Knowledge (XXG)

Semiconductor luminescence equations

Source đź“ť

3589: 3012: 3584:{\displaystyle {\begin{aligned}\mathrm {i} \hbar {\frac {\partial }{\partial t}}c_{\mathrm {X} }^{\mathbf {k} ,\mathbf {k'} }=&\left({\tilde {\epsilon }}_{\mathbf {k} }-{\tilde {\epsilon }}_{\mathbf {k'} }\right)\,c_{\mathrm {X} }^{\mathbf {k} ,\mathbf {k'} }+S_{\mathrm {X} }^{\mathbf {k} ,\mathbf {k'} }\\&+{\Bigl (}1-f_{\mathbf {k'} }^{e}-f_{\mathbf {k'} }^{h}{\Bigr )}\sum _{\mathbf {l} }V_{\mathbf {l} -\mathbf {k} '}\,c_{\mathrm {X} }^{\mathbf {k} ,\mathbf {l} }-{\Bigl (}1-f_{\mathbf {k} }^{e}-f_{\mathbf {k} }^{h}{\Bigr )}\sum _{\mathbf {l} }V_{\mathbf {l} -\mathbf {k} '}\,c_{\mathrm {X} }^{\mathbf {l} ,\mathbf {k'} }\\&+D_{\mathrm {X,\,rest} }^{\mathbf {k} ,\mathbf {k'} }+T_{\mathrm {X} }^{\mathbf {k} ,\mathbf {k'} }\,.\end{aligned}}} 1341: 1688: 3969: 2634: 1358: 1045: 4013:
equally well originate from an electron–hole plasma or the presence of excitons. At first, this consequence of SLEs seems counterintuitive because in few-particle picture an unbound electron–hole pair cannot recombine and release energy corresponding to the exciton resonance because that energy is well below the energy an unbound electron–hole pair possesses.
2991: 2446: 2302: 572: 2459: 4183:
Semiconductors also can show several resonances well below the fundamental exciton resonance when phonon-assisted electron–hole recombination takes place. These processes are describable by three-particle correlations (or higher) where photon, electron–hole pair, and a lattice vibration, i.e., a
4012:
shows a discrete set of exciton resonances regardless which many-body state initiated the emission through the spontaneous-emission source. These resonances are directly transferred to excitonic peaks in the luminescence itself. This yields an unexpected consequence; the excitonic resonance can
1683:{\displaystyle \mathrm {i} \hbar {\frac {\partial }{\partial t}}\Pi _{\mathbf {k} ,\omega }=\left({\tilde {\epsilon }}_{\mathbf {k} }-\hbar \omega \right)\Pi _{\mathbf {k} ,\omega }+\Omega _{\mathbf {k} ,\omega }^{\mathrm {spont} }-\left(1-f_{\mathbf {k} }^{e}-f_{\mathbf {k} }^{h}\right)\left+T} 4020:
to the exciton resonance. Namely, when a high number of electronic states participate in the emission of a single photon, one can always distribute the energy of initial many-body state between the one photon at exciton energy and remaining many-body state (with one electron–hole pair removed)
1336:{\displaystyle \mathrm {i} \hbar {\frac {\partial }{\partial t}}\Delta \langle {\hat {B}}_{\omega }^{\dagger }{\hat {B}}_{\omega '}\rangle =(\hbar \omega '-\hbar \omega )\,\Delta \langle {\hat {B}}_{\omega }^{\dagger }{\hat {B}}_{\omega '}\rangle +\mathrm {i} \sum \limits _{\mathbf {k} }\left} 2310: 672: 3972:
Buildup of photon-assisted polarization (Π correlation) that is initiated by the spontaneous-emission source. The buildup occurs equally for all momentum states. In a many-body system, a photon (wave arrow) is generated collectively through multiple coupled Π-transition
2107: 4163:
The presented SLEs discussion does not specify the dimensionality or the band structure of the system studied. As one analyses a specified system, one often has to explicitly include the electronic bands involved, the dimensionality of wave vectors, photon, and
2850: 2306:
In its full form, the occupation dynamics also contains Coulomb-correlation terms. It is straight forward to verify that the photon-assisted recombination destroys as many electron–hole pairs as it creates photons because due to the general conservation law
4184:
phonon, become correlated. The dynamics of phonon-assisted correlations are similar to the phonon-free SLEs. Like for the excitonic luminescence, also excitonic phonon sidebands can equally well be initiated by either electron–hole plasma or excitons.
4504:
Schwab, M.; Kurtze, H.; Auer, T.; Berstermann, T.; Bayer, M.; Wiersig, J.; Baer, N.; Gies, C.; Jahnke, F.; Reithmaier, J.; Forchel, A.; Benyoucef, M.; Michler, P. (2006). "Radiative emission dynamics of quantum dots in a single cavity micropillar".
4400:
Berstermann, T.; Auer, T.; Kurtze, H.; Schwab, M.; Yakovlev, D.; Bayer, M.; Wiersig, J.; Gies, C.; Jahnke, F.; Reuter, D.; Wieck, A. (2007). "Systematic study of carrier correlations in the electron–hole recombination dynamics of quantum dots".
68:
coupling among electronic excitations within a semiconductor. The SLEs are one of the most accurate methods to describe light emission in semiconductors and they are suited for a systematic modeling of semiconductor emission ranging from
4024:
In general, excitonic plasma luminescence explains many nonequilibrium emission properties observed in present-day semiconductor luminescence experiments. In fact, the dominance of excitonic plasma luminescence has been measured in both
4155:
degree of freedom. However, the SLEs often are the only (at low carrier densities) or more convenient (lasing regime) to compute luminescence accurately. Furthermore, the SLEs not only yield a full predictability without the need for
400: 2629:{\displaystyle \Omega _{\mathbf {k} ,\omega }^{\mathrm {spont} }=\mathrm {i} {\mathcal {F}}_{\omega }{\Bigl (}f_{\mathbf {k} }^{e}f_{\mathbf {k} }^{h}+\sum _{\mathbf {k'} }c_{\mathrm {X} }^{\mathbf {k} ,\mathbf {k'} }{\Bigr )}\,.} 4258: 4671:
Aßmann, M.; Veit, F.; Bayer, M.; Gies, C.; Jahnke, F.; Reitzenstein, S.; Höfling, S.; Worschech, L. et al. (2010). "Ultrafast tracking of second-order photon correlations in the emission of quantum-dot microresonator lasers".
3723:
Microscopically, the luminescence processes are initiated whenever the semiconductor is excited because at least the electron and hole distributions, that enter the spontaneous-emission source, are nonvanishing. As a result,
961: 3664: 2100: 321: 3713: 2830: 2781: 3776: 1873: 4562:
Rubel, O.; Baranovskii, S. D.; Hantke, K.; Heber, J. D.; Koch, J.; Thomas, P. V.; Marshall, J. M.; Stolz, W. et al. (2005). "On the theoretical description of luminescence in disordered quantum structures".
4420:
Shuvayev, V.; Kuskovsky, I.; Deych, L.; Gu, Y.; Gong, Y.; Neumark, G.; Tamargo, M.; Lisyansky, A. (2009). "Dynamics of the radiative recombination in cylindrical nanostructures with type-II band alignment".
2999:
because then spontaneously emitted light can return to the emitter (i.e., the semiconductor), either stimulating or inhibiting further spontaneous-emission processes. This term is also responsible for the
4021:
without violating the energy conservation. The Coulomb interaction mediates such energy rearrangements very efficiently. A thorough analysis of energy and many-body state rearrangement is given in Ref.
2441:{\displaystyle {\frac {\partial }{\partial t}}\sum _{\omega }\langle {\hat {B}}_{\omega }^{\dagger }{\hat {B}}_{\omega }\rangle =-{\frac {\partial }{\partial t}}\sum _{\mathbf {k} }f_{\mathbf {k} }^{e}} 2688: 2297:{\displaystyle \left.{\frac {\partial }{\partial t}}f_{\mathbf {k} }^{e}\right|_{\mathrm {L} }=\left.{\frac {\partial }{\partial t}}f_{\mathbf {k} }^{h}\right|_{\mathrm {L} }=-2\,\mathrm {Re} \left\,.} 585: 4135:, its dynamics is driven spontaneously, and it is directly coupled to three-particle correlations. Technically, the SLEs are more difficult to solve numerically than the SBEs due to the additional 373: 3017: 1916: 1729: 721: 204: 2986:{\displaystyle \Delta \Omega _{\omega }^{\mathrm {stim} }=\mathrm {i} \sum _{\omega '}{\mathcal {F}}_{\omega '}\,\Delta \langle {\hat {B}}_{\omega }^{\dagger }{\hat {B}}_{\omega '}\rangle } 4113: 4078: 4010: 3951: 3894: 3837: 2022: 902: 820: 785: 996: 3918:
values, the characteristic transition energy follows from the exciton energy, not the bare kinetic energy of an electron–hole pair. More mathematically, the homogeneous part of the
3597:-type in- and out-scattering of two electrons and two holes due to the Coulomb interaction. The second line contains the main Coulomb sums that correlate electron–hole pairs into 1987: 1953: 240: 1778: 3916: 3859: 3802: 2732: 2710: 743: 2712:
when electrons and holes are uncorrelated, i.e., plasma. Such form is to be expected for a probability of two uncorrelated events to occur simultaneously at a desired
4579:
Imhof, S.; Bückers, C.; Thränhardt, A.; Hader, J.; Moloney, J. V.; Koch, S. W. (2008). "Microscopic theory of the optical properties of Ga(AsBi)/GaAs quantum wells".
