Knowledge (XXG)

Self-tiling tile set

Source 📝

575: 199: 300: 236: 582: 256:. In addition to seven ordinary setisets (i.e., loops of length 1) they found a bewildering variety of loops of every length up to a maximum of 14. The total number of loops identified was nearly one and a half million. More research in this area remains to be done, but it seems safe to suppose that other shapes may also entail loops. 170: 17: 182: 288: 283:
Alternatively, there exists a method whereby multiple copies of a rep-tile can be dissected in certain ways so as to yield shapes that create setisets. Figures 7 and 8 show setisets produced by this means, in which each piece is the union of 2 and 3 rep-tiles, respectively. In Figure 8 can be seen
222:
can be dissected or combined so as to yield smaller or larger duplicates of themselves. Clearly, the twin actions of forming still larger and larger copies (known as inflation), or still smaller and smaller dissections (deflation), can be repeated indefinitely. In this way, setisets can produce
93: 284:
how the 9 pieces above together tile the 3 rep-tile shapes below, while each of the 9 pieces is itself formed by the union of 3 such rep-tile shapes. Hence each shape can be tiled with smaller duplicates of the entire set of 9.
247:
Besides self-tiling tile sets, which can be interpreted as loops of length 1, there exist longer loops, or closed chains of sets, in which every set tiles its successor. Figure 6 shows a pair of mutually tiling sets of
227:, because the prototiles can always be rearranged so as to yield a periodic tiling. Figure 5 shows the first two stages of inflation of an order 4 set leading to a non-periodic tiling. 491: 1515: 780: 713: 56:
different ways so as to create larger copies of themselves, where the increase in scale is the same in each case. Figure 1 shows an example for
1520: 735: 469: 1330: 1165: 1480: 1455: 1445: 1415: 1370: 1320: 1300: 1115: 1000: 1490: 1485: 1425: 1420: 1375: 1325: 1310: 1510: 1295: 543: 146:
The fewest pieces in a setiset is two. Figure 4 encapsulates an infinite family of order 2 setisets each composed of two triangles,
1350: 1285: 1270: 1105: 725: 1450: 1410: 1365: 1305: 1290: 1280: 1255: 616: 198: 1315: 1235: 1090: 1245: 1230: 1190: 1120: 1070: 985: 805: 1215: 1180: 1170: 1030: 574: 252:, in other words, a loop of length 2. Sallows and Schotel did an exhaustive search of order 4 sets that are composed of 1355: 1185: 1175: 1155: 1135: 1110: 1055: 1035: 1020: 1010: 945: 611: 162:, depending upon whether the hinge is fully open or fully closed. This unusual specimen thus provides an example of a 135:
regions. Disjoint pieces composed of two or more separated islands are also permitted. Such pieces are described as
1505: 1500: 1495: 1400: 1160: 1125: 1085: 1065: 1040: 1025: 1015: 975: 462: 606: 1554: 1440: 1435: 1345: 1340: 1335: 1130: 1100: 1095: 1075: 1060: 1050: 1045: 965: 169: 16: 1475: 1470: 1465: 1395: 1390: 1385: 1380: 1080: 960: 955: 628: 1140: 990: 940: 181: 264:
