Knowledge (XXG)

Semipermeable membrane

Source đź“ť

216: 22: 1333: 371: 398:
membranes were used, but they could cause inflammatory responses in patients. Synthetic membranes have been developed that are more biocompatible and lead to fewer inflammatory responses. However, despite the increased biocompatibility, synthetic membranes have not been linked to decreased mortality.
325:
Reverse osmosis membrane modules have a limited life cycle, several studies have endeavored to improve the performance of the process and extend the RO membranes lifespan. However, even with the appropriate pretreatment of the feed water, the membranes lifespan is generally limited to five to seven
363:
It includes exposing the membrane to oxidant solutions in order to remove its dense aromatic polyamide active layer and subsequent conversion to a porous membrane. Oxidizing agents such as Sodium Hypochlorite NaClO (10–12%) and Potassium Permanganate KMnO₄ are used. These agents remove organic and
329:
Discarded RO membrane modules are currently classified worldwide as inert solid waste and are often disposed of in landfills, with limited reuse. Estimates indicated that the mass of membranes annually discarded worldwide reached 12,000 tons. At the current rate, the disposal of RO modules
268:
Artificial semipermeable membranes see wide usage in research and the medical field. Artificial lipid membranes can easily be manipulated and experimented upon to study biological phenomenon. Other artificial membranes include those involved in drug delivery, dialysis, and bioseparations.
911: 394:. The tubing uses a semipermeable membrane to remove waste before returning the purified blood to the patient. Differences in the semipermeable membrane, such as size of pores, change the rate and identity of removed molecules. Traditionally, 88:
is constructed to be selective in its permeability will determine the rate and the permeability. Many natural and synthetic materials which are rather thick are also semipermeable. One example of this is the thin film on the inside of an egg.
333:
Discarded RO membranes from desalination operations could be recycled for other processes that do not require the intensive filtration criteria of desalination, they could be used in applications requiring nanofiltration (NF) membranes.
1169:
Rozendal, R. A.; Sleutels, T. H. J. A.; Hamelers, H. V. M.; Buisman, C. J. N. (June 2008). "Effect of the type of ion exchange membrane on performance, ion transport, and pH in biocatalyzed electrolysis of wastewater".
1022:
MacLeod, Alison M; Campbell, Marion K; Cody, June D; Daly, Conal; Grant, Adrian; Khan, Izhar; Rabindranath, Kannaiyan S; Vale, Luke; Wallace, Sheila A (20 July 2005). Cochrane Kidney and Transplant Group (ed.).
317:, chosen primarily for its permeability to water and relative impermeability to various dissolved impurities including salt ions and other small molecules that cannot be filtered. 205:
in the cell membrane. The signaling molecules bind to the receptors, which alters the structure of these proteins. A change in the protein structure initiates a signaling cascade.
867:
Stamatialis, Dimitrios F.; Papenburg, Bernke J.; Gironés, Miriam; Saiful, Saiful; Bettahalli, Srivatsa N. M.; Schmitmeier, Stephanie; Wessling, Matthias (1 February 2008).
909:, Sidney, Loeb & Srinivasa, Sourirajan, "High flow porous membranes for separating water from saline solutions", published 12 May 1964 289:. This allows only certain particles to go through including water and leaving behind the solutes including salt and other contaminants. In the process of 313:
and Srinivasa Sourirajan invented the first practical synthetic semi-permeable membrane. Membranes used in reverse osmosis are, in general, made out of
357:
There are three forms of membranes exposure to chemical agents; simple immersion, recirculating the cleaning agent, or immersion in an ultrasound bath.
127:
A phospholipid bilayer is an example of a biological semipermeable membrane. It consists of two parallel, opposite-facing layers of uniformly arranged
1262: 330:
represents significant and growing adverse impacts on the environment, giving rise to the need to limit the direct discarding of these modules.
677: 364:
biological fouling from RO membranes, They also disinfect the membrane surface, preventing the growth of bacteria and other microorganisms.
925:
Lawler, Will; Bradford-Hartke, Zenah; Cran, Marlene J.; Duke, Mikel; Leslie, Greg; Ladewig, Bradley P.; Le-Clech, Pierre (1 August 2012).
