacier flow 297:Bioturbation 1654:: 269–315. 1608:: 269–315. 1464:Azotobacter 1432:O --> CO 1075:Principles 1021:Phosphorite 894:Soil carbon 860:Rhizosphere 806:Microfossil 795:radiolarite 668:Marine clay 621:calcite sea 594:Abyssal fan 448:River delta 441:imbrication 336:ice rafting 76:Hydrogenous 73:Cosmogenous 2214:Categories 2082:2020-05-15 2039:2020-05-15 2004:: 553–564. 1975:2020-05-15 1954:"NASA/ADS" 1884:2020-05-15 1585:References 1359:reactions) 1304:Deposition 1290:meromictic 1237:Definition 1116:Rock cycle 1096:Provenance 1054:geological 931:Carbonates 706:contourite 663:Evaporites 515:morphology 503:pore space 311:Concretion 306:Compaction 277:Weathering 239:By process 109:Grain size 88:By texture 2225:Sediments 2185:1432-184X 2127:Limnology 1807:0025-326X 1752:1476-4687 1676:0304-4203 1425:--> HS 1222:interface 1209:limnology 1026:Siliceous 1011:Iron-rich 1006:Greywacke 991:Evaporite 975:sandstone 936:limestone 701:turbidite 599:Aragonite 352:Siltation 95:Roundness 65:Biogenous 53:By origin 36:Sediments 2201:25154731 2193:17607503 2130:. 2001. 1825:21945015 1709:60651167 1533:See also 1409:--> N 1398:--> H 1351:Biofilms 1226:currents 1217:sediment 1164:Category 1045:History 941:dolomite 926:Badlands 384:Bedforms 225:Tektites 1966:Bibcode 1816:3202074 1787:Bibcode 1760:4324203 1732:Bibcode 1656:Bibcode 1610:Bibcode 1544:Benthos 1382:Abiotic 1121:calcium 1049:geology 1039:Related 980:mudrock 970:breccia 952:Clastic 696:Pelagic 643:Bay mud 616:Calcite 520:texture 282:Erosion 266:coastal 165:colloid 135:granule 114:boulder 100:Sorting 2199:  2191:  2183:  2142:  2108:  2073:  1935:  1854:  1823:  1813:  1805:  1758:  1750:  1724:Nature 1707:  1697:  1674:  1574:Seabed 1211:, the 1162:  1126:silica 537:Catena 498:matrix 394:duness 179:oolite 175:Other 130:pebble 125:gravel 119:cobble 2197:S2CID 1994:(PDF) 1902:(PDF) 1756:S2CID 1449:Lakes 1376:redox 1357:Redox 1001:Chert 996:Chalk 552:Humin 547:Humus 530:color 525:value 421:Fault 184:scree 2189:PMID 2181:ISSN 2140:ISBN 2106:ISBN 2071:ISBN 2016:link 1962:2001 1933:ISBN 1852:ISBN 1821:PMID 1803:ISSN 1748:ISSN 1705:OCLC 1695:ISBN 1672:ISSN 1494:, CO 1490:, SO 1486:, NO 1480:e.g. 1436:, CH 1336:mats 1207:and 904:Peat 899:Coal 493:Soil 426:Fold 189:till 160:clay 155:silt 150:sand 2173:doi 2132:doi 2063:doi 1925:doi 1844:doi 1811:PMC 1795:doi 1740:doi 1728:345 1664:doi 1618:doi 1482:, O 1474:). 1312:or 1203:In 2216:: 2195:. 2187:. 2179:. 2169:55 2167:. 2163:. 2138:. 2090:^ 2069:, 2032:. 2012:}} 2008:{{ 2000:. 1996:. 1964:. 1960:. 1956:. 1931:. 1904:. 1877:, 1866:^ 1850:. 1819:. 1809:. 1801:. 1793:. 1783:62 1781:. 1777:. 1754:. 1746:. 1738:. 1726:. 1703:. 1670:. 1662:. 1652:30 1650:. 1646:. 1630:^ 1616:. 1606:30 1604:. 2203:. 2175:: 2148:. 2134:: 2114:. 2065:: 2042:. 2018:) 2002:9 1978:. 1968:: 1941:. 1927:: 1860:. 1846:: 1827:. 1797:: 1789:: 1762:. 1742:: 1734:: 1711:. 1678:. 1666:: 1658:: 1624:. 1620:: 1612:: 1496:2 1492:4 1488:3 1484:2 1478:( 1472:4 1468:2 1438:4 1434:2 1430:2 1423:4 1411:2 1407:3 1402:O 1400:2 1396:2 1316:) 1192:e 1185:t 1178:v

Index


Sediments

Terrigenous (lithogenous)
Biogenous
Roundness
Sorting
Grain size
boulder
cobble
gravel
pebble
granule
sand
silt
clay
colloid
oolite
scree
till
Manganese nodules
Oolitic aragonite sand
Tektites
By process
Sedimentation
Sedimentary budget
Sediment transport
coastal
Weathering
Erosion

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.