4378:
Li, Jianzhong (2007). "Laser cooling of semiconductor quantum wells: Theoretical framework and strategy for deep optical refrigeration by luminescence upconversion".
4153: 4133: 867: 847: 157: 4543:
Hader, J.; Hardesty, G.; Wang, T.; Yarborough, M. J.; Kaneda, Y.; Moloney, J. V.; Kunert, B.; Stolz, W. et al. (2010). "Predictive Microscopic Modeling of VECSELs".
2836:
via their mutual Coulomb attraction. Nevertheless, both the presence of electron–hole plasma and excitons can equivalently induce the spontaneous-emission source.
4485:; Gibbs, H.; Hoyer, W.; Kira, M.; Koch, S.; Prineas, J.; Stolz, H. (2004). "Excitonic Photoluminescence in Semiconductor Quantum Wells: Plasma versus Excitons". 567:{\displaystyle \mathrm {L} (\omega )={\frac {\partial }{\partial t}}\langle {\hat {B}}_{\omega }^{\dagger }{\hat {B}}_{\omega }\rangle =2\,\mathrm {Re} \left\,.} 1807: 260: 4652:
Gies, Christopher; Wiersig, Jan; Jahnke, Frank (2008). "Output Characteristics of Pulsed and Continuous-Wave-Excited Quantum-Dot Microcavity Lasers".
4194: 907: 4277: 4160:
approximations but they also can be used as a systematic starting point for more general investigations such as laser design and disorder studies.
3593:
The first line contains the Coulomb-renormalized kinetic energy of electron–hole pairs and the second line defines a source that results from a
2035: 787:
determines the corresponding electron–hole recombination operator defining also the microscopic polarization within semiconductor. Therefore,
331: 265: 49: 3961:
not the free-carrier energies. For low electron–hole densities, the Wannier equation produces a set of bound eigenstates which define the
3604: 163: 4524:
Hader, J.; Moloney, J. V.; Koch, S. W. (2006). "Influence of internal fields on gain and spontaneous emission in InGaN quantum wells".
3727: 1824: 4800: 4781: 4762: 4743: 4724: 4705: 4366: 3669: 2786: 2737: 3601:
whenever the excitation conditions are suitable. The remaining two- and three-particle correlations are presented symbolically by
1732: 667:{\displaystyle \Pi _{\mathbf {k} ,\omega }\equiv \Delta \langle {\hat {B}}_{\omega }^{\dagger }{\hat {P}}_{\mathbf {k} }\rangle } 131:
that fully includes many-body interactions, quantized light field, and quantized light–matter interaction. Like almost always in
2641: 4819: 4633:
Böttge, C. N.; Kira, M.; Koch, S. W. (2012). "Enhancement of the phonon-sideband luminescence in semiconductor microcavities".
4595:
Feldtmann, T.; Schneebeli, L.; Kira, M.; Koch, S. (2006). "Quantum theory of light emission from a semiconductor quantum dot".
128: 104: 1023: 4042: 1744: 376: 336: 4325:; Gibbs, H. (1997). "Quantum Theory of Nonlinear Semiconductor Microcavity Luminescence Explaining "Boser" Experiments". 1878: 1696: 1346:
whose diagonal form reduces to the luminescence formula above. The dynamics of photon-assisted correlations follows from
4462:
Kira, M.; Jahnke, F.; Koch, S. (1998). "Microscopic Theory of Excitonic Signatures in Semiconductor Photoluminescence".
4292: 4265: 3958: 112: 679: 4165: 168: 4302: 4282: 964: 4260:, and then continues toward higher-order photon-correlation effects. This approach can be applied to analyze the 4188: 1810: 61: 4083: 4048: 3980: 3921: 3864: 3807: 1992: 1736: 872: 790: 1814: 752: 85: 4033:
systems. Only when excitons are present abundantly, the role of excitonic plasma luminescence can be ignored.
2025: 970: 2734:
value. The possibility to have truly correlated electron–hole pairs is defined by a two-particle correlation
4824: 4451: 4443:
Kira, M.; Koch, S.W. (2006). "Many-body correlations and excitonic effects in semiconductor spectroscopy".
2029: 4614:
Baer, N.; Gies, C.; Wiersig, J.; Jahnke, F. (2006). "Luminescence of a semiconductor quantum dot system".
4261: 4157: 3594: 1958: 1924: 1003: 999: 209: 89: 388: 4660: 2995:
that is particularly important when describing spontaneous emission in semiconductor microcavities and
1754: 4493: 108: 57: 17: 2841: 380: 136: 97: 81: 3899: 3842: 3785: 2715: 2693: 726: 4470: 4333: 1751:
photon-assisted polarizations are coupled with each other via the unscreened Coulomb-interaction
2451:
Besides the terms already described above, the photon-assisted polarization dynamics contains a
4680: 4641: 4622: 4603: 4513: 4429: 4409: 4386: 3007:
To complete the SLEs, one must additionally solve the quantum dynamics of exciton correlations
4796: 4777: 4758: 4739: 4720: 4701: 4362: 4287: 2102:. These occupations are changed by spontaneous recombination of electrons and holes, yielding 4138: 4118: 852: 832: 142: 4016:
However, the excitonic plasma luminescence is a genuine many-body effect where plasma emits
132: 65: 4551: 1921:
The excitation level of a semiconductor is characterized by electron and hole occupations,
4482: 4322: 4297: 3968: 2783:; the corresponding probability is directly proportional to the correlation. In practice, 1027: 93: 2839:
As the semiconductor emits light spontaneously, the luminescence is further altered by a
4080:
are compared with the microscopic polarization within the SBEs. As the main difference,
64:
because the SLEs simultaneously includes the quantized light–matter interaction and the
3001: 1783: 245: 116: 4813: 746: 53: 45: 4173: 4169: 4026: 1030:. More specifically, a systematic derivation produces a set of equations involving 1011: 384: 41: 1780:. The three-particle correlations that appear are indicated symbolically via the 103:
light. At this level, one is often interested to control and access higher-order
4253:{\displaystyle \Delta \langle {\hat {B}}_{\omega }{\hat {B}}_{\omega '}\rangle } 4177: 4030: 3954: 1007: 1817:
of Coulomb interaction, and additional highly correlated contributions such as
956:{\displaystyle \langle {\hat {B}}_{\omega }^{\dagger }P_{\mathbf {k} }\rangle } 4532: 111:. Such investigations are the basis of realizing and developing the field of 4736:
Quantum Theory of the Optical and Electronic Properties of Semiconductors