1533: 1420: 256:
is the method by which cells counteract osmotic stress, and includes osmosensory transporters in the membrane that allow K+ and other
498: 232:. When the solutes around a cell become more or less concentrated, osmotic pressure causes water to flow into or out of the cell to 1573: 1583: 1511: 416: 1593: 565: 152: 1758: 1255: 1165:
See this document for definitions of penetrant (permeant), synthetic (artificial) membrane, and anion-exchange membrane.
808:
Siontorou, Christina G.; Nikoleli, Georgia-Paraskevi; Nikolelis, Dimitrios P.; Karapetis, Stefanos K. (September 2017).
294: 1558: 305:
systems. They also have use in chemical applications such as batteries and fuel cells. In essence, a TFC material is a
1425: 215: 1598: 1568: 1553: 1521: 1025:"Cellulose, modified cellulose and synthetic membranes in the haemodialysis of patients with end-stage renal disease" 594: 1224:, a non-profit international association created to continue the work of the network and partnerships developed in 345:
Chemical procedures aimed at removing fouling from the spent membrane; several chemicals agents are used; such as:
209: 206: 1613: 1360: 1753: 1628: 1526: 420: 408: 367:
Sodium Hypochlorite is the most efficient oxidizing agent in light of permeability and salt rejection solution.
181:. Protein channels are embedded in or through the phospholipids, and, collectively, this model is known as the 1633: 1578: 1563: 1496: 1455: 1430: 1410: 1390: 240:
inhibits cellular functions that depend on the activity of water in the cell, such as the functioning of its
1516: 1248: 412: 1623: 159:
enter and leave the cell. Because they are attracted to the water content within and outside the cell (or
1484: 1588: 1405: 697: 202: 97: 1450: 926: 906: 868: 1466: 1435: 1271: 938: 178: 122: 517:
Boughter, Christopher T.; Monje-Galvan, Viviana; Im, Wonpil; Klauda, Jeffery B. (17 November 2016).
219:
Salt outside of the cell creates osmotic pressure that pushes water through the phospholipid bilayer
1618: 1603: 1538: 1506: 1501: 1317: 1221: 974:"Recycling of end-of-life reverse osmosis membranes by oxidative treatment: a technical evaluation" 489:
Caplan, M.J. (2017). "Functional organization of the cell". In Boron, W.F.; Boulpaep, E.L. (eds.).
165:), the phosphate heads assemble along the outer and inner surfaces of the plasma membrane, and the 41: 1743: 1608: 1479: 1332: 1290: 1156: 1111: 972:
Coutinho de Paula, Eduardo; Gomes, JĂşlia CĂ©lia Lima; Amaral, MĂ­riam Cristina Santos (July 2017).
790: 298: 182: 156: 37: 1235: 1225: 927:"Towards new opportunities for reuse, recycling and disposal of used reverse osmosis membranes" 21: 1682: 1400: 1370: 1187: 1103: 1095: 1054: 1001: 993: 954: 888: 849: 831: 782: 764: 725: 717: 673: 650: 546: 538: 494: 174: 101: 293:, water is purified by applying high pressure to a solution and thereby push water through a 76:
on either side, as well as the permeability of the membrane to each solute. Depending on the
1748: 1548: 1543: 1355: 1295: 1179: 1146: 1085: 1044: 1036: 985: 946: 880: 869:"Medical applications of membranes: Drug delivery, artificial organs and tissue engineering" 839: 821: 772: 756: 709: 640: 632: 530: 282: 233: 229: 105: 1415: 1342: 636: 383: 306: 290: 942: 777: 713: 1651: 1305: 1049: 1024: 844: 809: 645: 620: 391: 253: 198: 144: 1737: 1285: 1090: 1073: 566:"Semipermeable Membranes' Role in Cell Communication - Video & Lesson Transcript" 245: 237: 148: 140: 65: 1200:"High Flow Porous Membranes for Separating Water from Saline Solutions US 3133132 A" 1160: 1115: 794: 518: 297:(TFC or TFM). These are semipermeable membranes manufactured principally for use in 1489: 1445: 1380: 1322: 1300: 1040: 595:"Semipermeable Membrane: Definition & Overview - Video & Lesson Transcript" 387: 302: 128: 26: 16:
Membrane which will allow certain molecules or ions to pass through it by diffusion
884: 460: 244:
and protein systems and proper assembly of its plasma membrane. This can lead to
1717: 1702: 1440: 1365: 950: 310: 170: 166: 69: 1135:"Terminology for membranes and membrane processes (IUPAC Recommendations 1996)" 173:
molecules are also found throughout the plasma membrane and act as a buffer of
1661: 1395: 1375: 1199: 249: 160: 136: 81: 1099: 997: 958: 892: 835: 826: 768: 721: 542: 534: 1707: 1697: 1687: 1656: 1312: 1151: 1134: 973: 698:"Bacterial Osmoregulation: A Paradigm for the Study of Cellular Homeostasis" 395: 374:
Dialysis tubing allows waste molecules to be selectively removed from blood.