To date, two methods have been used for producing setisets. In the case of sets composed of shapes such as
1260: 1250: 1220: 902: 517: 427: 44:
shapes or pieces, usually planar, each of which can be tiled with smaller replicas of the complete set of
1549: 1360: 1265: 1225: 1210: 1205: 1200: 1195: 950: 740: 455: 299: 287: 235: 154:. As shown, the latter can be hinged together to produce a compound triangle that has the same shape as 442: 1405: 1145: 858: 846: 730: 635: 560: 327: 64:. The concept can be extended to include pieces of higher dimension. The name setisets was coined by 1150: 970: 816: 775: 770: 650: 211: 92: 412: 935: 704: 502: 223:
non-periodic tilings. However, none of the non-periodic tilings thus far discovered qualify as
1430: 980: 907: 750: 533: 268:, which entail integral piece sizes, a brute force search by computer is possible, so long as 163: 1460: 1275: 1240: 917: 881: 826: 792: 745: 719: 708: 623: 595: 538: 512: 507: 395: 336: 224: 353: 821: 645: 555: 758: 671: 640: 529: 77: 1543: 912: 876: 676: 664: 522: 277: 215: 811: 548: 478: 797: 65: 143:(when islands join only at a point), as seen in the setiset shown in Figure 3. 866: 399: 340: 253: 249: 61: 272:, the number of pieces involved, is not prohibitive. It is easily shown that 886: 871: 787: 763: 265: 219: 81: 73: 655: 206:
A setiset of order 4 using octominoes. Two stages of inflation are shown.
109: 72:= 4 was asked decades previously by C. Dudley Langford, and examples for 84:(discovered by Maurice J. Povah) were previously published by Gardner. 581: 112:, of which setisets are therefore a generalization. Setisets using 108:
identical pieces is the same thing as a 'self-replicating tile' or
286: 197: 168: 104:
From the above definition it follows that a setiset composed of
843: 693: 593: 489: 451: 447: 280:. Figures 1,2,3,5 and 6 are all examples found by this method. 386:
Sallows, Lee (April 2014). "More On Self-Tiling Tile Sets".
325:
Sallows, Lee (December 2012). "On Self-Tiling Tile Sets".
210:
The properties of setisets mean that their pieces form
999: 926: 895: 857: 128:because two of the component shapes are the same. 68:in 2012, but the problem of finding such sets for 24:A 'perfect' self-tiling tile set of order 4 116:distinct shapes, such as Figure 1, are called 463: 131:The shapes employed in a setiset need not be 8: 371:, by Martin Gardner, Knopf, 1977, pp 146-159 354:Alejandro Erickson on Self-tiling tile sets 854: 840: 690: 590: 486: 470: 456: 448: 381: 379: 377: 177:A setiset showing weakly-connected pieces. 781:Dividing a square into similar rectangles 298: 234: 180: 91: 15: 317: 189:An infinite family of order 2 setisets. 7: 307:A rep-tile-based setiset of order 9. 295:A rep-tile-based setiset of order 4. 243:A loop of length 2 using decominoes. 80:, Wade E. Philpott and others) and 14: 580: 573: 416:by Jean-Paul Delahaye in Scilogs 120:. Figure 2 shows an example for 100:A setiset with duplicated piece. 