Knowledge (XXG)

Semi-empirical quantum chemistry method

Source đź“ť

410:
The NOTCH method includes many new, physically-motivated terms compared to the NDDO family of methods, is much less empirical than the other semi-empirical methods (almost all of its parameters are determined non-empirically), provides robust accuracy for bonds between uncommon element combinations,
222:
Within the framework of Hartree–Fock calculations, some pieces of information (such as two-electron integrals) are sometimes approximated or completely omitted. In order to correct for this loss, semi-empirical methods are parametrized, that is their results are fitted by a set of parameters,
401:, are sometimes classified as semiempirical methods as well. More recent examples include the semiempirical quantum mechanical methods GFNn-xTB (n=0,1,2), which are particularly suited for the geometry, vibrational frequencies, and non-covalent interactions of large molecules. 907:
Michael J. S. Dewar; Eve G. Zoebisch; Eamonn F. Healy; James J. P. Stewart (1985). "Development and use of quantum molecular models. 75. Comparative tests of theoretical procedures for studying chemical reactions".
364:. Here the objective is to use parameters to fit experimental heats of formation, dipole moments, ionization potentials, and geometries. This is by far the largest group of semiempirical methods. 423: 315:. The implementations aimed to fit, not experiment, but ab initio minimum basis set results. These methods are now rarely used but the methodology is often the basis of later methods. 187: 381:. The OMx (x=1,2,3) methods can also be viewed as belonging to this class, although they are also suitable for ground-state applications; in particular, the combination of OM2 and 1257:"GFN2-xTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions" 285:(PPP), can provide good estimates of the π-electronic excited states, when parameterized well. For many years, the PPP method outperformed ab initio excited state calculations. 215:
for treating large molecules where the full Hartree–Fock method without the approximations is too expensive. The use of empirical parameters appears to allow some inclusion of
268:
approximation. Their results, however, can be very wrong if the molecule being computed is not similar enough to the molecules in the database used to parametrize the method.
1375: 750:
Pariser, Rudolph; Parr, Robert G. (1953). "A Semi-Empirical Theory of the Electronic Spectra and Electronic Structure of Complex Unsaturated Molecules. II".
707:
Pariser, Rudolph; Parr, Robert G. (1953). "A Semi-Empirical Theory of the Electronic Spectra and Electronic Structure of Complex Unsaturated Molecules. I.".
87: 1083:
Nanda, D. N.; Jug, Karl (1980). "SINDO1. A semiempirical SCF MO method for molecular binding energy and geometry I. Approximations and parametrization".
180: 75: 382: 109: 163: 121: 117: 173: 1021:"Optimization of parameters for semiempirical methods VI: More modifications to the NDDO approximations and re-optimization of parameters" 281:
These methods exist for the calculation of electronically excited states of polyenes, both cyclic and linear. These methods, such as the
224: 91: 282: 1126:
Dral, Pavlo O.; Wu, Xin; Spörkel, Lasse; Koslowski, Axel; Weber, Wolfgang; Steiger, Rainer; Scholten, Mirjam; Thiel, Walter (2016).
880:
Michael J. S. Dewar & Walter Thiel (1977). "Ground states of molecules. 38. The MNDO method. Approximations and parameters".
238: 125: 972:"Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements" 1069: 867: 333: 537:
Hückel, Erich (1932). "Quantentheoretische Beiträge zum Problem der aromatischen und ungesättigten Verbindungen. III".
155: 45: 211:
formalism, but make many approximations and obtain some parameters from empirical data. They are very important in
151: 139: 53: 1177:"Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Benchmarks of Electronically Excited States" 265: 250: 223:
normally in such a way as to produce results that best agree with experimental data, but sometimes to agree with
132: 102: 79: 147: 60: 49: 67: 373:
Methods whose primary aim is to calculate excited states and hence predict electronic spectra. These include
1314:"Development of NOTCH, an all-electron, beyond-NDDO semiempirical method: Application to diatomic molecules" 1128:"Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Theory, Implementation, and Parameters" 212: 113: 237:
Semi-empirical methods follow what are often called empirical methods where the two-electron part of the
1325: 759: 716: 673: 597: 546: 503: 452: 216: 30: 651: 341: 95: 38: 1351: 1294: 1237: 1108: 952: 639: 621: 570: 476: 1343: 1286: 1278: 1198: 1157: 1100: 1050: 1001: 935:
James J. P. Stewart (1989). "Optimization of parameters for semiempirical methods I. Method".