4191:. As a first step, one also includes two-photon absorption correlations, 2833: 2095:{\displaystyle \left(1-f_{\mathbf {k} }^{e}-f_{\mathbf {k} }^{h}\right)} 1743:. The Coulomb renormalization are identical to those that appear in the 829:
Many electron–hole pairs contribute to the photon emission at frequency
262:
signifies the operator nature of the quantity. The operator-combination
3962: 3598: 70: 3779: 2996: 324: 316:{\displaystyle {\hat {B}}_{\omega }^{\dagger }\,{\hat {B}}_{\omega }} 3659:{\displaystyle D_{\mathrm {X,\,rest} }^{\mathbf {k} ,\mathbf {k'} }} 88:
whereas the extensions of the SLEs include the possibility to study
107:
effects, distinct many-body states, as well as light–semiconductor
4321:
Kira, M.; Jahnke, F.; Koch, S.; Berger, J.; Wick, D.; Nelson, T.;
1740: 160: 100: 74: 3771:{\displaystyle \Omega _{\mathbf {k} ,\omega }^{\mathrm {spont} }} 1868:{\displaystyle \Omega _{\mathbf {k} ,\omega }^{\mathrm {spont} }} 392: 3804:
values that correspond to the excited states. This means that
2690:
describes the probability to find electron and hole with same
576:
As a result, the luminescence becomes directly generated by a
4187:
The SLEs can also be used as a systematic starting point for
3708:{\displaystyle T_{\mathrm {X} }^{\mathbf {k} ,\mathbf {k'} }} 2825:{\displaystyle c_{\mathrm {X} }^{\mathbf {k} ,\mathbf {k'} }} 2776:{\displaystyle c_{\mathrm {X} }^{\mathbf {k} ,\mathbf {k'} }} 2909: 2511: 2250: 1289: 1244: 977: 520: 2166: 2113: 2683:{\displaystyle f_{\mathbf {k} }^{e}\,f_{\mathbf {k} }^{h}} 904:
denotes that the correlated part of the expectation value
60:
light. This description established the first step toward
395:
is proportional to the temporal change in photon number,
4755:
Nitride Semiconductor Devices: Principles and Simulation
139:. For example, a light field corresponding to frequency 29:
Physical equations of light emission in semiconductors
4396: 4394: 4197: 4141: 4121: 4086: 4051: 3983: 3924: 3902: 3867: 3845: 3810: 3788: 3730: 3672: 3607: 3015: 2853: 2789: 2740: 2718: 2696: 2644: 2462: 2313: 2110: 2038: 1995: 1961: 1927: 1881: 1827: 1821:. The explicit form of a spontaneous-emission source 1786: 1757: 1699: 1361: 1048: 973: 910: 875: 855: 835: 793: 755: 729: 682: 588: 403: 339: 268: 248: 212: 171: 145: 2832:
becomes large when electron–hole pairs are bound as
368:{\displaystyle \langle {\hat {B}}_{\omega }\rangle } 1911:{\displaystyle \Omega _{\omega }^{\mathrm {stim} }} 1724:{\displaystyle {\tilde {\epsilon }}_{\mathbf {k} }} 4252: 4147: 4127: 4107: 4072: 4004: 3945: 3910: 3888: 3853: 3831: 3796: 3770: 3707: 3658: 3583: 2985: 2824: 2775: 2726: 2704: 2682: 2628: 2440: 2296: 2094: 2016: 1981: 1947: 1910: 1867: 1801: 1772: 1723: 1682: 1335: 990: 955: 896: 861: 841: 814: 779: 737: 715: 666: 566: 367: 315: 254: 234: 198: 151: 4793:Optics of Semiconductors and Their Nanostructures 3405: 3355: 3280: 3220: 2617: 2524: 716:{\displaystyle ({\hat {B}}_{\omega }^{\dagger })} 676:that describes a correlated emission of a photon 4698:Quantum Optics with Semiconductor Nanostructures 4168:. Many explicit examples are given in Refs. for 127:The derivation of the SLEs starts from a system 4738:(5th ed.). World Scientific. p. 216. 199:{\displaystyle {\hat {B}}_{\omega }^{\dagger }} 4439: 4437: 3861:values. Since the Coulomb interaction couples 387:(L). (This is the underlying principle behind 383:light spontaneously, commonly referred to as 8: 4247: 4201: 2980: 2929: 2385: 2339: 1213: 1162: 1126: 1075: 1026:needed to compute the luminescence spectrum 950: 911: 661: 613: 482: 436: 362: 340: 4108:{\displaystyle \Pi _{\omega ,\mathbf {k} }} 4073:{\displaystyle \Pi _{\omega ,\mathbf {k} }} 4005:{\displaystyle \Pi _{\omega ,\mathbf {k} }} 3946:{\displaystyle \Pi _{\omega ,\mathbf {k} }} 3889:{\displaystyle \Pi _{\omega ,\mathbf {k} }} 3832:{\displaystyle \Pi _{\omega ,\mathbf {k} }} 2017:{\displaystyle \Pi _{\mathbf {k} ,\omega }} 1733:Coulomb-renormalized single-particle energy 897:{\displaystyle \Pi _{\mathbf {k} ,\omega }} 815:{\displaystyle \Pi _{\mathbf {k} ,\omega }} 578:photon-assisted electron–hole recombination 4264:effects and to realize and understand the 4757:. Wiley-VCH Verlag GmbH \& Co. KGaA. 4353: 4351: 4349: 4347: 4345: 4343: 4341: 4236: 4225: 4224: 4217: 4206: 4205: 4196: 4140: 4120: 4098: 4091: 4085: 4063: 4056: 4050: 3995: 3988: 3982: 3936: 3929: 3923: 3903: 3901: 3879: 3872: 3866: 3846: 3844: 3822: 3815: 3809: 3789: 3787: 3749: 3748: 3736: 3735: 3729: 3693: 3685: 3684: 3678: 3677: 3671: 3644: 3636: 3635: 3620: 3613: 3612: 3606: 3573: 3561: 3553: 3552: 3546: 3545: 3526: 3518: 3517: 3502: 3495: 3494: 3468: 3460: 3459: 3453: 3452: 3447: 3436: 3427: 3426: 3415: 3414: 3404: 3403: 3397: 3391: 3390: 3377: 3371: 3370: 3354: 3353: 3343: 3335: 3334: 3328: 3327: 3322: 3311: 3302: 3301: 3290: 3289: 3279: 3278: 3272: 3261: 3260: 3247: 3236: 3235: 3219: 3218: 3196: 3188: 3187: 3181: 3180: 3161: 3153: 3152: 3146: 3145: 3140: 3123: 3122: 3111: 3110: 3099: 3098: 3087: 3086: 3063: 3055: 3054: 3048: 3047: 3028: 3020: 3016: 3014: 2969: 2958: 2957: 2950: 2945: 2934: 2933: 2925: 2914: 2908: 2907: 2895: 2886: 2867: 2866: 2861: 2852: 2810: 2802: 2801: 2795: 2794: 2788: 2761: 2753: 2752: 2746: 2745: 2739: 2719: 2717: 2697: 2695: 2674: 2668: 2667: 2662: 2656: 2650: 2649: 2643: 2622: 2616: 2615: 2603: 2595: 2594: 2588: 2587: 2571: 2570: 2557: 2551: 2550: 2540: 2534: 2533: 2523: 2522: 2516: 2510: 2509: 2503: 2481: 2480: 2468: 2467: 2461: 2432: 2426: 2425: 2414: 2413: 2394: 2379: 2368: 2367: 2360: 2355: 2344: 2343: 2333: 2314: 2312: 2290: 2272: 2271: 2266: 2260: 2255: 2249: 2248: 2241: 2224: 2223: 2207: 2206: 2195: 2189: 2188: 2169: 2154: 2153: 2142: 2136: 2135: 2116: 2109: 2081: 2075: 2074: 2061: 2055: 2054: 2037: 2001: 2000: 1994: 1973: 1967: 1966: 1960: 1939: 1933: 1932: 1926: 1892: 1891: 1886: 1880: 1846: 1845: 1833: 1832: 1826: 1785: 1763: 1762: 1756: 1714: 1713: 1702: 1701: 1698: 