314: 278: 186: 132: 1191: 1107: 1058: 1005: 853: 786: 729: 654: 550: 370: 29:, where blood is red, dialysing fluid is blue, and the membrane is yellow. 1385: 1236:
Short, non-scholarly WiseGeek article, "What is a Semipermeable Membrane.
1183: 989: 519:"Influence of Cholesterol on Phospholipid Bilayer Structure and Dynamics" 257: 85: 77: 61: 49: 1240: 354:      - Chelating agents Such as Citric and Oxalic acids 1692: 760: 286: 73: 57: 45: 309:
constructed in the form of a film from two or more layered materials.
744: 1677: 369: 20: 177:. The phospholipid bilayer is most permeable to small, uncharged 281:
of water through a selectively permeable membrane because of an
1244: 1712: 621:"The Molecular Basis of G Protein–Coupled Receptor Activation" 439:
K+ is the element potassium's positively charged ion (cation).
241: 53: 493:(Third ed.). Philadelphia, PA: Elsevier. pp. 8–46. 228:
Because the lipid bilayer is semipermeable, it is subject to
1229: 197:
Information can also pass through the plasma membrane when
743:
Rand*, R. P.; Parsegian, V. A.; Rau, D. C. (1 July 2000).
169:
tails are the layer hidden in the inside of the membrane.
348:       - Sodium Hydroxide (alkaline) 1133:
Koros, W. J.; Ma, Y. H.; Shimidzu, T. (1 January 1996).
80:
and the solute, permeability may depend on solute size,
810:"Artificial Lipid Membranes: Past, Present, and Future" 467:. Center for Nanoscale Science, Penn State University 619:
Weis, William I.; Kobilka, Brian K. (20 June 2018).
212:
is an important subset of such signaling processes.
1670: 1642: 1464: 1340: 1278: 351:      - Hydrochloric Acid (Acidic) 1232:-funded European network of membrane researchers. 588: 586: 108:regulated by proteins embedded in the membrane. 672:(Rev. ed.). New York: Wiley. p. 30. 189:are protein channel pores permeable to water. 151:. The plasma membrane is very specific in its 96:, with the passage of molecules controlled by 1256: 461:"Osmosis Eggs | Center for Nanoscale Science" 8: 407:Other types of semipermeable membranes are 25:Schematic of semipermeable membrane during 1263: 1249: 1241: 484: 482: 1150: 1089: 1072:Kerr, Peter G; Huang, Louis (June 2010). 1048: 843: 825: 776: 644: 321:Regeneration of reverse osmosis membranes 214: 1029:Cochrane Database of Systematic Reviews 452: 432: 155:, meaning it carefully controls which 1074:"Review: Membranes for haemodialysis" 1017: 1015: 637:10.1146/annurev-biochem-060614-033910 60:. The rate of passage depends on the 7: 749:Cellular and Molecular Life Sciences 691: 689: 512: 510: 84:, properties, or chemistry. How the 714:10.1146/annurev-micro-090110-102815 523:The Journal of Physical Chemistry B 131:. Each phospholipid is made of one 14: 1331: 1091:10.1111/j.1440-1797.2010.01331.x 696:Wood, Janet M. (October 2011). 417:alkali anion-exchange membranes 390:to purify blood in the case of 1041:10.1002/14651858.CD003234.pub2 745:"Intracellular osmotic action" 260:to flow through the membrane. 