810: 775: 732: 689: 613: 562: 519: 468: 202: 208: 1333: 1268: 1229: 1188: 1147: 1139: 1092: 1040: 1032: 991: 983: 944: 917: 889: 802: 767: 724: 681: 605: 554: 511: 460: 242: 159: 357: 83: 246: 1329: 763: 720: 677: 601: 550: 507: 456: 1152: 1045: 996: 353: 254: 1369: 1355: 1241: 625: 574: 480: 394: 143: 1298: 1112: 956: 1218:"Density-functional tight binding—an approximate density-functional theory method" 1036: 987: 312: 1282: 1273: 1256: 1193: 1176: 1143: 1104: 814: 779: 736: 693: 617: 566: 523: 472: 17: 1020: 971: 664:
Hoffmann, Roald (1963-09-15). "An Extended HĂĽckel Theory. I. Hydrocarbons".
494:
Hückel, Erich (1931). "Quanstentheoretische Beiträge zum Benzolproblem II".
1347: 1290: 1202: 1161: 1127: 1073:, Volume 2, Eds. K. B. Lipkowitz and D. B. Boyd, VCH, New York, 313, (1991) 1054: 1005: 948: 870:, Volume 1, Eds. K. B. Lipkowitz and D. B. Boyd, VCH, New York, 45, (1990) 443:
Hückel, Erich (1931). "Quantentheoretische Beiträge zum Benzolproblem I".
806: 793:
Pople, J. A. (1953). "Electron interaction in unsaturated hydrocarbons".
921: 893: 654:, Molecular Orbital Theory for Organic Chemists, Wiley, New York, (1961) 1096: 609: 588:
HĂĽckel, Erich (1933). "Die freien Radikale der organischen Chemie IV".
558: 515: 464: 1338: 1313: 1255:
Bannwarth, Christoph; Ehlert, Sebastian; Grimme, Stefan (2019-03-12).
1233: 771: 728: 685: 300: 1217: 378: 374: 345: 329: 325: 241:
is not explicitly included. For π-electron systems, this was the
398: 361: 349: 337: 308: 304: 1175:
Tuna, Deniz; Lu, You; Koslowski, Axel; Thiel, Walter (2016).
596:(9–10). Springer Science and Business Media LLC: 632–668. 545:(9–10). Springer Science and Business Media LLC: 628–648. 424:
List of quantum chemistry and solid-state physics software
385:
is an important tool for excited state molecular dynamics.
502:(5–6). Springer Science and Business Media LLC: 310–337. 451:(3–4). Springer Science and Business Media LLC: 204–286. 260:
Semi-empirical calculations are much faster than their
1091:(2). Springer Science and Business Media LLC: 95–106. 642:, B. O'Leary and R. B. Mallion, Academic Press, 1978. 293:These methods can be grouped into several groups: 844:, Prentice Hall, 4th edition, (1991), pg 579–580 411:and is applicable to ground and excited states. 340:computer programs originally from the group of 181: 8: 289:Methods restricted to all valence electrons. 1216:Seifert, Gotthard; Joswig, Jan-Ole (2012). 264:counterparts, mostly due to the use of the 88:Multi-configurational self-consistent field 1261:Journal of Chemical Theory and Computation 1181:Journal of Chemical Theory and Computation 1132:Journal of Chemical Theory and Computation 801:. Royal Society of Chemistry (RSC): 1375. 397:, e.g. a large family of methods known as 188: 174: 26: 1337: 1272: 1192: 1151: 1044: 995: 910:Journal of the American Chemical Society 882:Journal of the American Chemical Society 249:. For all valence electron systems, the 110:Time-dependent density functional theory 72:Semi-empirical quantum chemistry methods 1376:Semiempirical quantum chemistry methods 857:, Wiley, Chichester, (2002), pg 126–131 435: 131: 101: 59: 37: 29: 937:The Journal of Computational Chemistry 122:Linearized augmented-plane-wave method 118:Orbital-free density functional theory 1222:WIREs Computational Molecular Science 855:Essentials of Computational Chemistry 7: 829:Approximate Molecular Orbital Theory 638:HĂĽckel Theory for Organic Chemists, 1312:Wang, Zikuan; Neese, Frank (2023). 