1642: 1641: 1636: 1625: 1616: 1615: 1599: 1598: 1575: 1574: 1569: 1549: 1543: 1542: 1529: 1523: 1522: 1485: 1484: 1472: 1471: 1451: 1450: 1425: 1424: 1413: 1412: 1390: 1389: 1370: 1362: 1360: 1322: 1305: 1304: 1294: 1288: 1287: 1270: 1269: 1259: 1249: 1243: 1242: 1229: 1228: 1219: 1202: 1191: 1190: 1183: 1178: 1167: 1166: 1158: 1115: 1104: 1103: 1096: 1091: 1080: 1079: 1057: 1049: 1047: 982: 976: 975: 972: 943: 942: 932: 927: 916: 915: 909: 881: 880: 874: 854: 834: 799: 798: 792: 780:{\displaystyle {\hat {P}}_{\mathbf {k} }} 770: 769: 758: 757: 754: 730: 728: 704: 699: 688: 687: 681: 654: 653: 642: 641: 634: 629: 618: 617: 594: 593: 587: 560: 542: 541: 536: 530: 525: 519: 518: 510: 509: 492: 491: 476: 465: 464: 457: 452: 441: 440: 421: 404: 402: 356: 345: 344: 338: 307: 296: 295: 293: 287: 282: 271: 270: 267: 247: 226: 215: 214: 211: 190: 185: 174: 173: 170: 144: 4278:Coherent effects in semiconductor optics 3967: 991:{\displaystyle {\mathcal {F}}_{\omega }} 4314: 3025: 1435: 1367: 1149: 1135: 1054: 52:of electronic excitations, producing a 3839:is simultaneously generated for many 1024:single- and two-particle correlations 749:, i.e., an electronic vacancy. Here, 330:When the photon coherences, here the 242:, respectively, where the "hat" over 135:, it is most convenient to apply the 7: 4481:Chatterjee, S.; Ell, C.; Mosor, S.; 4452:doi:10.1016/j.pquantelec.2006.12.002 4041:Structurally, the SLEs resemble the 1982:{\displaystyle f_{\mathbf {k} }^{h}} 1948:{\displaystyle f_{\mathbf {k} }^{e}} 1350:Semiconductor luminescence equations 1037:Semiconductor luminescence equations 235:{\displaystyle {\hat {B}}_{\omega }} 34:semiconductor luminescence equations 18:Semiconductor-Luminescence Equations 1595: 1225: 164:creation and annihilation operators 4661:doi:10.1103/PhysRevLett.101.067401 4198: 4088: 4053: 3985: 3926: 3869: 3812: 3782:-assisted processes for all those 3762: 3759: 3756: 3753: 3750: 3732: 3679: 3630: 3627: 3624: 3621: 3614: 3547: 3512: 3509: 3506: 3503: 3496: 3454: 3329: 3182: 3147: 3049: 3034: 3030: 3021: 2926: 2887: 2877: 2874: 2871: 2868: 2858: 2854: 2796: 2747: 2589: 2504: 2494: 2491: 2488: 2485: 2482: 2464: 2400: 2396: 2320: 2316: 2268: 2228: 2225: 2208: 2175: 2171: 2155: 2122: 2118: 1997: 1902: 1899: 1896: 1893: 1883: 1859: 1856: 1853: 1850: 1847: 1829: 1793: 1674: 1638: 1585: 1582: 1579: 1576: 1566: 1498: 1495: 1492: 1489: 1486: 1468: 1447: 1386: 1376: 1372: 1363: 1301: 1266: 1220: 1159: 1072: 1063: 1059: 1050: 1022:In general, the SLEs includes all 877: 856: 795: 723:when an electron with wave vector 610: 590: 538: 496: 493: 427: 423: 405: 391:.) The corresponding luminescence 25: 4494:doi:10.1103/PhysRevLett.92.067402 1040:(photon-number-like correlations) 4791:Kalt, H.; Hetterich, M. (2004). 4099: 4064: 3996: 3937: 3904: 3880: 3847: 3823: 3790: 3737: 3695: 3686: 3646: 3637: 3563: 3554: 3528: 3519: 3470: 3461: 3437: 3428: 3416: 3392: 3372: 3344: 3336: 3312: 3303: 3291: 3263: 3238: 3198: 3189: 3163: 3154: 3125: 3100: 3065: 3056: 2812: 2803: 2763: 2754: 2720: 2698: 2669: 2651: 2605: 2596: 2573: 2552: 2535: 2469: 2427: 2415: 2273: 2190: 2137: 2076: 2056: 2002: 1989:, respectively. They modify the 1968: 1934: 1834: 1818: 1773:{\displaystyle V_{\mathbf {k} }} 1764: 1715: 1644: 1626: 1617: 1601: 1544: 1524: 1473: 1452: 1426: 1391: 1306: 1271: 1230: 944: 882: 800: 771: 731: 655: 595: 543: 511: 375:, vanish and the system becomes 84:, semiconductor luminescence is 4616:The European Physical Journal B 4471:doi:10.1103/PhysRevLett.81.3263 4445:Progress in Quantum Electronics 4334:doi:10.1103/PhysRevLett.79.5170 4166:exciton center-of-mass momentum 4037:Connections and generalizations 3719:Interpretation and consequences 1809:contributions – they introduce 1032:photon-number-like correlations 4734:Haug, H.; Koch, S. W. (2009). 4719:. Cambridge University Press. 4715:Kira, M.; Koch, S. W. (2011). 4681:doi:10.1103/PhysRevB.81.165314 4642:doi:10.1103/PhysRevB.85.094301 4623:doi:10.1140/epjb/e2006-00164-3 4604:doi:10.1103/PhysRevB.73.155319 4514:doi:10.1103/PhysRevB.74.045323 4430:doi:10.1103/PhysRevB.79.115307 4410:doi:10.1103/PhysRevB.76.165318 4387:doi:10.1103/PhysRevB.75.155315 4361:. Cambridge University Press. 4357:Kira, M.; Koch, S. W. (2011). 4230: 4211: 3116: 3092: 2963: 2939: 2373: 2349: 1875:and a stimulated contribution 1796: 1790: 1707: 1693:where the first contribution, 1677: 1671: 1418: 1353:(photon-assisted correlations) 1196: 1172: 1155: 1132: 1109: 1085: 921: 763: 710: 693: 683: 647: 623: 470: 446: 415: 409: 350: 301: 276: 220: 179: 1: 4043:semiconductor Bloch equations 1745:semiconductor Bloch equations 137:second-quantization formalism 4717:Semiconductor Quantum Optics 4552:doi:10.1109/JQE.2009.2035714 4359:Semiconductor Quantum Optics 4293:Quantum-optical spectroscopy 4266:quantum-optical spectroscopy 4189:semiconductor quantum optics 3959:generalized Wannier equation 3911:{\displaystyle \mathbf {k} } 3854:{\displaystyle \mathbf {k} } 3797:{\displaystyle \mathbf {k} } 3778:is finite and it drives the 2727:{\displaystyle \mathbf {k} } 2705:{\displaystyle \mathbf {k} } 1811:excitation-induced dephasing 824:photon-assisted polarization 738:{\displaystyle \mathbf {k} } 113:quantum-optical spectroscopy 62:semiconductor quantum optics 4700:. Woodhead Publishing Ltd. 2453:spontaneous-emission source 1018:Principal structure of SLEs 48:resulting from spontaneous 4841: 4772:Klingshirn, C. F. (2006). 4303:Semiconductor laser theory 4283:Cluster-expansion approach 4176:systems, and in Refs. for 1735:that is determined by the 965:cluster-expansion approach 159:is then described through 4545:IEEE J. Quantum Electron. 963:is constructed using the 82:vacuum-field fluctuations 80:Due to randomness of the 4565:J. Optoelectron. Adv. M. 4115:also has a photon index 3957:that are defined by the 2026:Coulomb renormalizations 1819:phonon-sideband emission 4654:Physical Review Letters 4581:Semicond. Sci. Technol. 