1: 806:Regular Division of the Plane 443:Self-Tiling Tile Sets website 428:Self-Tiling Tile Sets website 60:= 4 using distinctly shaped 714:Architectonic and catoptric 612:Aperiodic set of prototiles 52:shapes can be assembled in 1571: 853: 839: 700: 689: 602: 589: 571: 498: 485: 400:10.4169/math.mag.87.2.100 365:Polyhexes and Polyaboloes 341:10.4169/math.mag.85.5.323 88:Examples and definitions 369:Mathematical Magic Show 260:Methods of construction 194:Inflation and deflation 308: 296: 244: 207: 190: 178: 101: 25: 414:Geometric Hidden Gems 302: 290: 238: 201: 184: 172: 95: 48:shapes. That is, the 19: 388:Mathematics Magazine 328:Mathematics Magazine 212:substitution tilings 30:self-tiling tile set 309: 297: 245: 208: 191: 179: 102: 26: 1537: 1536: 1533: 1532: 1529: 1528: 835: 834: 726:Computer graphics 685: 684: 569: 568: 164:hinged dissection 1562: 1555:Self-replication 855: 841: 793:Conway criterion 720:Circle Limit III 691: 624:Einstein problem 591: 584: 577: 513:Schwarz triangle 487: 472: 465: 458: 449: 430: 425: 419: 418:, April 07, 2013 410: 404: 403: 383: 372: 362: 356: 351: 345: 344: 322: 306: 294: 242: 205: 188: 176: 141:weakly-connected 99: 23: 1570: 1569: 1565: 1564: 1563: 1561: 1560: 1559: 1540: 1539: 1538: 1525: 1002: 995: 928: 922: 891: 849: 831: 696: 681: 598: 585: 579: 578: 565: 556:Wallpaper group 494: 481: 476: 439: 434: 433: 426: 422: 411: 407: 385: 384: 375: 363: 359: 352: 348: 324: 323: 319: 314: 304: 292: 276:must then be a 262: 240: 233: 203: 196: 186: 174: 97: 90: 76:(discovered by 21: 12: 11: 5: 1568: 1566: 1558: 1557: 1552: 1542: 1541: 1535: 1534: 1531: 1530: 1527: 1526: 1524: 1523: 1518: 1513: 1508: 1503: 1498: 1493: 1488: 1483: 1478: 1473: 1468: 1463: 1458: 1453: 1448: 1443: 1438: 1433: 1428: 1423: 1418: 1413: 1408: 1403: 1398: 1393: 1388: 1383: 1378: 1373: 1368: 1363: 1358: 1353: 1348: 1343: 1338: 1333: 1328: 1323: 1318: 1313: 1308: 1303: 1298: 1293: 1288: 1283: 1278: 1273: 1268: 1263: 1258: 1253: 1248: 1243: 1238: 1233: 1228: 1223: 1218: 1213: 1208: 1203: 1198: 1193: 1188: 1183: 1178: 1173: 1168: 1163: 1158: 1153: 1148: 1143: 1138: 1133: 1128: 1123: 1118: 1113: 1108: 1103: 1098: 1093: 1088: 1083: 1078: 1073: 1068: 1063: 1058: 1053: 1048: 1043: 1038: 1033: 1028: 1023: 1018: 1013: 1007: 1005: 997: 996: 994: 993: 988: 983: 978: 973: 968: 963: 958: 953: 948: 943: 938: 932: 930: 924: 923: 921: 920: 915: 910: 905: 899: 897: 893: 892: 890: 889: 884: 879: 874: 869: 863: 861: 851: 850: 844: 837: 836: 833: 832: 830: 829: 824: 819: 814: 809: 802: 801: 800: 795: 785: 784: 783: 778: 773: 768: 767: 766: 753: 748: 743: 738: 733: 728: 723: 716: 711: 701: 698: 697: 694: 687: 686: 683: 682: 680: 679: 674: 669: 668: 667: 653: 648: 643: 638: 633: 632: 631: 629:Socolar–Taylor 621: 620: 619: 609: 607:Ammann–Beenker 603: 600: 599: 594: 587: 586: 572: 570: 567: 566: 564: 563: 558: 553: 552: 551: 546: 541: 530:Uniform tiling 527: 526: 525: 515: 510: 505: 499: 496: 495: 490: 483: 482: 477: 475: 474: 467: 460: 452: 446: 445: 438: 437:External links 435: 432: 431: 420: 405: 394:(2): 100–112. 373: 357: 346: 335:(5): 323–333. 