143:that surrounds all biological 1: 702:Annual Review of Microbiology 625:Annual Review of Biochemistry 48:membrane that allows certain 1172:Water Science and Technology 978:Water Science and Technology 885:10.1016/j.memsci.2007.09.059 670:Fundamentals of Biochemistry 295:thin-film composite membrane 1222:The European Membrane House 951:10.1016/j.desal.2012.05.030 873:Journal of Membrane Science 338:Regeneration process steps: 1775: 1139:Pure and Applied Chemistry 207:G protein-coupled receptor 120: 1421:Metal–air electrochemical 1329: 421:proton-exchange membranes 409:cation-exchange membranes 92:Biological membranes are 827:10.3390/membranes7030038 535:10.1021/acs.jpcb.6b08574 413:anion-exchange membranes 360:2 - Oxidative treatment 1152:10.1351/pac199668071479 1723:Semipermeable membrane 1512:Lithium–iron–phosphate 375: 342:1- Chemical Treatment 220: 193:Cellular communication 56:to pass through it by 34:Semipermeable membrane 30: 1594:Rechargeable alkaline 1272:Electrochemical cells 668:Voet, Donald (2001). 373: 285:difference is called 218: 98:facilitated diffusion 94:selectively permeable 24: 1574:Nickel–metal hydride 1184:10.2166/wst.2008.043 990:10.2166/wst.2017.238 264:Artificial membranes 149:phospholipid bilayer 123:phospholipid bilayer 117:Phospholipid bilayer 112:Biological membranes 72:of the molecules or 1759:Membrane technology 1584:Polysulfide–bromide 1426:Nickel oxyhydroxide 1318:Thermogalvanic cell 943:2012Desal.299..103L 529:(45): 11761–11772. 199:signaling molecules 147:is an example of a 1347:(non-rechargeable) 1291:Concentration cell 761:10.1007/PL00000742 491:Medical physiology 376: 299:water purification 221: 183:fluid mosaic model 31: 1731: 1730: 1178:(11): 1757–1762. 679:978-0-471-41759-0 465:www.mrsec.psu.edu 175:membrane fluidity 102:passive transport 1766: 1754:Membrane biology 1527:Lithium–titanate 1472: 1348: 1335: 1296:Electric battery 1265: 1258: 1251: 1242: 1211: 1209: 1207: 1195: 1164: 1154: 1145:(7): 1479–1489. 1120: 1119: 1093: 1069: 1063: 1062: 1052: 1019: 1010: 1009: 984:(3–4): 605–622. 969: 963: 962: 922: 916: 915: 914: 910: 903: 897: 896: 864: 858: 857: 847: 829: 805: 799: 798: 780: 755:(7): 1018–1032. 740: 734: 733: 693: 684: 683: 665: 659: 658: 648: 616: 610: 609: 607: 605: 590: 581: 580: 578: 576: 561: 555: 554: 514: 505: 504: 486: 477: 476: 474: 472: 457: 440: 437: 283:osmotic pressure 230:osmotic pressure 106:active transport 1774: 1773: 1769: 1768: 1767: 1765: 1764: 1763: 1734: 1733: 1732: 1727: 1666: 1645: 1638: 1559:Nickel–hydrogen 1517:Lithium–polymer 1473: 1470: 1469: 1460: 1349: 1346: 1345: 1336: 1327: 1274: 1269: 1218: 1205: 1203: 1198: 1168: 1132: 1129: 1127:Further reading 1124: 1123: 1071: 1070: 1066: 1035:(3): CD003234. 1021: 1020: 1013: 971: 970: 966: 924: 923: 919: 912: 905: 904: 900: 866: 865: 861: 807: 806: 802: 742: 741: 737: 695: 694: 687: 680: 667: 666: 662: 618: 617: 613: 603: 601: 592: 591: 584: 574: 572: 564:Friedl, Sarah. 