4526:Applied Physics Letters 4487:Physical Review Letters 4464:Physical Review Letters 4327:Physical Review Letters 4148:{\displaystyle \omega } 4128:{\displaystyle \omega } 862:{\displaystyle \Delta } 842:{\displaystyle \omega } 152:{\displaystyle \omega } 4820:Semiconductor analysis 4262:resonance fluorescence 4254: 4149: 4129: 4109: 4074: 4006: 3974: 3947: 3912: 3890: 3855: 3833: 3798: 3772: 3709: 3660: 3585: 2987: 2826: 2777: 2728: 2706: 2684: 2630: 2442: 2298: 2096: 2018: 1983: 1949: 1912: 1869: 1803: 1774: 1725: 1684: 1337: 992: 957: 898: 863: 843: 822:can also be viewed as 816: 781: 739: 717: 668: 568: 379:, semiconductors emit 369: 317: 256: 236: 200: 153: 90:resonance fluorescence 4533:doi:10.1063/1.2372443 4255: 4150: 4130: 4110: 4075: 4007: 3971: 3948: 3913: 3891: 3856: 3834: 3799: 3773: 3710: 3661: 3586: 2988: 2827: 2778: 2729: 2707: 2685: 2631: 2443: 2299: 2097: 2030:Pauli-blocking factor 2019: 1984: 1950: 1918:are discussed below. 1913: 1870: 1804: 1775: 1747:(SBEs), showing that 1726: 1685: 1338: 1000:dipole-matrix element 993: 958: 899: 864: 844: 817: 782: 740: 718: 669: 569: 389:light-emitting diodes 370: 318: 257: 237: 201: 154: 115:which is a branch of 58:spontaneously emitted 4774:Semiconductor Optics 4195: 4139: 4119: 4084: 4049: 3981: 3922: 3900: 3865: 3843: 3808: 3786: 3728: 3670: 3605: 3013: 2851: 2787: 2738: 2716: 2694: 2642: 2460: 2311: 2108: 2036: 1993: 1959: 1925: 1879: 1825: 1784: 1755: 1697: 1359: 1046: 1004:interband transition 971: 908: 873: 853: 833: 791: 753: 727: 680: 586: 401: 337: 266: 246: 210: 169: 143: 4753:Piprek, J. (2007). 4696:Jahnke, F. (2012). 3767: 3704: 3655: 3572: 3537: 3479: 3402: 3382: 3349: 3277: 3252: 3207: 3172: 3074: 2955: 2882: 2821: 2772: 2679: 2661: 2614: 2562: 2545: 2499: 2437: 2365: 2265: 2200: 2147: 2086: 2066: 1978: 1944: 1907: 1864: 1590: 1554: 1534: 1503: 1327: 1264: 1188: 1101: 937: 709: 639: 535: 462: 292: 195: 66:Coulomb-interaction 4250: 4145: 4125: 4105: 4070: 4002: 3975: 3943: 3908: 3886: 3851: 3829: 3794: 3768: 3731: 3705: 3673: 3656: 3608: 3581: 3579: 3541: 3490: 3448: 3421: 3386: 3366: 3323: 3296: 3256: 3231: 3176: 3141: 3043: 2983: 2932: 2905: 2857: 2822: 2790: 2773: 2741: 2724: 2702: 2680: 2663: 2645: 2626: 2583: 2582: 2546: 2529: 2463: 2438: 2421: 2420: 2342: 2338: 2294: 2247: 2246: 2184: 2131: 2092: 2070: 2050: 2014: 1979: 1962: 1945: 1928: 1908: 1882: 1865: 1828: 1799: 1770: 1721: 1680: 1610: 1565: 1538: 1518: 1467: 1333: 1300: 1241: 1235: 1165: 1078: 988: 953: 914: 894: 859: 839: 812: 777: 745:recombines with a 735: 713: 686: 664: 616: 564: 517: 516: 439: 365: 327:-number operator. 313: 269: 252: 232: 196: 172: 149: 105:photon-correlation 4674:Physical Review B 4635:Physical Review B 4597:Physical Review B 4507:Physical Review B 4469:(15): 3263–3266. 4423:Physical Review B 4403:Physical Review B 4380:Physical Review B 4332:(25): 5170–5173. 4288:Photoluminescence 4233: 4214: 3410: 3285: 3119: 3095: 3041: 2966: 2942: 2891: 2566: 2409: 2407: 2376: 2352: 2329: 2327: 2237: 2182: 2129: 1802:{\displaystyle T} 1710: 1594: 1421: 1383: 1224: 1199: 1175: 1112: 1088: 1070: 1028:self-consistently 924: 766: 696: 650: 626: 505: 473: 449: 434: 353: 332:expectation value 304: 279: 255:{\displaystyle B} 223: 182: 133:many-body physics 16:(Redirected from 4832: 4806: 4787: 4768: 4749: 4730: 4711: 4683: 4669: 4663: 4650: 4644: 4631: 4625: 4612: 4606: 4593: 4587: 4577: 4571: 4560: 4554: 4541: 4535: 4522: 4516: 4502: 4496: 4479: 4473: 4460: 4454: 4441: 4432: 4418: 4412: 4398: 4389: 4376: 4370: 4355: 4336: 4319: 4259: 4257: 4256: 4251: 4246: 4245: 4244: 4235: 4234: 4226: 4222: 4221: 4216: 4215: 4207: 4158:phenomenological 4154: 4152: 4151: 4146: 4134: 4132: 4131: 4126: 4114: 4112: 4111: 4106: 4104: 4103: 4102: 4079: 4077: 4076: 4071: 4069: 4068: 4067: 4011: 4009: 4008: 4003: 4001: 4000: 3999: 3952: 3950: 3949: 3944: 3942: 3941: 3940: 3917: 3915: 3914: 3909: 3907: 3895: 3893: 3892: 3887: 3885: 3884: 3883: 3860: 3858: 3857: 3852: 3850: 3838: 3836: 3835: 3830: 3828: 3827: 3826: 3803: 3801: 3800: 3795: 3793: 3777: 3775: 3774: 3769: 3766: 3765: 3747: 3740: 3715:, respectively. 3714: 3712: 3711: 3706: 3703: 3702: 3701: 3689: 3683: 3682: 3665: 3663: 3662: 3657: 3654: 3653: 3652: 3640: 3634: 3633: 3590: 3588: 3587: 3582: 3580: 3571: 3570: 3569: 3557: 3551: 3550: 3536: 3535: 3534: 3522: 3516: 3515: 3483: 3478: 3477: 3476: 3464: 3458: 3457: 3446: 3445: 3444: 3440: 3431: 3420: 3419: 3409: 3408: 3401: 3396: 3395: 3381: 3376: 3375: 3359: 3358: 3348: 3347: 3339: 3333: 3332: 3321: 3320: 3319: 3315: 3306: 3295: 3294: 3284: 3283: 3276: 3271: 3270: 3269: 3251: 3246: 3245: 3244: 3224: 3223: 3211: 3206: 3205: 3204: 3192: 3186: 3185: 3171: 3170: 3169: 3157: 3151: 3150: 3139: 3135: 3134: 3133: 3132: 3131: 3121: 3120: 3112: 3105: 3104: 3103: 3097: 3096: 3088: 3073: 3072: 3071: 3059: 3053: 3052: 3042: 3040: 3029: 3024: 2992: 2990: 2989: 2984: 2979: 2978: 2977: 2968: 2967: 2959: 2954: 2949: 2944: 2943: 2935: 2924: 2923: 2922: 2913: 2912: 2904: 2903: 2890: 2881: 2880: 2865: 2831: 2829: 2828: 2823: 2820: 2819: 2818: 2806: 2800: 2799: 2782: 2780: 2779: 2774: 2771: 2770: 2769: 2757: 2751: 2750: 2733: 2731: 2730: 2725: 2723: 2711: 2709: 2708: 2703: 2701: 2689: 2687: 2686: 2681: 2678: 2673: 2672: 2660: 2655: 2654: 2635: 2633: 2632: 2627: 2621: 2620: 2613: 2612: 2611: 2599: 2593: 2592: 2581: 2580: 2579: 2561: 2556: 2555: 2544: 2539: 2538: 2528: 2527: 2521: 2520: 2515: 2514: 2507: 2498: 2497: 2479: 2472: 2447: 2445: 2444: 2439: 2436: 2431: 2430: 2419: 2418: 2408: 2406: 2395: 2384: 2383: 2378: 2377: 2369: 2364: 2359: 2354: 2353: 2345: 2337: 2328: 2326: 2315: 2303: 2301: 2300: 2295: 2289: 2285: 2284: 2283: 2276: 2264: 2259: 2254: 2253: 2245: 2231: 2213: 2212: 2211: 2205: 2201: 2199: 2194: 2193: 2183: 2181: 2170: 2160: 2159: 2158: 2152: 2148: 2146: 2141: 2140: 2130: 2128: 2117: 2101: 2099: 2098: 2093: 2091: 2087: 2085: 2080: 2079: 2065: 2060: 2059: 2023: 2021: 2020: 2015: 2013: 2012: 2005: 1988: 1986: 