316: 315: 313: 310: 278:perfect square 261: 258: 232: 229: 195: 192: 89: 86: 78:Martin Gardner 13: 10: 9: 6: 4: 3: 2: 1567: 1556: 1553: 1551: 1548: 1547: 1545: 1522: 1519: 1517: 1514: 1512: 1509: 1507: 1504: 1502: 1499: 1497: 1494: 1492: 1489: 1487: 1484: 1482: 1479: 1477: 1474: 1472: 1469: 1467: 1464: 1462: 1459: 1457: 1454: 1452: 1449: 1447: 1444: 1442: 1439: 1437: 1434: 1432: 1429: 1427: 1424: 1422: 1419: 1417: 1414: 1412: 1409: 1407: 1404: 1402: 1399: 1397: 1394: 1392: 1389: 1387: 1384: 1382: 1379: 1377: 1374: 1372: 1369: 1367: 1364: 1362: 1359: 1357: 1354: 1352: 1349: 1347: 1344: 1342: 1339: 1337: 1334: 1332: 1329: 1327: 1324: 1322: 1319: 1317: 1314: 1312: 1309: 1307: 1304: 1302: 1299: 1297: 1294: 1292: 1289: 1287: 1284: 1282: 1279: 1277: 1274: 1272: 1269: 1267: 1264: 1262: 1259: 1257: 1254: 1252: 1249: 1247: 1244: 1242: 1239: 1237: 1234: 1232: 1229: 1227: 1224: 1222: 1219: 1217: 1214: 1212: 1209: 1207: 1204: 1202: 1199: 1197: 1194: 1192: 1189: 1187: 1184: 1182: 1179: 1177: 1174: 1172: 1169: 1167: 1164: 1162: 1159: 1157: 1154: 1152: 1149: 1147: 1144: 1142: 1139: 1137: 1134: 1132: 1129: 1127: 1124: 1122: 1119: 1117: 1114: 1112: 1109: 1107: 1104: 1102: 1099: 1097: 1094: 1092: 1089: 1087: 1084: 1082: 1079: 1077: 1074: 1072: 1069: 1067: 1064: 1062: 1059: 1057: 1054: 1052: 1049: 1047: 1044: 1042: 1039: 1037: 1034: 1032: 1029: 1027: 1024: 1022: 1019: 1017: 1014: 1012: 1009: 1008: 1006: 1004: 998: 992: 989: 987: 984: 982: 979: 977: 974: 972: 969: 967: 964: 962: 959: 957: 954: 952: 949: 947: 944: 942: 939: 937: 934: 933: 931: 925: 919: 916: 914: 911: 909: 906: 904: 901: 900: 898: 894: 888: 885: 883: 880: 878: 875: 873: 870: 868: 865: 864: 862: 860: 856: 852: 848: 842: 838: 828: 825: 823: 820: 818: 815: 813: 810: 808: 807: 803: 799: 796: 794: 791: 790: 789: 786: 782: 779: 777: 774: 772: 769: 765: 762: 761: 760: 757: 756: 754: 752: 749: 747: 744: 742: 739: 737: 734: 732: 729: 727: 724: 722: 721: 717: 715: 712: 710: 706: 703: 702: 699: 692: 688: 678: 675: 673: 670: 666: 663: 662: 661: 657: 654: 652: 649: 647: 644: 642: 639: 637: 634: 630: 627: 626: 625: 622: 618: 615: 614: 613: 610: 608: 605: 604: 601: 597: 592: 588: 583: 576: 562: 559: 557: 554: 550: 547: 545: 542: 540: 537: 536: 535: 531: 528: 524: 521: 520: 519: 516: 514: 511: 509: 506: 504: 501: 500: 497: 493: 488: 484: 480: 473: 468: 466: 461: 459: 454: 453: 450: 444: 441: 440: 436: 429: 424: 421: 417: 415: 409: 406: 401: 397: 393: 389: 382: 380: 378: 374: 370: 366: 361: 358: 355: 350: 347: 342: 338: 334: 330: 329: 321: 318: 311: 301: 289: 285: 281: 279: 275: 271: 267: 259: 257: 255: 251: 237: 230: 228: 226: 221: 218:in which the 217: 216:tessellations 213: 200: 193: 183: 171: 167: 165: 161: 157: 153: 149: 144: 142: 138: 134: 129: 127: 124:= 4 which is 123: 119: 115: 111: 107: 94: 87: 85: 83: 79: 75: 71: 67: 63: 59: 55: 51: 47: 43: 39: 35: 31: 18: 1550:Tessellation 817:Substitution 812:Regular grid 804: 718: 659: 651:Quaquaversal 549:Kisrhombille 479:Tessellation 423: 413: 408: 391: 387: 368: 364: 