Knowledge (XXG)

Sequentially compact space

Source đź“ť

556: 267: 175: 142: 352: 326: 300: 199: 78: 385:
There is also a notion of a one-point sequential compactification—the idea is that the non convergent sequences should all converge to the extra point.
95:). However, there exist sequentially compact topological spaces that are not compact, and compact topological spaces that are not sequentially compact. 621: 597: 616: 537: 521: 494: 394: 400: 464:
Brown, Ronald, "Sequentially proper maps and a sequential compactification", J. London Math Soc. (2) 7 (1973) 515-522.
590: 512: 228: 214: 92: 455:
K.P. Hart, Jun-iti Nagata, J.E. Vaughan (editors), Encyclopedia of General Topology, Chapter d3 (by P. Simon)
626: 356: 583: 507: 406: 270: 304: 54: 533: 517: 503: 490: 108: 35: 567: 147: 114: 411: 379: 367:, the notions of sequential compactness, limit point compactness, countable compactness and 222: 397: â€“ Bounded sequence in finite-dimensional Euclidean space has a convergent subsequence 372: 337: 311: 285: 218: 184: 178: 63: 610: 486: 478: 368: 210: 88: 17: 364: 221:
is an example of a sequentially compact topological space that is not compact. The
206: 84: 330: 104: 57: 31: 360: 555: 563: 46: 87:
is naturally a topological space, and for metric spaces, the notions of
273:
is an example of a compact space that is not sequentially compact.
27:
Topological space where every sequence has a convergent subsequence
382:
sequential compactness is equivalent to countable compactness.
91:
and sequential compactness are equivalent (if one assumes
571: 209:, then it is sequentially compact if and only if it is 340: 314: 288: 231: 187: 150: 117: 66: 414: â€“ Topological space characterized by sequences 346: 320: 294: 261: 202:is a sequence that has no convergent subsequence. 193: 169: 136: 72: 262:{\displaystyle 2^{\aleph _{0}}={\mathfrak {c}}} 591: 8: 453:Engelking, General Topology, Theorem 3.10.31 598: 584: 111:is not sequentially compact; the sequence 339: 313: 287: 253: 252: 241: 236: 230: 186: 155: 149: 125: 116: 65: 424: 371:are all equivalent (if one assumes the 516:, Holt, Rinehart and Winston (1970). 403: â€“ Property of topological space 7: 552: 550: 254: 570:. You can help Knowledge (XXG) by 238: 25: 622:Properties of topological spaces 554: 131: 118: 1: 380:sequential (Hausdorff) space 363:has a finite subcover. In a 307:if every infinite subset of 513:Counterexamples in Topology 440:Steen and Seebach, Example 395:Bolzano–Weierstrass theorem 643: 549: 617:Compactness (mathematics) 528:Willard, Stephen (2004). 215:first uncountable ordinal 60:converging to a point in 170:{\displaystyle s_{n}=n} 137:{\displaystyle (s_{n})} 99:Examples and properties 532:. Dover Publications. 508:Seebach, J. Arthur Jr. 407:Sequence covering maps 348: 322: 296: 263: 195: 171: 138: 74: 431:Willard, 17G, p. 125. 401:FrĂ©chet–Urysohn space 349: 323: 297: 264: 196: 172: 139: 75: 444:, pp. 125—126. 338: 312: 286: 281:A topological space 271:closed unit interval 229: 185: 148: 115: 64: 43:sequentially compact 18:Sequentially compact 359:if every countable 305:limit point compact 344: 318: 292: 259: 191: 167: 134: 70: 579: 578: 357:countably compact 347:{\displaystyle X} 321:{\displaystyle X} 295:{\displaystyle X} 194:{\displaystyle n} 109:standard topology 103:The space of all 73:{\displaystyle X} 36:topological space 16:(Redirected from 634: 600: 593: 586: 564:topology-related 558: 551: 543: 530:General Topology 500: 485:(2nd ed.). 