795:Transactions of the Faraday Society 92:Quantum chemistry composite methods 1070:Reviews in Computational Chemistry 868:Reviews in Computational Chemistry 76:Møller–Plesset perturbation theory 25: 277:Methods restricted to Ď€-electrons 672:(6). AIP Publishing: 1397–1412. 1318:The Journal of Chemical Physics 752:The Journal of Chemical Physics 709:The Journal of Chemical Physics 666:The Journal of Chemical Physics 126:Projector augmented wave method 758:(5). AIP Publishing: 767–776. 715:(3). AIP Publishing: 466–471. 1: 1025:Journal of Molecular Modeling 1019:Stewart, James J. P. (2013). 976:Journal of Molecular Modeling 970:Stewart, James J. P. (2007). 272:Preferred application domains 164:Korringa–Kohn–Rostoker method 233:Type of simplifications used 827:J. Pople and D. Beveridge, 156:Empty lattice approximation 1392: 219:effects into the methods. 140:Nearly free electron model 54:Modern valence bond theory 1037:10.1007/s00894-012-1667-x 988:10.1007/s00894-007-0233-4 283:Pariser–Parr–Pople method 266:zero differential overlap 133:Electronic band structure 103:Density functional theory 80:Configuration interaction 1274:10.1021/acs.jctc.8b01176 1194:10.1021/acs.jctc.6b00403 1144:10.1021/acs.jctc.5b01046 324:Methods that are in the 311:that were introduced by 148:Muffin-tin approximation 61:Molecular orbital theory 50:Generalized valence bond 1085:Theoretica Chimica Acta 213:computational chemistry 152:k·p perturbation theory 590:Zeitschrift fĂĽr Physik 539:Zeitschrift fĂĽr Physik 496:Zeitschrift fĂĽr Physik 445:Zeitschrift fĂĽr Physik 251:extended HĂĽckel method 46:Coulson–Fischer theory 949:10.1002/jcc.540100208 395:Tight-binding methods 831:, McGraw–Hill, 1970. 807:10.1039/tf9534901375 217:electron correlation 31:Electronic structure 1330:2023JChPh.158r4102W 922:10.1021/ja00299a024 894:10.1021/ja00457a004 764:1953JChPh..21..767P 721:1953JChPh..21..466P 678:1963JChPh..39.1397H 652:Andrew Streitwieser 602:1933ZPhy...83..632H 551:1932ZPhy...76..628H 508:1931ZPhy...72..310H 457:1931ZPhy...70..204H 96:Quantum Monte Carlo 68:Hartree–Fock method 39:Valence bond theory 1097:10.1007/bf00574898 866:J. J. P. Stewart, 610:10.1007/bf01330865 559:10.1007/bf01341936 516:10.1007/bf01341953 465:10.1007/bf01339530 114:Thomas–Fermi model 1339:10.1063/5.0141686 1234:10.1002/wcms.1094 982:(12): 1173–1213. 916:(13): 3902–3909. 888:(15): 4899–4907. 842:Quantum Chemistry 772:10.1063/1.1699030 729:10.1063/1.1698929 686:10.1063/1.1734456 207:are based on the 203:quantum chemistry 198: 197: 16:(Redirected from 1383: 1360: 1359: 1341: 1309: 1303: 1302: 1276: 1267:(3): 1652–1671. 1252: 1246: 1245: 1213: 1207: 1206: 1196: 1187:(9): 4400–4422. 1172: 1166: 1165: 1155: 1138:(3): 1082–1096. 1123: 1117: 1116: 1080: 1074: 1065: 1059: 1058: 1048: 1016: 1010: 1009: 999: 967: 961: 960: 932: 926: 925: 904: 898: 897: 877: 871: 864: 858: 851: 845: 838: 832: 825: 819: 818: 790: 784: 783: 747: 741: 740: 704: 698: 697: 661: 655: 649: 643: 636: 630: 629: 585: 579: 578: 534: 528: 527: 491: 485: 484: 440: 299:Methods such as 253:was proposed by 190: 183: 176: 160:GW approximation 27: 21: 1391: 1390: 1386: 1385: 1384: 1382: 1381: 1380: 1366: 1365: 1364: 1363: 1311: 1310: 1306: 1254: 1253: 1249: 1215: 1214: 