Knowledge (XXG)

Severe plastic deformation

Source 📝

259:
per second with shots of an attached ball to the horn in the range of 1K-100K per square millimeter. The strikes, which can be described as cold-forging, introduce SPD to produce a NC surface layer by refining the coarse grains until nanometer scale without changing the chemical composition of a material which render the high strength and high ductility. This UNSM technique does not only improve the mechanical and tribological properties of a material, but also produces a corrugated structure having numerous of desired dimples on the treated surface.
677:
is still useful as it implies that all other things remaining equal, reducing the stacking fault energy, a property that is a function of the alloying elements, will allow for better grain refinement. A few studies, however, suggested that despite the significance of stacking fault energy on the grain refinement at the early stages of straining, the steady-state grain size at large strains is mainly controlled by the homologous temperature in pure metals and by the interaction of solute atoms and dislocations in single-phase alloys.
1548: 180:, bonding the 2 sheets together. This sheet is cut in half, the 2 halves are stacked, and the process is repeated several times. Compared to other SPD processes, ARB has the benefit that it does not require specialized equipment or tooling, only a conventional rolling mill. However, the surfaces to be joined must be well-cleaned before rolling to ensure good bonding. 722:
Kawasaki, M.; Krǎl, P.; Kuramoto, S.; Langdon, T.G.; Leiva, D.R.; Levitas, V.I.; Mazilkin, A.; Mito, M.; Miyamoto, H.; Nishizaki, T.; Pippan, R.; Popov, V.V.; Popova, E.N.; Purcek, G.; Renk, O.; Révész, A.; Sauvage, X.; Sklenicka, V.; Skrotzki, W.; Straumal, B.B.; Suwas, S.; Toth, L.S.; Tsuji, N.; Valiev, R.Z.; Wilde, G.; Zehetbauer, M.J.; Zhu, X. (April 2022).
602: 271:
relation. Conventionally processed industrial metals typically have a grain size from 10–100 μm. Reducing the grain size from 10 μm to 1 μm can increase the yield strength of metals by more than 100%. Techniques that use bulk materials such as ECAE can provide reliable and relatively inexpensive ways
258:
An ultrasonic nanocrystalline surface modification (UNSM) technique is also one of the newly developed surface modification technique. In the UNSM process, not only the static load, but also the dynamic load are exerted. The processing is conducted striking a workpiece surface up to 20K or more times
676:
While the model was developed specifically for mechanical milling, it has also been successfully applied to other SPD processes. Frequently only a portion of the model is used (typically the term involving the stacking fault energy) as the other terms are often unknown and difficult to measure. This
188:
Repetitive corrugation and straightening (RCS) is a severe plastic deformation technique used to process sheet metals. In RCS, a sheet is pressed between two corrugated dies followed by pressing between two flat dies. RCS has gained wide popularity to produce fine grained sheet metals. Endeavors to
197:
In asymmetric rolling (ASR), a rolling mill is modified such that one roll has a higher velocity than the other. This is typically done with either independent speed control or by using rolls of different size. This creates a region in which the frictional forces on the top and bottom of the sheet
125:
Equal channel angular extrusion (ECAE, sometimes called Equal channel angular pressing, ECAP) was developed in the 1970s. In this process, a metal billet is pressed through an angled (typically 90 degrees) channel. To achieve optimal results, the process may be repeated several times, changing the
58:
The significance of SPD was known from the ancient times, at least during the transition from the Bronze Age to the Iron Age, when repeated hammering and folding was employed for processing strategic tools such as swords. The development of the principles underlying SPD techniques goes back to the
1189:
Mirab, Saeideh; Nili-Ahmadabadi, Mahmoud; Khajezade, Ali; Abshirini, Mohamad; Parsa, Mohammad Habibi; Soltani, Naser (August 2016). "On the Deformation Analysis during RCSR Process Aided by Finite Element Modeling and Digital Image Correlation: On the Deformation Analysis during RCSR Process…".