360: 349: 332: 326: 320: 282: 273: 269: 263: 246: 209: 159: 155: 151: 147: 145: 140: 137:disconnected 136: 132: 130: 125: 121: 117: 113: 105: 103: 69: 57: 53: 49: 45: 41: 40:is a set of 37: 33: 29: 27: 847:vertex type 705:Anisohedral 660:Self-tiling 503:Pythagorean 266:polyominoes 202:Figure 5: 185:Figure 4: 173:Figure 3: 82:polyominoes 74:polyaboloes 66:Lee Sallows 36:, of order 1544:Categories 751:Pentagonal 312:References 303:Figure 8: 291:Figure 7: 254:octominoes 250:decominoes 239:Figure 6: 220:prototiles 96:Figure 2: 62:decominoes 20:Figure 1: 859:Spherical 827:Voderberg 788:Prototile 755:Problems 731:Honeycomb 709:Isohedral 596:Aperiodic 534:honeycomb 518:Rectangle 508:Rhombille 225:aperiodic 133:connected 126:imperfect 941:V3.4.3.4 776:Squaring 771:Heesch's 736:Isotoxal 656:Rep-tile 646:Pinwheel 539:Coloring 492:Periodic 110:rep-tile 1401:6.4.8.4 1356:5.4.6.4 1316:4.12.16 1306:4.10.12 1276:V4.8.10 1251:V4.6.16 1241:V4.6.14 1141:3.6.4.6 1136:3.4.∞.4 1131:3.4.8.4 1126:3.4.7.4 1121:3.4.6.4 1071:3.∞.3.∞ 1066:3.4.3.4 1061:3.8.3.8 1056:3.7.3.7 1051:3.6.3.8 1046:3.6.3.6 1041:3.5.3.6 1036:3.5.3.5 1031:3.4.3.∞ 1026:3.4.3.8 1021:3.4.3.7 1016:3.4.3.6 1011:3.4.3.5 966:3.4.6.4 936:3.4.3.4 929:regular 896:Regular 822:Voronoi 746:Packing 677:Truchet 672:Socolar 641:Penrose 636:Gilbert 561:Wythoff 118:perfect 34:setiset 1291:4.8.16 1286:4.8.14 1281:4.8.12 1271:4.8.10 1246:4.6.16 1236:4.6.14 1231:4.6.12 1001:Hyper- 986:4.6.12 759:Domino 665:Sphinx 544:Convex 523:Domino 305:  293:  241:  204:  187:  175:  98:  22:  1406:(6.8) 1361:(5.6) 1296:4.8.∞ 1266:(4.8) 1261:(4.7) 1256:4.6.∞ 1226:(4.6) 1221:(4.5) 1191:4.∞.4 1186:4.8.4 1181:4.7.4 1176:4.6.4 1171:4.5.4 1151:(3.8) 1146:(3.7) 1116:(3.4) 1111:(3.4) 1003:bolic 971:(3.6) 927:Semi- 798:Girih 695:Other 231:Loops 214:, or 139:, or 32:, or 1491:8.16 1486:8.12 1456:7.14 1426:6.16 1421:6.12 1416:6.10 1376:5.12 1371:5.10 1326:4.16 1321:4.14 1311:4.12 1301:4.10 1161:3.16 1156:3.14 976:3.12 961:V3.6 887:V4.n 877:V3.n 764:Wang 741:List 707:and 658:and 617:List 532:and 150:and 1521:∞.8 1516:∞.6 1481:8.6 1451:7.8 1446:7.6 1411:6.8 1366:5.8 1331:4.∞ 1166:3.∞ 1091:3.4 1086:3.∞ 1081:3.8 1076:3.7 991:4.8 981:4.∞ 956:3.6 951:3.∞ 946:3.4 882:4.n 872:3.n 845:By 396:doi 367:in 337:doi 158:or 1546:: 392:87 390:. 376:^ 333:85 331:. 166:. 28:A 1511:∞ 1506:∞ 1501:∞ 1496:∞ 1476:8 1471:8 1466:8 1461:8 1441:7 1436:7 1431:7 1396:6 1391:6 1386:6 1381:6 1351:5 1346:5 1341:5 1336:5 1216:4 1211:4 1206:4 1201:4 1196:4 1106:3 1101:3 1096:3 918:6 913:4 908:3 903:2 867:2 471:e 464:t 457:v 402:. 398:: 343:. 339:: 274:n 270:n 160:Q 156:P 152:Q 148:P 122:n 114:n 106:n 70:n 58:n 54:n 50:n 46:n 42:n 38:n

Index


decominoes
Lee Sallows
polyaboloes
Martin Gardner
polyominoes

rep-tile
hinged dissection



substitution tilings
tessellations
prototiles
aperiodic

decominoes
octominoes
polyominoes
perfect square


Mathematics Magazine
doi
10.4169/math.mag.85.5.323
Alejandro Erickson on Self-tiling tile sets


Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.