563: 562: 558: 516: 515: 508: 501: 488: 487: 480: 470: 468: 459: 458: 454: 449: 444: 443: 438: 434: 429: 405: 384:Dialysis tubing 381: 379:Dialysis tubing 323: 307:molecular sieve 291:reverse osmosis 275: 273:Reverse osmosis 266: 226: 195: 141:plasma membrane 125: 119: 114: 17: 12: 11: 5: 1772: 1770: 1762: 1761: 1756: 1751: 1746: 1736: 1735: 1729: 1728: 1726: 1725: 1720: 1715: 1710: 1705: 1700: 1695: 1690: 1685: 1680: 1674: 1672: 1668: 1667: 1665: 1664: 1659: 1654: 1652:Atomic battery 1648: 1646: 1643: 1640: 1639: 1637: 1636: 1631: 1626: 1624:Vanadium redox 1621: 1616: 1611: 1606: 1601: 1599:Silver–cadmium 1596: 1591: 1586: 1581: 1576: 1571: 1569:Nickel–lithium 1566: 1561: 1556: 1554:Nickel–cadmium 1551: 1546: 1541: 1536: 1531: 1530: 1529: 1524: 1522:Lithium–sulfur 1519: 1514: 1509: 1499: 1494: 1493: 1492: 1482: 1476: 1474: 1471:(rechargeable) 1467:Secondary cell 1465: 1462: 1461: 1459: 1458: 1453: 1448: 1443: 1438: 1433: 1428: 1423: 1418: 1413: 1408: 1403: 1398: 1393: 1391:Edison–Lalande 1388: 1383: 1378: 1373: 1368: 1363: 1358: 1352: 1350: 1341: 1338: 1337: 1330: 1328: 1326: 1325: 1320: 1315: 1310: 1309: 1308: 1306:Trough battery 1303: 1293: 1288: 1282: 1280: 1276: 1275: 1270: 1268: 1267: 1260: 1253: 1245: 1239: 1238: 1233: 1217: 1216:External links 1214: 1213: 1212: 1196: 1166: 1128: 1125: 1122: 1121: 1084:(4): 381–385. 1064: 1011: 964: 917: 898: 859: 800: 735: 708:(1): 215–238. 685: 678: 660: 631:(1): 897–919. 611: 582: 556: 506: 499: 478: 451: 450: 448: 445: 442: 441: 431: 430: 428: 425: 404: 401: 392:kidney failure 380: 377: 322: 319: 274: 271: 265: 262: 254:Osmoregulation 238:osmotic stress 225: 224:Osmotic stress 222: 194: 191: 121:Main article: 118: 115: 113: 110: 15: 13: 10: 9: 6: 4: 3: 2: 1771: 1760: 1757: 1755: 1752: 1750: 1747: 1745: 1742: 1741: 1739: 1724: 1721: 1719: 1716: 1714: 1711: 1709: 1706: 1704: 1701: 1699: 1696: 1694: 1691: 1689: 1686: 1684: 1681: 1679: 1676: 1675: 1673: 1669: 1663: 1660: 1658: 1655: 1653: 1650: 1649: 1647: 1641: 1635: 1632: 1630: 1627: 1625: 1622: 1620: 1617: 1615: 1614:Sodium–sulfur 1612: 1610: 1607: 1605: 1602: 1600: 1597: 1595: 1592: 1590: 1589:Potassium ion 1587: 1585: 1582: 1580: 1577: 1575: 1572: 1570: 1567: 1565: 1562: 1560: 1557: 1555: 1552: 1550: 1547: 1545: 1542: 1540: 1537: 1535: 1532: 1528: 1525: 1523: 1520: 1518: 1515: 1513: 1510: 1508: 1505: 1504: 1503: 1500: 1498: 1495: 1491: 1488: 1487: 1486: 1483: 1481: 1478: 1477: 1475: 1468: 1463: 1457: 1454: 1452: 1449: 1447: 1444: 1442: 1439: 1437: 1434: 1432: 1429: 1427: 1424: 1422: 1419: 1417: 1414: 1412: 1409: 1407: 1406:Lithium metal 1404: 1402: 1399: 1397: 1394: 1392: 1389: 1387: 1384: 1382: 1379: 1377: 1374: 1372: 1369: 1367: 1364: 1362: 1361:Aluminium–air 1359: 1357: 1354: 1353: 1351: 1344: 1339: 1334: 1324: 1321: 1319: 1316: 1314: 1311: 1307: 1304: 1302: 1299: 1298: 1297: 1294: 1292: 1289: 1287: 1286:Galvanic cell 1284: 1283: 1281: 1277: 1273: 1266: 1261: 1259: 1254: 1252: 1247: 1246: 1243: 1237: 1234: 1231: 1228:, an earlier 1227: 1223: 1220: 1219: 1215: 1202:. 