1985: 1980: 1977: 1972: 1971: 1954: 1952: 1951: 1946: 1943: 1938: 1937: 1917: 1915: 1914: 1909: 1906: 1905: 1890: 1874: 1872: 1871: 1866: 1863: 1862: 1844: 1837: 1808: 1806: 1805: 1800: 1779: 1777: 1776: 1771: 1769: 1768: 1767: 1730: 1728: 1727: 1722: 1720: 1719: 1718: 1712: 1711: 1703: 1689: 1687: 1686: 1681: 1664: 1660: 1659: 1658: 1651: 1650: 1635: 1634: 1633: 1629: 1620: 1609: 1608: 1607: 1589: 1588: 1573: 1559: 1555: 1553: 1548: 1547: 1533: 1528: 1527: 1502: 1501: 1483: 1476: 1463: 1462: 1455: 1445: 1441: 1431: 1430: 1429: 1423: 1422: 1414: 1402: 1401: 1394: 1384: 1382: 1371: 1366: 1342: 1340: 1339: 1334: 1332: 1328: 1326: 1321: 1320: 1309: 1299: 1298: 1293: 1292: 1282: 1281: 1274: 1263: 1258: 1257: 1248: 1247: 1234: 1233: 1223: 1212: 1211: 1210: 1201: 1200: 1192: 1187: 1182: 1177: 1176: 1168: 1145: 1125: 1124: 1123: 1114: 1113: 1105: 1100: 1095: 1090: 1089: 1081: 1071: 1069: 1058: 1053: 997: 995: 994: 989: 987: 986: 981: 980: 962: 960: 959: 954: 949: 948: 947: 936: 931: 926: 925: 917: 903: 901: 900: 895: 893: 892: 885: 869:notation within 868: 866: 865: 860: 848: 846: 845: 840: 821: 819: 818: 813: 811: 810: 803: 786: 784: 783: 778: 776: 775: 774: 768: 767: 759: 744: 742: 741: 736: 734: 722: 720: 719: 714: 708: 703: 698: 697: 689: 673: 671: 670: 665: 660: 659: 658: 652: 651: 643: 638: 633: 628: 627: 619: 606: 605: 598: 573: 571: 570: 565: 559: 555: 554: 553: 546: 534: 529: 524: 523: 515: 514: 499: 481: 480: 475: 474: 466: 461: 456: 451: 450: 442: 435: 433: 422: 408: 374: 372: 371: 366: 361: 360: 355: 354: 346: 322: 320: 319: 314: 312: 311: 306: 305: 297: 291: 286: 281: 280: 272: 261: 259: 258: 253: 241: 239: 238: 233: 231: 230: 225: 224: 216: 205: 203: 202: 197: 194: 189: 184: 183: 175: 158: 156: 155: 150: 73:luminescence to 21: 4840: 4839: 4835: 4834: 4833: 4831: 4830: 4829: 4810: 4809: 4803: 4790: 4784: 4771: 4765: 4752: 4746: 4733: 4727: 4714: 4708: 4695: 4692: 4690:Further reading 4687: 4686: 4670: 4666: 4651: 4647: 4632: 4628: 4613: 4609: 4594: 4590: 4578: 4574: 4561: 4557: 4542: 4538: 4523: 4519: 4503: 4499: 4480: 4476: 4461: 4457: 4442: 4435: 4419: 4415: 4399: 4392: 4377: 4373: 4356: 4339: 4320: 4316: 4311: 4298:Elliott formula 4274: 4237: 4223: 4204: 4193: 4192: 4137: 4136: 4117: 4116: 4087: 4082: 4081: 4052: 4047: 4046: 4039: 3984: 3979: 3978: 3925: 3920: 3919: 3898: 3897: 3868: 3863: 3862: 3841: 3840: 3811: 3806: 3805: 3784: 3783: 3726: 3725: 3721: 3694: 3668: 3667: 3645: 3603: 3602: 3578: 3577: 3562: 3527: 3481: 3480: 3469: 3435: 3422: 3310: 3297: 3262: 3237: 3209: 3208: 3197: 3162: 3124: 3109: 3085: 3084: 3080: 3078: 3064: 3033: 3011: 3010: 2970: 2956: 2915: 2906: 2896: 2849: 2848: 2811: 2785: 2784: 2762: 2736: 2735: 2714: 2713: 2692: 2691: 2640: 2639: 2604: 2572: 2508: 2458: 2457: 2399: 2366: 2319: 2309: 2308: 2267: 2236: 2232: 2174: 2168: 2165: 2164: 2121: 2115: 2112: 2111: 2106: 2105: 2043: 2039: 2034: 2033: 1996: 1991: 1990: 1957: 1956: 1923: 1922: 1877: 1876: 1823: 1822: 1782: 1781: 1758: 1753: 1752: 1731:, contains the 1700: 1695: 1694: 1691: 1643: 1637: 1624: 1611: 1600: 1564: 1560: 1511: 1507: 1446: 1411: 1410: 1406: 1385: 1375: 1357: 1356: 1344: 1313: 1286: 1265: 1250: 1240: 1236: 1203: 1189: 1138: 1116: 1102: 1062: 1044: 1043: 1020: 1006:, light-mode's 974: 969: 968: 967:. The quantity 938: 906: 905: 876: 871: 870: 851: 850: 849:; the explicit 831: 830: 794: 789: 788: 756: 751: 750: 725: 724: 678: 677: 640: 589: 584: 583: 537: 504: 500: 463: 426: 399: 398: 377:quasistationary 343: 335: 334: 323:determines the 294: 264: 263: 244: 243: 213: 208: 207: 167: 166: 141: 140: 125: 94:optical pumping 92:resulting from 30: 23: 22: 15: 12: 11: 5: 4838: 4836: 4828: 4827: 4825:Quantum optics 4822: 4812: 4811: 4808: 4807: 4802:978-3540383451 4801: 4788: 4783:978-3540383451 4782: 4769: 4764:978-3527406678 4763: 4750: 4745:978-9812838841 4744: 4731: 4726:978-0521875097 4725: 4712: 4707:978-0857092328 4706: 4691: 4688: 4685: 4684: 4664: 4645: 4626: 4621:(3): 411–418. 4607: 4588: 4572: 4555: 4536: 4531:(17): 171120. 4517: 4497: 4474: 4455: 4450:(5): 155–296. 4433: 4413: 4390: 4371: 4367:978-0521875097 4337: 4313: 4312: 4310: 4307: 4306: 4305: 4300: 4295: 4290: 4285: 4280: 4273: 4270: 4249: 4243: 4240: 4232: 4229: 4220: 4213: 4210: 4203: 4200: 4144: 4124: 4101: 4097: 4094: 4090: 4066: 4062: 4059: 4055: 4045:(SBEs) if the 4038: 4035: 3998: 3994: 3991: 3987: 3939: 3935: 3932: 3928: 3906: 3882: 3878: 3875: 3871: 3849: 3825: 3821: 3818: 3814: 3792: 3764: 3761: 3758: 3755: 3752: 3746: 3743: 3739: 3734: 3720: 3717: 3700: 3697: 3692: 3688: 3681: 3676: 3651: 3648: 3643: 3639: 3632: 3629: 3626: 3623: 3619: 3616: 3611: 3576: 3568: 3565: 3560: 3556: 3549: 3544: 3540: 3533: 3530: 3525: 3521: 3514: 3511: 3508: 3505: 3501: 3498: 3493: 3489: 3486: 3484: 3482: 3475: 3472: 3467: 3463: 3456: 3451: 3443: 3439: 3434: 3430: 3425: 3418: 3413: 3407: 3400: 3394: 3389: 3385: 3380: 3374: 3369: 3365: 3362: 3357: 3352: 3346: 3342: 3338: 3331: 3326: 3318: 3314: 3309: 3305: 3300: 3293: 3288: 3282: 3275: 3268: 3265: 3259: 3255: 3250: 3243: 3240: 3234: 3230: 3227: 3222: 3217: 3214: 3212: 3210: 3203: 3200: 3195: 3191: 3184: 3179: 3175: 3168: 3165: 3160: 3156: 3149: 3144: 3138: 3130: 3127: 3118: 3115: 3108: 3102: 3094: 3091: 3083: 3079: 3077: 3070: 3067: 3062: 3058: 3051: 3046: 3039: 3036: 3032: 3027: 3023: 3019: 3018: 3002:Purcell effect 2982: 2976: 2973: 2965: 2962: 2953: 2948: 2941: 2938: 2931: 2928: 2921: 2918: 2911: 2902: 2899: 2894: 2889: 2885: 2879: 2876: 2873: 2870: 2864: 2860: 2856: 2817: 2814: 2809: 2805: 2798: 2793: 2768: 2765: 2760: 2756: 2749: 2744: 2722: 2700: 2677: 2671: 2666: 2659: 2653: 2648: 2625: 2619: 2610: 2607: 2602: 2598: 2591: 2586: 2578: 2575: 2569: 2565: 2560: 2554: 2549: 2543: 2537: 2532: 2526: 2519: 2513: 2506: 2502: 2496: 2493: 2490: 2487: 2484: 2478: 2475: 2471: 2466: 2435: 2429: 2424: 2417: 2412: 2405: 2402: 2398: 2393: 2390: 2387: 2382: 2375: 2372: 2363: 2358: 2351: 2348: 2341: 2336: 2332: 2325: 2322: 2318: 2293: 