1210: 1174: 1173: 1169: 1125: 1124: 1120: 1082: 1081: 1077: 1066: 1062: 1018: 1017: 1013: 969: 968: 964: 934: 933: 929: 906: 905: 901: 879: 878: 874: 865: 861: 852: 848: 839: 835: 826: 822: 792: 791: 787: 749: 748: 744: 706: 705: 701: 663: 662: 658: 650: 646: 637: 633: 587: 586: 582: 536: 535: 531: 493: 492: 488: 442: 441: 437: 432: 420: 360:, PM6, PM7 and 291: 279: 274: 235: 201:Semi-empirical 194: 162: 158: 154: 150: 146: 142: 124: 120: 116: 112: 94: 90: 86: 84:Coupled cluster 82: 78: 74: 70: 52: 48: 23: 22: 15: 12: 11: 5: 1389: 1387: 1379: 1378: 1368: 1367: 1362: 1361: 1324:(18): 184102. 1304: 1247: 1228:(3): 456–465. 1208: 1167: 1118: 1075: 1060: 1011: 962: 943:(2): 209–220. 927: 899: 872: 859: 853:C. J. Cramer, 846: 833: 820: 785: 742: 699: 656: 644: 631: 580: 529: 486: 434: 433: 431: 428: 427: 426: 419: 416: 415: 414: 413: 412: 405: 404: 403: 402: 389: 388: 387: 386: 368: 367: 366: 365: 319: 318: 317: 316: 290: 287: 278: 275: 273: 270: 255:Roald Hoffmann 234: 231: 196: 195: 193: 192: 185: 178: 170: 167: 166: 136: 135: 129: 128: 106: 105: 99: 98: 64: 63: 57: 56: 42: 41: 35: 34: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1388: 1377: 1374: 1373: 1371: 1357: 1353: 1349: 1345: 1340: 1335: 1331: 1327: 1323: 1319: 1315: 1308: 1305: 1300: 1296: 1292: 1288: 1284: 1280: 1275: 1270: 1266: 1262: 1258: 1251: 1248: 1243: 1239: 1235: 1231: 1227: 1223: 1219: 1212: 1209: 1204: 1200: 1195: 1190: 1186: 1182: 1178: 1171: 1168: 1163: 1159: 1154: 1149: 1145: 1141: 1137: 1133: 1129: 1122: 1119: 1114: 1110: 1106: 1102: 1098: 1094: 1090: 1086: 1079: 1076: 1072: 1071: 1064: 1061: 1056: 1052: 1047: 1042: 1038: 1034: 1030: 1026: 1022: 1015: 1012: 1007: 1003: 998: 993: 989: 985: 981: 977: 973: 966: 963: 958: 954: 950: 946: 942: 938: 931: 928: 923: 919: 915: 911: 903: 900: 895: 891: 887: 883: 876: 873: 869: 863: 860: 856: 850: 847: 843: 837: 834: 830: 824: 821: 816: 812: 808: 804: 800: 796: 789: 786: 781: 777: 773: 769: 765: 761: 757: 753: 746: 743: 738: 734: 730: 726: 722: 718: 714: 710: 703: 700: 695: 691: 687: 683: 679: 675: 671: 667: 660: 657: 653: 648: 645: 641: 640:C. A. Coulson 635: 632: 627: 623: 619: 615: 611: 607: 603: 599: 595: 592:(in German). 591: 584: 581: 576: 572: 568: 564: 560: 556: 552: 548: 544: 541:(in German). 540: 533: 530: 525: 521: 517: 513: 509: 505: 501: 498:(in German). 497: 490: 487: 482: 478: 474: 470: 466: 462: 458: 454: 450: 447:(in German). 446: 439: 436: 429: 425: 422: 421: 417: 409: 408: 407: 406: 400: 396: 393: 392: 391: 390: 384: 380: 376: 372: 371: 370: 369: 363: 359: 355: 351: 347: 343: 342:Michael Dewar 339: 335: 331: 327: 323: 322: 321: 320: 314: 310: 306: 302: 298: 297: 296: 295: 294: 288: 286: 284: 276: 271: 269: 267: 263: 258: 256: 252: 248: 244: 243:HĂĽckel method 240: 232: 230: 228: 227: 220: 218: 214: 210: 206: 204: 191: 186: 184: 179: 177: 172: 171: 169: 168: 165: 161: 157: 153: 149: 145: 144:Tight binding 141: 138: 137: 134: 130: 127: 123: 119: 115: 111: 108: 107: 104: 100: 97: 93: 89: 85: 81: 77: 73: 69: 66: 65: 62: 58: 55: 51: 47: 44: 43: 40: 36: 32: 28: 19: 18:Semiempirical 1321: 1317: 1307: 1264: 1260: 1250: 1225: 1221: 1211: 1184: 1180: 1170: 1135: 1131: 1121: 1088: 1084: 1078: 1068: 1063: 1028: 1024: 1014: 979: 975: 965: 940: 936: 930: 913: 909: 902: 885: 881: 875: 862: 854: 849: 841: 840:Ira Levine, 836: 828: 823: 798: 794: 788: 755: 751: 745: 712: 708: 702: 669: 665: 659: 647: 634: 593: 589: 583: 542: 538: 532: 499: 495: 489: 448: 444: 438: 344:. These are 292: 280: 261: 259: 247:Erich HĂĽckel 245:proposed by 236: 225: 221: 209:Hartree–Fock 200: 199: 71: 1067:M. Zerner, 1031:(1): 1–32. 