12 May 1964 1201: 1197: 1193: 1189: 1185: 1181: 1177: 1173: 1167: 1162: 1158: 1153: 1148: 1144: 1140: 1136: 1131: 1130: 1126: 1117: 1113: 1109: 1105: 1101: 1097: 1092: 1087: 1083: 1079: 1075: 1068: 1065: 1060: 1056: 1051: 1046: 1042: 1038: 1034: 1030: 1026: 1018: 1016: 1012: 1007: 1003: 999: 995: 991: 987: 983: 979: 975: 968: 965: 960: 956: 952: 948: 944: 940: 936: 932: 928: 921: 918: 908: 902: 899: 894: 890: 886: 882: 878: 874: 870: 863: 860: 855: 851: 846: 841: 837: 833: 828: 823: 819: 815: 811: 804: 801: 796: 792: 788: 784: 779: 774: 770: 766: 762: 758: 754: 750: 746: 739: 736: 731: 727: 723: 719: 715: 711: 707: 703: 699: 692: 690: 686: 681: 675: 671: 664: 661: 656: 652: 647: 642: 638: 634: 630: 626: 622: 615: 612: 600: 596: 593:Wood, David. 589: 587: 583: 571: 567: 560: 557: 552: 548: 544: 540: 536: 532: 528: 524: 520: 513: 511: 507: 502: 500:9781455743773 496: 492: 485: 483: 479: 466: 462: 456: 453: 446: 436: 433: 426: 424: 422: 418: 414: 410: 402: 400: 397: 393: 389: 385: 378: 372: 368: 365: 361: 358: 355: 352: 349: 346: 343: 340: 339: 335: 331: 327: 320: 318: 316: 312: 308: 304: 300: 296: 292: 288: 284: 280: 272: 270: 263: 261: 259: 255: 251: 247: 246:osmotic shock 243: 239: 235: 231: 223: 217: 213: 211: 208: 204: 200: 192: 190: 188: 184: 180: 176: 172: 168: 164: 163: 158: 154: 150: 146: 142: 138: 135:head and two 134: 130: 129:phospholipids 124: 116: 111: 109: 107: 103: 99: 95: 90: 87: 83: 79: 75: 71: 67: 66:concentration 63: 59: 55: 51: 47: 43: 39: 36:is a type of 35: 28: 23: 19: 1722: 1629:Zinc–bromine 1436:Silver oxide 1371:Chromic acid 1343:Primary cell 1323:Voltaic pile 1301:Flow battery 1204:. Retrieved 1175: 1171: 1142: 1138: 1081: 1077: 1067: 1032: 1028: 981: 977: 967: 934: 931:Desalination 930: 920: 901: 876: 872: 862: 817: 813: 803: 752: 748: 738: 705: 701: 669: 663: 628: 624: 614: 602:. Retrieved 598: 573:. Retrieved 569: 559: 526: 522: 490: 469:. Retrieved 464: 455: 435: 419:(AAEMs) and 406: 388:hemodialysis 382: 366: 362: 359: 356: 353: 350: 347: 344: 341: 337: 336: 332: 328: 324: 303:desalination 276: 267: 227: 196: 162:hydrophillic 161: 153:permeability 126: 93: 91: 33: 32: 27:hemodialysis 18: 1718:Salt bridge 1703:Electrolyte 1634:Zinc–cerium 1619:Solid state 1604:Silver–zinc 1579:Nickel–zinc 1564:Nickel–iron 1539:Molten salt 1507:Dual carbon 1502:Lithium ion 1497:Lithium–air 1456:Zinc–carbon 1431:Silicon–air 1411:Lithium–air 937:: 103–112. 879:(1): 1–34. 403:Other types 386:is used in 311:Sidney Loeb 234:equilibrate 171:Cholesterol 167:hydrophobic 139:tails. The 70:temperature 1738:Categories 1671:Cell parts 1662:Solar cell 1644:Other cell 1609:Sodium ion 1480:Automotive 1226:NanoMemPro 1078:Nephrology 907:US 3133132 447:References 250:cell death 187:Aquaporins 157:substances 137:fatty acid 82:solubility 1744:Diffusion 1708:Half-cell 1698:Electrode 1657:Fuel cell 1534:Metal–air 1485:Lead–acid 1401:LeclanchĂ© 1313:Fuel cell 1100:1320-5358 998:0273-1223 959:0011-9164 893:0376-7388 836:2077-0375 820:(3): 38. 