2288: 2282: 2279: 2275: 2270: 2263: 2258: 2252: 2244: 2240: 2235: 2230: 2227: 2222: 2219: 2216: 2210: 2204: 2198: 2192: 2187: 2180: 2177: 2173: 2167: 2163: 2157: 2151: 2145: 2139: 2134: 2127: 2124: 2120: 2114: 2090: 2084: 2078: 2073: 2069: 2064: 2058: 2053: 2049: 2046: 2042: 2011: 2008: 2004: 1999: 1976: 1970: 1965: 1942: 1936: 1931: 1904: 1901: 1898: 1895: 1889: 1885: 1861: 1858: 1855: 1852: 1849: 1843: 1840: 1836: 1831: 1798: 1795: 1792: 1789: 1766: 1761: 1717: 1709: 1706: 1679: 1676: 1673: 1670: 1667: 1663: 1657: 1654: 1649: 1646: 1640: 1632: 1628: 1623: 1619: 1614: 1606: 1603: 1597: 1593: 1587: 1584: 1581: 1578: 1572: 1568: 1563: 1558: 1552: 1546: 1541: 1537: 1532: 1526: 1521: 1517: 1514: 1510: 1506: 1500: 1497: 1494: 1491: 1488: 1482: 1479: 1475: 1470: 1466: 1461: 1458: 1454: 1449: 1444: 1440: 1437: 1434: 1428: 1420: 1417: 1409: 1405: 1400: 1397: 1393: 1388: 1381: 1378: 1374: 1369: 1365: 1348: 1331: 1325: 1319: 1316: 1312: 1308: 1303: 1297: 1291: 1285: 1280: 1277: 1273: 1268: 1262: 1256: 1253: 1246: 1239: 1232: 1227: 1222: 1218: 1215: 1209: 1206: 1198: 1195: 1186: 1181: 1174: 1171: 1164: 1161: 1157: 1154: 1151: 1148: 1144: 1141: 1137: 1134: 1131: 1128: 1122: 1119: 1111: 1108: 1099: 1094: 1087: 1084: 1077: 1074: 1068: 1065: 1061: 1056: 1052: 1035: 1019: 1016: 985: 979: 952: 946: 941: 935: 930: 923: 920: 913: 891: 888: 884: 879: 858: 838: 809: 806: 802: 797: 773: 765: 762: 733: 712: 707: 702: 695: 692: 685: 663: 657: 649: 646: 637: 632: 625: 622: 615: 612: 609: 604: 601: 597: 592: 563: 558: 552: 549: 545: 540: 533: 528: 522: 513: 508: 503: 498: 495: 490: 487: 484: 479: 472: 469: 460: 455: 448: 445: 438: 432: 429: 425: 420: 417: 414: 411: 407: 364: 359: 352: 349: 342: 310: 303: 300: 290: 285: 278: 275: 251: 229: 222: 219: 193: 188: 181: 178: 148: 124: 123:Starting point 121: 117:quantum optics 46:semiconductors 28: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4837: 4826: 4823: 4821: 4818: 4817: 4815: 4804: 4798: 4794: 4789: 4785: 4779: 4775: 4770: 4766: 4760: 4756: 4751: 4747: 4741: 4737: 4732: 4728: 4722: 4718: 4713: 4709: 4703: 4699: 4694: 4693: 4689: 4682: 4678: 4675: 4668: 4665: 4662: 4658: 4655: 4649: 4646: 4643: 4639: 4636: 4630: 4627: 4624: 4620: 4617: 4611: 4608: 4605: 4601: 4598: 4592: 4589: 4586:(12): 125009. 4585: 4582: 4576: 4573: 4569: 4566: 4559: 4556: 4553: 4549: 4546: 4540: 4537: 4534: 4530: 4527: 4521: 4518: 4515: 4511: 4508: 4501: 4498: 4495: 4491: 4488: 4484: 4478: 4475: 4472: 4468: 4465: 4459: 4456: 4453: 4449: 4446: 4440: 4438: 4434: 4431: 4427: 4424: 4417: 4414: 4411: 4407: 4404: 4397: 4395: 4391: 4388: 4384: 4381: 4375: 4372: 4368: 4364: 4360: 4354: 4352: 4350: 4348: 4346: 4344: 4342: 4338: 4335: 4331: 4328: 4324: 4318: 4315: 4308: 4304: 4301: 4299: 4296: 4294: 4291: 4289: 4286: 4284: 4281: 4279: 4276: 4275: 4271: 4269: 4267: 4263: 4241: 4238: 4227: 4218: 4208: 4190: 4185: 4181: 4179: 4175: 4171: 4167: 4161: 4159: 4142: 4122: 4095: 4092: 4060: 4057: 4044: 4036: 4034: 4032: 4028: 4022: 4019: 4014: 3992: 3989: 3973:correlations. 3970: 3966: 3964: 3960: 3956: 3955:eigenenergies 3953:dynamics has 3933: 3930: 3876: 3873: 3819: 3816: 3781: 3744: 3741: 3718: 3716: 3698: 3690: 3674: 3649: 3641: 3617: 3609: 3600: 3596: 3591: 3574: 3566: 3558: 3542: 3538: 3531: 3523: 3499: 3491: 3487: 3485: 3473: 3465: 3449: 3441: 3432: 3423: 3411: 3398: 3387: 3383: 3378: 3367: 3363: 3360: 3350: 3340: 3324: 3316: 3307: 3298: 3286: 3273: 3266: 3257: 3253: 3248: 3241: 3232: 3228: 3225: 3215: 3213: 3201: 3193: 3177: 3173: 3166: 3158: 3142: 3136: 3128: 3113: 3106: 3089: 3081: 3075: 3068: 3060: 3044: 3037: 3008: 3005: 3003: 2998: 2993: 2974: 2971: 2960: 2951: 2946: 2936: 2919: 2916: 2900: 2897: 2892: 2883: 2862: 2846: 2845: 2843: 2837: 2835: 2815: 2807: 2791: 2766: 2758: 2742: 2675: 2664: 2657: 2646: 2638:Intuitively, 2636: 2623: 2608: 2600: 2584: 2576: 2567: 2563: 2558: 2547: 2541: 2530: 2517: 2500: 2476: 2473: 2455: 2454: 2449: 2433: 2422: 2410: 2403: 2391: 2388: 2380: 2370: 2361: 2356: 2346: 2334: 2330: 2323: 2304: 2291: 2286: 2280: 2277: 2261: 2256: 2242: 2238: 2233: 2220: 2217: 2214: 2202: 2196: 2185: 2178: 2161: 2149: 2143: 2132: 2125: 2103: 2088: 2082: 2071: 2067: 2062: 2051: 2047: 2044: 2040: 2031: 2027: 2009: 2006: 1974: 1963: 1940: 1929: 1919: 1887: 1841: 1838: 1820: 1816: 1812: 1787: 1759: 1750: 1746: 1742: 1738: 1737:bandstructure 1734: 1704: 1690: 1668: 1665: 1661: 1655: 1652: 1647: 1630: 1621: 1612: 1604: 1591: 1570: 1561: 1556: 1550: 1539: 1535: 1530: 1519: 1515: 1512: 1508: 1504: 1480: 1477: 1464: 1459: 1456: 1442: 1438: 1432: 1415: 1407: 1403: 1398: 1395: 1379: 1354: 1351: 1347: 1343: 1329: 1323: 1317: 1314: 1310: 1295: 1283: 1278: 1275: 1260: 1254: 1251: 1237: 1216: 1207: 1204: 1193: 1184: 1179: 1169: 1152: 1146: 1142: 1139: 1129: 1120: 1117: 1106: 1097: 1092: 1082: 1066: 1041: 1038: 1034: 1033: 1029: 1025: 1017: 1015: 1013: 1009: 1008:mode function 1005: 1001: 998:contains the 983: 966: 939: 933: 928: 918: 889: 886: 836: 827: 825: 807: 804: 760: 748: 705: 700: 690: 674: 644: 635: 630: 620: 607: 602: 599: 581: 579: 574: 561: 556: 550: 547: 531: 526: 506: 501: 488: 485: 477: 467: 458: 453: 443: 430: 418: 412: 396: 394: 390: 386: 382: 378: 357: 347: 333: 328: 326: 308: 298: 288: 283: 273: 249: 227: 217: 191: 186: 176: 165: 162: 146: 138: 134: 130: 122: 120: 118: 114: 110: 106: 102: 99: 95: 91: 87: 83: 78: 76: 72: 67: 63: 59: 55: 51: 50:recombination 47: 43: 39: 35: 27: 19: 4795:. Springer. 4792: 4776:. Springer. 4773: 4754: 4735: 4716: 4697: 4676: 4673: 4667: 4656: 4653: 4648: 4637: 4634: 4629: 4618: 4615: 4610: 4599: 4596: 4591: 4583: 4580: 4575: 4567: 4564: 4558: 4547: 4544: 4539: 4528: 4525: 4520: 4509: 4506: 4500: 4489: 4486: 4483:Khitrova, G. 4477: 4466: 4463: 4458: 4447: 4444: 4425: 4422: 4416: 4405: 4402: 4382: 4379: 4374: 4358: 4329: 4326: 4323:Khitrova, G. 4317: 4186: 4182: 4174:quantum-wire 4170:quantum-well 4162: 4040: 4027:quantum-well 4023: 4018:collectively 4017: 4015: 3976: 3965:resonances. 