721:
Edalati, K.; Bachmaier, A.; Beloshenko, V.A.; Beygelzimer, Y.; Blank, V.D.; Botta, W.J.; Bryła, K.; Čížek, J.; Divinski, S.; Enikeev, N.A.; Estrin, Y.; Faraji, G.; Figueiredo, R.B.; Fuji, M.; Furuta, T.; Grosdidier, T.; Gubicza, J.; Hohenwarter, A.; Horita, Z.; Huot, J.; Ikoma, Y.; Janeček, M.;
94:
component. However, the mechanisms that lead to grain refinement in SPD are the same as those originally developed for mechanical alloying, a powder process that has been characterized as "severe plastic deformation" by authors as early as 1983. Additionally, some more recent processes such as
1277:
Asghari-Rad, Peyman; Nili-Ahmadabadi, Mahmoud; Shirazi, Hassan; Hossein Nedjad, Syamak; Koldorf, Sebastian (March 2017). "A Significant Improvement in the Mechanical Properties of AISI 304 Stainless Steel by a Combined RCSR and Annealing Process: A Significant Improvement in the Mechanical
385: 1225:
Shahmir, Hamed; Nili-Ahmadabadi, Mahmoud; Razzaghi, Alireza; Mohammadi, Mahdi; Wang, Chuan Ting; Jung, Jai Myun; Kim, Hyoung Seop; Langdon, Terence G. (June 2015). "Using dilatometry to study martensitic stabilization and recrystallization kinetics in a severely deformed NiTi alloy".
1161:
Mirsepasi, Arya; Nili-Ahmadabadi, Mahmoud; Habibi-Parsa, Mohammad; Ghasemi-Nanesa, Hadi; Dizaji, Ahmad F. (August 2012). "Microstructure and mechanical behavior of martensitic steel severely deformed by the novel technique of repetitive corrugation and straightening by rolling".
1731:
Edalati, K.; Akama, D.; Nishio, A.; Lee, S.; Yonenaga, Y.; Cubero-Sesin, J.; Horita, Z. (2014). "Influence of dislocation-solute atom interactions and stacking fault energy on grain size of single-phase alloys after severe plastic deformation using high-pressure torsion".
1546:, Zhu, Y.T.; Lowe, T.C.; Valiev, R.Z.; Stolyarov, V.V.; Latysh, V.V.; Raab, G.J., "Ultrafine-grained titanium for medical implants", issued 2002-06-04, assigned to The Regents Of The University Of California 898:
Qu, S.; An, X.H.; Yang, H.J.; Huang, C.X.; Yang, G.; Zang, Q.S.; Wang, Z.G.; Wu, S.D.; Zhang, Z.F. (2009). "Microstructural evolution and mechanical properties of Cu–Al alloys subjected to equal channel angular pressing".
1406:
Zhang, X.; Wang, H.; Kassem, M.; Narayan, J.; Koch, C.C. (10 May 2002). "Preparation of bulk ultrafine-grained and nanostructured Zn, Al and their alloys by in situ consolidation of powders during mechanical attrition".
202:
throughout the material in addition to the normal compressive stress from rolling. Unlike other SPD processes, ASR does not maintain the same net shape, but the effect on the microstructure of the material is similar.
597:{\displaystyle {\frac {d_{min}}{b}}=A_{3}\left(e^{-{\tfrac {\beta Q}{4RT}}}\right){\left({\frac {D_{p0}Gb^{2}}{\nu _{0}kT}}\right)}^{0.25}{\left({\frac {\gamma }{Gb}}\right)}^{0.5}{\left({\frac {G}{H}}\right)}^{1.25}} 641:
is the activation energy for vacancy migration, and Q is the activation energy for self-diffusion), βQ represents the activation energy for recovery, R is the gas constant, and T is the processing temperature.
238:
More recently, the principles behind SPD have been used to develop surface treatments that create a nanocrystalline layer on the surface of a material. In the surface mechanical attrition treatment (SMAT), an
225:
together, resulting in large deformations. The end product is generally a powder that must then be consolidated in some way (often using other SPD processes), but some alloys have the ability to consolidate
95:
asymmetric rolling, do result in a change in the dimensions of the workpiece, while still producing an ultrafine grain structure. The principles behind SPD have even been applied to surface treatments.
150:, though its use in metal processing is considerably more recent. In this method, a disk of the material to be strained is placed between 2 anvils. A large compressive stress (typically several 694:
Wei, Q; Cheng, S; Ramesh, K.T; Ma, E (15 September 2004). "Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals".