814:Membranes 769:1420-9071 722:0066-4227 599:Study.com 570:Study.com 543:1520-6106 396:cellulose 315:polyamide 279:bulk flow 258:molecules 210:signaling 203:receptors 133:phosphate 50:molecules 46:polymeric 38:synthetic 1688:Catalyst 1549:Nanowire 1544:Nanopore 1490:gel–VRLA 1451:Zinc–air 1356:Alkaline 1206:22 April 1192:18547927 1161:97076769 1116:35903616 1108:20609086 1059:16034894 1006:28759443 854:28933723 795:23759859 787:10961342 778:11146847 730:21663439 655:29925258 551:27771953 423:(PEMs). 415:(AEMs), 411:(CEMs), 201:bind to 86:membrane 78:membrane 62:pressure 42:biologic 1749:Filters 1693:Cathode 1446:Zamboni 1416:Mercury 1381:Daniell 1050:8711594 939:Bibcode 845:5618123 646:6535337 604:6 April 575:6 April 326:years. 287:osmosis 236:. This 179:solutes 74:solutes 58:osmosis 1683:Binder 1441:Weston 1366:Bunsen 1190:  1159:  1114:  1106:  1098:  1057:  1047:  1004:  996:  957:  913:  891:  852:  842:  834:  793:  785:  775:  767:  728:  720:  676:  653:  643:  549:  541:  497:  471:2 July 68:, and 1678:Anode 1396:Grove 1376:Clark 1279:Types 1157:S2CID 1112:S2CID 791:S2CID 427:Notes 145:cells 1713:Ions 1208:2014 1188:PMID 1104:PMID 1096:ISSN 1055:PMID 1033:2009 1002:PMID 994:ISSN 955:ISSN 889:ISSN 850:PMID 832:ISSN 783:PMID 765:ISSN 726:PMID 718:ISSN 674:ISBN 651:PMID 606:2017 577:2017 547:PMID 539:ISSN 495:ISBN 473:2021 277:The 248:and 54:ions 1386:Dry 1180:doi 1147:doi 1086:doi 1045:PMC 1037:doi 986:doi 947:doi 935:299 881:doi 877:308 840:PMC 822:doi 773:PMC 757:doi 710:doi 641:PMC 633:doi 531:doi 527:120 301:or 242:DNA 104:or 52:or 40:or 1740:: 1230:EU 1186:. 1176:57 1174:. 1155:. 1143:68 1141:. 1137:. 1110:. 1102:. 1094:. 1082:15 1080:. 1076:. 1053:. 1043:. 1031:. 1027:. 1014:^ 1000:. 992:. 982:76 980:. 976:. 953:. 945:. 933:. 929:. 887:. 875:. 871:. 848:. 838:. 830:. 816:. 812:. 789:. 781:. 771:. 763:. 753:57 751:. 747:. 724:. 716:. 706:65 704:. 700:. 688:^ 649:. 639:. 629:87 627:. 623:. 597:. 585:^ 568:. 545:. 537:. 525:. 521:. 509:^ 481:^ 463:. 252:. 185:. 100:, 64:, 44:, 1264:e 1257:t 1250:v 1210:. 1194:. 1182:: 1163:. 1149:: 1118:. 1088:: 1061:. 1039:: 1008:. 988:: 961:. 949:: 941:: 895:. 883:: 856:. 824:: 818:7 797:. 759:: 732:. 712:: 682:. 657:. 635:: 608:. 579:. 553:. 533:: 503:. 475:.

Index


hemodialysis
synthetic
biologic
polymeric
molecules
ions
osmosis
pressure
concentration
temperature
solutes
membrane
solubility
membrane
facilitated diffusion
passive transport
active transport
phospholipid bilayer
phospholipids
phosphate
fatty acid
plasma membrane
cells
phospholipid bilayer
permeability
substances
hydrophillic
hydrophobic
Cholesterol

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