239:Hamiltonian 430:References 313:John Pople 1356:258565304 1283:1549-9618 1242:121521740 1105:0040-5744 815:0014-7672 780:0021-9606 737:0021-9606 694:0021-9606 626:121710615 618:1434-6001 575:121787219 567:1434-6001 524:1434-6001 481:186218131 473:1434-6001 262:ab initio 229:results. 226:ab initio 1370:Category 1348:37154284 1299:73419235 1291:30741547 1203:27380455 1162:26771204 1113:98468383 1055:23187683 1006:17828561 957:36907984 418:See also 1326:Bibcode 1153:4785507 1046:3536963 997:2039871 760:Bibcode 717:Bibcode 674:Bibcode 598:Bibcode 547:Bibcode 504:Bibcode 453:Bibcode 336:and/or 334:SPARTAN 205:methods 33:methods 1354:  1346:  1297:  1289:  1281:  1240:  1201:  1160:  1150:  1111:  1103:  1053:  1043:  1004:  994:  955:  813:  778:  735:  692:  624:  616:  573:  565:  522:  479:  471:  301:CNDO/2 1352:S2CID 1295:S2CID 1238:S2CID 1109:S2CID 953:S2CID 622:S2CID 571:S2CID 477:S2CID 379:SINDO 375:ZINDO 346:MINDO 330:AMPAC 326:MOPAC 1344:PMID 1287:PMID 1279:ISSN 1199:PMID 1158:PMID 1101:ISSN 1051:PMID 1002:PMID 811:ISSN 776:ISSN 733:ISSN 690:ISSN 614:ISSN 563:ISSN 520:ISSN 469:ISSN 399:DFTB 383:MRCI 377:and 362:SAM1 350:MNDO 338:CP2K 309:NDDO 307:and 305:INDO 1334:doi 1322:158 1269:doi 1230:doi 1189:doi 1148:PMC 1140:doi 1093:doi 1041:PMC 1033:doi 992:PMC 984:doi 945:doi 918:doi 914:107 890:doi 803:doi 768:doi 725:doi 682:doi 606:doi 555:doi 512:doi 461:doi 358:PM3 354:AM1 1372:: 1350:. 1342:. 1332:. 1320:. 1316:. 1293:. 1285:. 1277:. 1265:15 1263:. 1259:. 1236:. 1224:. 1220:. 1197:. 1185:12 1183:. 1179:. 1156:. 1146:. 1136:12 1134:. 1130:. 1107:. 1099:. 1089:57 1087:. 1049:. 1039:. 1029:19 1027:. 1023:. 1000:. 990:. 980:13 978:. 974:. 951:. 941:10 939:. 912:. 886:99 884:. 809:. 799:49 797:. 774:. 766:. 756:21 754:. 731:. 723:. 713:21 711:. 688:. 680:. 670:39 668:. 620:. 612:. 604:. 594:83 569:. 561:. 553:. 543:76 518:. 510:. 500:72 475:. 467:. 459:. 449:70 356:, 352:, 348:, 332:, 328:, 303:, 257:. 1358:. 1336:: 1328:: 1301:. 1271:: 1244:. 1232:: 1226:2 1205:. 1191:: 1164:. 1142:: 1115:. 1095:: 1057:. 1035:: 1008:. 986:: 959:. 947:: 924:. 920:: 896:. 892:: 817:. 805:: 782:. 770:: 762:: 739:. 727:: 719:: 696:. 684:: 676:: 628:. 608:: 600:: 577:. 557:: 549:: 526:. 514:: 506:: 483:. 463:: 455:: 189:e 182:t 175:v 20:)

Index

Semiempirical
Electronic structure
Valence bond theory
Coulson–Fischer theory
Generalized valence bond
Modern valence bond theory
Molecular orbital theory
Hartree–Fock method
Semi-empirical quantum chemistry methods
Møller–Plesset perturbation theory
Configuration interaction
Coupled cluster
Multi-configurational self-consistent field
Quantum chemistry composite methods
Quantum Monte Carlo
Density functional theory
Time-dependent density functional theory
Thomas–Fermi model
Orbital-free density functional theory
Linearized augmented-plane-wave method
Projector augmented wave method
Electronic band structure
Nearly free electron model
Tight binding
Muffin-tin approximation
k·p perturbation theory
Empty lattice approximation
GW approximation
Korringa–Kohn–Rostoker method
v

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