465: 462: 456: 451: 445: 438: 432: 429: 412:Sequential space 353: 351: 350: 345: 327: 325: 324: 319: 301: 299: 298: 293: 268: 266: 265: 260: 258: 257: 248: 247: 246: 245: 205:If a space is a 200: 198: 197: 192: 176: 174: 173: 168: 160: 159: 143: 141: 140: 135: 130: 129: 93:countable choice 79: 77: 76: 71: 21: 642: 641: 637: 636: 635: 633: 632: 631: 607: 606: 605: 604: 547: 540: 527: 497: 477: 474: 469: 468: 463: 459: 454: 452: 448: 439: 435: 430: 426: 421: 391: 373:axiom of choice 336: 335: 310: 309: 284: 283: 279: 277:Related notions 237: 232: 227: 226: 183: 182: 179:natural numbers 151: 146: 145: 121: 113: 112: 101: 62: 61: 28: 23: 22: 15: 12: 11: 5: 640: 638: 630: 629: 627:Topology stubs 624: 619: 609: 608: 603: 602: 595: 588: 580: 577: 576: 559: 545: 544: 538: 525: 504:Steen, Lynn A. 501: 495: 479:Munkres, James 473: 470: 467: 466: 457: 446: 433: 423: 422: 420: 417: 416: 415: 409: 404: 398: 390: 387: 343: 317: 303:is said to be 291: 278: 275: 269:copies of the 256: 251: 244: 240: 235: 219:order topology 190: 166: 163: 158: 154: 133: 128: 124: 120: 100: 97: 69: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 639: 628: 625: 623: 620: 618: 615: 614: 612: 601: 596: 594: 589: 587: 582: 581: 575: 573: 569: 566:article is a 565: 560: 557: 553: 548: 541: 539:0-486-43479-6 535: 531: 526: 523: 522:0-03-079485-4 519: 515: 514: 509: 505: 502: 498: 496:0-13-181629-2 492: 488: 487:Prentice Hall 484: 480: 476: 475: 471: 461: 458: 450: 447: 443: 437: 434: 428: 425: 418: 413: 410: 408: 405: 402: 399: 396: 393: 392: 388: 386: 383: 381: 376: 374: 370: 366: 362: 358: 354: 341: 332: 328: 315: 306: 302: 289: 276: 274: 272: 249: 242: 233: 224: 220: 216: 212: 208: 203: 201: 188: 180: 164: 161: 156: 152: 126: 122: 110: 106: 98: 96: 94: 90: 86: 81: 67: 59: 56: 52: 49:of points in 48: 44: 40: 37: 33: 19: 572:expanding it 561: 546: 529: 511: 482: 460: 449: 441: 436: 427: 384: 377: 365:metric space 334: 308: 282: 280: 207:metric space 204: 181: 105:real numbers 102: 85:metric space 82: 50: 42: 38: 29: 369:compactness 331:limit point 89:compactness 58:subsequence 32:mathematics 611:Categories 472:References 361:open cover 55:convergent 239:ℵ 217:with the 144:given by 107:with the 45:if every 483:Topology 481:(1999). 389:See also 177:for all 47:sequence 223:product 211:compact 536:  520:  493:  355:, and 329:has a 213:. The 83:Every 53:has a 562:This 419:Notes 378:In a 568:stub 534:ISBN 518:ISBN 506:and 491:ISBN 34:, a 442:105 375:). 333:in 225:of 41:is 30:In 613:: 510:; 489:. 80:. 599:e 592:t 585:v 574:. 542:. 524:. 499:. 342:X 316:X 290:X 255:c 250:= 243:0 234:2 189:n 165:n 162:= 157:n 153:s 132:) 127:n 123:s 119:( 68:X 51:X 39:X 20:)

Index

Sequentially compact
mathematics
topological space
sequence
convergent
subsequence
metric space
compactness
countable choice
real numbers
standard topology
natural numbers
metric space
compact
first uncountable ordinal
order topology
product
closed unit interval
limit point compact
limit point
countably compact
open cover
metric space
compactness
axiom of choice
sequential (Hausdorff) space
Bolzano–Weierstrass theorem
Fréchet–Urysohn space
Sequence covering maps
Sequential space

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