3722: 3592: 3009: 3006: 2994: 2847: 2844:contribution 2840: 2838: 2637: 2456: 2452: 2450: 2305: 2104: 1920: 1748: 1692: 1355: 1352: 1349: 1345: 1042: 1039: 1036: 1031: 1021: 1012:vacuum-field 828: 823: 675: 582: 577: 575: 397: 385:luminescence 329: 126: 109:entanglement 79: 42:luminescence 37: 33: 31: 26: 4178:quantum-dot 4031:quantum-dot 3977:Therefore, 1014:amplitude. 129:Hamiltonian 40:) describe 4814:Categories 4309:References 2842:stimulated 381:incoherent 86:incoherent 4570:(1): 115. 4248:⟩ 4239:ω 4231:^ 4219:ω 4212:^ 4202:⟨ 4199:Δ 4180:systems. 4143:ω 4123:ω 4093:ω 4089:Π 4058:ω 4054:Π 3990:ω 3986:Π 3931:ω 3927:Π 3896:with all 3874:ω 3870:Π 3817:ω 3813:Π 3745:ω 3733:Ω 3595:Boltzmann 3433:− 3412:∑ 3384:− 3364:− 3351:− 3308:− 3287:∑ 3254:− 3229:− 3117:~ 3114:ϵ 3107:− 3093:~ 3090:ϵ 3035:∂ 3031:∂ 3026:ℏ 2981:⟩ 2972:ω 2964:^ 2952:† 2947:ω 2940:^ 2930:⟨ 2927:Δ 2917:ω 2898:ω 2893:∑ 2863:ω 2859:Ω 2855:Δ 2568:∑ 2518:ω 2477:ω 2465:Ω 2411:∑ 2401:∂ 2397:∂ 2392:− 2386:⟩ 2381:ω 2374:^ 2362:† 2357:ω 2350:^ 2340:⟨ 2335:ω 2331:∑ 2321:∂ 2317:∂ 2281:ω 2269:Π 2262:⋆ 2257:ω 2243:ω 2239:∑ 2218:− 2176:∂ 2172:∂ 2123:∂ 2119:∂ 2068:− 2048:− 2010:ω 1998:Π 1888:ω 1884:Ω 1842:ω 1830:Ω 1815:screening 1794:Π 1708:~ 1705:ϵ 1675:Π 1656:ω 1639:Π 1622:− 1596:∑ 1571:ω 1567:Ω 1536:− 1516:− 1505:− 1481:ω 1469:Ω 1460:ω 1448:Π 1439:ω 1436:ℏ 1433:− 1419:~ 1416:ϵ 1399:ω 1387:Π 1377:∂ 1373:∂ 1368:ℏ 1324:⋆ 1315:ω 1302:Π 1296:ω 1279:ω 1267:Π 1261:⋆ 1252:ω 1226:∑ 1214:⟩ 1205:ω 1197:^ 1185:† 1180:ω 1173:^ 1163:⟨ 1160:Δ 1153:ω 1150:ℏ 1147:− 1140:ω 1136:ℏ 1127:⟩ 1118:ω 1110:^ 1098:† 1093:ω 1086:^ 1076:⟨ 1073:Δ 1064:∂ 1060:∂ 1055:ℏ 984:ω 951:⟩ 934:† 929:ω 922:^ 912:⟨ 890:ω 878:Π 857:Δ 837:ω 808:ω 796:Π 764:^ 706:† 701:ω 694:^ 662:⟩ 648:^ 636:† 631:ω 624:^ 614:⟨ 611:Δ 608:≡ 603:ω 591:Π 551:ω 539:Π 532:⋆ 527:ω 507:∑ 483:⟩ 478:ω 471:^ 459:† 454:ω 447:^ 437:⟨ 428:∂ 424:∂ 413:ω 363:⟩ 358:ω 351:^ 341:⟨ 309:ω 302:^ 289:† 284:ω 277:^ 228:ω 221:^ 192:† 187:ω 180:^ 147:ω 71:excitonic 4272:See also 4242:′ 3699:′ 3650:′ 3599:excitons 3567:′ 3532:′ 3474:′ 3442:′ 3317:′ 3267:′ 3242:′ 3202:′ 3167:′ 3129:′ 3069:′ 2975:′ 2920:′ 2901:′ 2834:excitons 2816:′ 2767:′ 2609:′ 2577:′ 2028:and the 2024:via the 1648:′ 1631:′ 1605:′ 1318:′ 1255:′ 1208:′ 1143:′ 1121:′ 98:coherent 4550:: 810. 3963:exciton 1739:of the 4799:  4780:  4761:  4742:  4723:  4704:  4679:(16). 4602:(15). 4428:(11). 4408:(16). 4385:(15). 4365:  3780:photon 2997:lasers 1010:, and 325:photon 75:lasers 4659:(6). 4640:(9). 4512:(4). 4492:(6). 1741:solid 161:Boson 101:laser 96:with 4797:ISBN 4778:ISBN 4759:ISBN 4740:ISBN 4721:ISBN 4702:ISBN 4363:ISBN 4172:and 4029:and 3666:and 1955:and 1002:for 747:hole 393:flux 206:and 54:flux 38:SLEs 32:The 4657:101 1749:all 56:of 44:of 4816:: 4677:81 4638:85 4619:50 4600:73 4584:23 4548:46 4529:89 4510:74 4490:92 4467:81 4448:30 4436:^ 4426:79 4406:76 4393:^ 4383:75 4340:^ 4330:79 4268:. 3004:. 2448:. 2032:, 1813:, 826:. 580:, 119:. 77:. 4805:. 4786:. 4767:. 4748:. 4729:. 4710:. 4568:7 4369:. 4228:B 4209:B 4100:k 4096:, 4065:k 4061:, 3997:k 3993:, 3938:k 3934:, 3905:k 3881:k 3877:, 3848:k 3824:k 3820:, 3791:k 3763:t 3760:n 3757:o 3754:p 3751:s 3742:, 3738:k 3696:k 3691:, 3687:k 3680:X 3675:T 3647:k 3642:, 3638:k 3631:t 3628:s 3625:e 3622:r 3618:, 3615:X 3610:D 3575:. 3564:k 3559:, 3555:k 3548:X 3543:T 3539:+ 3529:k 3524:, 3520:k 3513:t 3510:s 3507:e 3504:r 3500:, 3497:X 3492:D 3488:+ 3471:k 3466:, 3462:l 3455:X 3450:c 3438:k 3429:l 3424:V 3417:l 3406:) 3399:h 3393:k 3388:f 3379:e 3373:k 3368:f 3361:1 3356:( 3345:l 3341:, 3337:k 3330:X 3325:c 3313:k 3304:l 3299:V 3292:l 3281:) 3274:h 3264:k 3258:f 3249:e 3239:k 3233:f 3226:1 3221:( 3216:+ 3199:k 3194:, 3190:k 3183:X 3178:S 3174:+ 3164:k 3159:, 3155:k 3148:X 3143:c 3137:) 3126:k 3101:k 3082:( 3076:= 3066:k 3061:, 3057:k 3050:X 3045:c 3038:t 3022:i 2961:B 2937:B 2910:F 2888:i 2884:= 2878:m 2875:i 2872:t 2869:s 2813:k 2808:, 2804:k 2797:X 2792:c 2764:k 2759:, 2755:k 2748:X 2743:c 2721:k 2699:k 2676:h 2670:k 2665:f 2658:e 2652:k 2647:f 2624:. 2618:) 2606:k 2601:, 2597:k 2590:X 2585:c 2574:k 2564:+ 2559:h 2553:k 2548:f 2542:e 2536:k 2531:f 2525:( 2512:F 2505:i 2501:= 2495:t 2492:n 2489:o 2486:p 2483:s 2474:, 2470:k 2434:e 2428:k 2423:f 2416:k 2404:t 2389:= 2371:B 2347:B 2324:t 2292:. 2287:] 2278:, 2274:k 2251:F 2234:[ 2229:e 2226:R 2221:2 2215:= 2209:L 2203:| 2197:h 2191:k 2186:f 2179:t 2162:= 2156:L 2150:| 2144:e 2138:k 2133:f 2126:t 2089:) 2083:h 2077:k 2072:f 2063:e 2057:k 2052:f 2045:1 2041:( 2007:, 2003:k 1975:h 1969:k 1964:f 1941:e 1935:k 1930:f 1903:m 1900:i 1897:t 1894:s 1860:t 1857:n 1854:o 1851:p 1848:s 1839:, 1835:k 1797:] 1791:[ 1788:T 1765:k 1760:V 1716:k 1678:] 1672:[ 1669:T 1666:+ 1662:] 1653:, 1645:k 1627:k 1618:k 1613:V 1602:k 1592:+ 1586:m 1583:i 1580:t 1577:s 1562:[ 1557:) 1551:h 1545:k 1540:f 1531:e 1525:k 1520:f 1513:1 1509:( 1499:t 1496:n 1493:o 1490:p 1487:s 1478:, 1474:k 1465:+ 1457:, 1453:k 1443:) 1427:k 1408:( 1404:= 1396:, 1392:k 1380:t 1364:i 1330:] 1311:, 1307:k 1290:F 1284:+ 1276:, 1272:k 1245:F 1238:[ 1231:k 1221:i 1217:+ 1194:B 1170:B 1156:) 1133:( 1130:= 1107:B 1083:B 1067:t 1051:i 978:F 945:k 940:P 919:B 887:, 883:k 805:, 801:k 772:k 761:P 732:k 711:) 691:B 684:( 656:k 645:P 621:B 600:, 596:k 562:. 557:] 548:, 544:k 521:F 512:k 502:[ 497:e 494:R 489:2 486:= 468:B 444:B 431:t 419:= 416:) 410:( 406:L 348:B 299:B 274:B 250:B 218:B 177:B 36:( 20:)

Index

Semiconductor-Luminescence Equations
luminescence
semiconductors
recombination
flux
spontaneously emitted
semiconductor quantum optics
Coulomb-interaction
excitonic
lasers
vacuum-field fluctuations
incoherent
resonance fluorescence
optical pumping
coherent
laser
photon-correlation
entanglement
quantum-optical spectroscopy
quantum optics
Hamiltonian
many-body physics
second-quantization formalism
Boson
creation and annihilation operators
photon
expectation value
quasistationary
incoherent
luminescence

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