189:
improve this technique lead to introduce Repetitive Corrugation and Straightening by Rolling (RCSR), a novel SPD method. Applicability of this new method approved in the various materials.
247:
on top of the horn. The workpiece is mounted a small distance above the horn. The high frequency results in a large number of collisions between the balls and the surface, creating a
158:
force. HPT can be performed unconstrained, in which the material is free to flow outward, fully constrained, or to some degree between in which outward flow is allowed, but limited.
1516:
Senkov, O.N.; Senkova, S.V.; Scott, J.M.; Miracle, D.B. (25 February 2005). "Compaction of amorphous aluminum alloy powder by direct extrusion and equal channel angular extrusion".
1461:
Amanov, A.; Cho, I.S.; Pyun, Y.S.; Lee, C.S.; Park, I.G. (15 May 2012). "Micro-dimpled surface by ultrasonic nanocrystalline surface modification and its tribological effects".
1088:
Saito, Y.; Utsunomiya, H.; Tsuji, N.; Sakai, T. (1999). "Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process".
329:
The presence of a high hydrostatic pressure, in combination with large shear strains, is essential for producing high densities of crystal lattice defects, particularly
90:
Some definitions of SPD describe it as a process in which high strain is applied without any significant change in the dimensions of the workpiece, resulting in a large
103:
SPD methods are classified into three main groups of bulk-SPD methods, surface-SPD methods and powder-SPD methods. Here some popular SPD methods are briefly explained.
1565:
Mishra, A; Kad, B; Gregori, F; Meyers, M (1 January 2007). "Microstructural evolution in copper subjected to severe plastic deformation: Experiments and analysis".
380:. The model is based on the concept that the grain size is dependent on the rates at which dislocations are generated and annihilated. The full model is given by 67:
in the 1930s. This work concerned the effects on solids of combining large hydrostatic pressures with concurrent shear deformation and it led to the award of the
365:
describe a process in which dislocation motion becomes restricted due to the small subgrain size and grain rotation becomes more energetically favorable. Mishra
138:
During the constrained HPT process, the material experiences shear deformation between a fixed and a rotating anvil, without losing its original dimensions.
115:
During the ECAE process, the material is pressed through an angular die and experiences shear deformation, without changing its cross-sectional dimensions.
267:
Most research into SPD has focused on grain refinement, which has obvious applications in the development of high-strength materials as a result of the
1315:"Regulating of tensile properties through microstructure engineering in Fe-Ni-C TRIP steel processed by different strain routes of severe deformation" 1676:"High-pressure torsion of pure metals: influence of atomic bond parameters and stacking fault energy on grain size and correlation with hardness" 344:, which are initially distributed throughout the grains, rearrange and group together into dislocation "cells" to reduce the total strain energy. 221:
such as a shaker mill or planetary mill will also induce severe plastic deformation in metals. During milling, particles are fractured and
1057:"Severe plastic deformation for producing superfunctional ultrafine-grainedand heterostructured materials: An interdisciplinary review" 1371: 936: 1500: 71:
in Physics in 1946. Very successful early implementations of these principles, described in more detail below, are the processes of
1346:
Mousavi, S.A.A. Akbari; Ebrahimi, S.M.; Madoliat, R. (12 June 2007). "Three dimensional numerical analyses of asymmetric rolling".
1020:
Zhu, K.Y.; Vassel, A.; Brisset, F.; Lu, K.; Lu, J. (16 August 2004). "Nanostructure formation mechanism of α-titanium using SMAT".
1773: 1434:
Dai, K.; Shaw, L. (15 August 2007). "Comparison between shot peening and surface nanocrystallization and hardening processes".
120: 173: 112: 72: 854:
Valiev, Ruslan Z.; Estrin, Yuri; Horita, Zenji; Langdon, Terence G.; Zechetbauer, Michael J.; Zhu, Yuntian T. (April 2006).
797:
Zhilyaev, A; Langdon, T (1 August 2008). "Using high-pressure torsion for metal processing: Fundamentals and applications".
347:
As deformation continues and more dislocations are generated, misorientation develops between the cells, forming "subgrains"
135: 334: 251:
on the order of 10–10 s. The NC surface layer developed can be on the order of 50 μm thick. The process is similar to
230:
during milling. Mechanical alloying also allows powders of different metals to be alloyed together during processing.
80: 30:
techniques involving very large strains typically involving a complex stress state or high shear, resulting in a high
1602:"Microstructure and evolution of mechanically-induced ultrafine grain in surface layer of AL-alloy subjected to USSP" 350:
The process repeats within the subgrains until the size becomes sufficiently small such that the subgrains can rotate
1783: 1491:
Segal, Vladimir M.; Beyerlein, Irene J.; Tome, Carlos N.; Chuvil'deev, Vladimir N.; Kopylov, Vladimir I. (2010).
167: 302:
and composites without the need for the high temperatures used in conventional consolidation processes such as
827:
Segal, V.M. (1 November 1999). "Equal channel angular extrusion: from macromechanics to structure formation".
126:
orientation of the billet with each pass. This produces a uniform shear throughout the bulk of the material.
60: 31: 76: 1778: 353:
Additional deformation causes the subgrains to rotate into high-angle grain boundaries, typically with an
303: 177: 147: 665: 649: 280: 1639:
Mohamed, Farghalli A. (2003). "A dislocation model for the minimum grain size obtainable by milling".
1543: 974:
Cui, Q.; Ohori, K. (October 2000). "Grain refinement of high purity aluminium by asymmetric rolling".
1741: 1687: 1648: 1613: 1574: 1380: 1235: 1097: 1029: 983: 945: 908: 867: 284: 91: 724:"Nanomaterials by severe plastic deformation: review of historical developments and recent advances" 172:
In accumulative roll bonding (ARB), 2 sheets of the same material are stacked, heated (to below the
377: 212: 155: 1713: 1295: 1259: 1207: 1140: 999: 745: 661: 64: 1496: 1251: 354: 299: 1749: 1703: 1695: 1656: 1621: 1582: 1525: 1466: 1443: 1416: 1388: 1351: 1326: 1287: 1243: 1199: 1171: 1132: 1105: 1068: 1037: 991: 953: 916: 875: 836: 806: 772: 735: 703: 370: 292: 272:
of producing ultrafine grain materials compared to rapid solidification techniques such as
307: 240: 47: 1745: 1691: 1652: 1617: 1578: 1392: 1384: 1239: 1101: 1033: 987: 957: 949: 912: 871: 79:, derived from Bridgman's work, but not widely developed until the 1980s at the Russian 612: 244: 143: 1660: 1625: 1420: 1109: 840: 1767: 1717: 1355: 1299: 1263: 1211: 1144: 1003: 764: 749: 653: 273: 84: 1123:
Ratna Sunil, B. (2015). "Repetitive corrugation and straightening of sheet metals".
330: 288: 283:
modification also have potential industrial applications as properties such as the
252: 199: 27: 1753: 1699: 1586: 1073: 1056: 1041: 920: 810: 740: 723: 1136: 1601: 341: 248: 68: 39: 1529: 1470: 1447: 1331: 1314: 1175: 995: 776: 707: 1247: 880: 855: 376:
F.A. Mohamad has proposed a model for the minimum grain size achievable using
314: 268: 151: 1255: 369:
propose a slightly different explanation, in which the rotation is aided by
318: 313:
Some known commercial application of SPD processes are in the production of
306:, allowing desirable characteristics such as nanocrystalline grain sizes or 222: 218: 1313:
Hossein Zadeh, S.; Jafarian, H.R.; Park, N.; Eivani, A.R. (February 2020).
1291: 1203: 142:
High pressure torsion (HPT) can be traced back to the experiments that won
856:"Producing bulk ultrafine-grained materials by severe plastic deformation" 1369:
Koch, C C (1 August 1989). "Materials Synthesis by Mechanical Alloying".
669: 373:
along the grain boundaries (which is much faster than through the bulk).
43: 35: 75:(ECAP) developed by V.M. Segal and co-workers in Minsk in the 1970s and 1675: 1708: 337:. Grain refinement in SPD processes occurs by a multi-step process: 243:
is connected to an ultrasonic (20 kHz) transducer), with small
361:
The mechanism by which the subgrains rotate is less understood. Wu
298:
Processes such as ECAE and HPT have also been used to consolidate
110: 637:
is the activation energy for pipe diffusion along dislocations, Q
217:
Mechanical alloying/milling (MA/MM) performed in a high-energy
111: 255:, but the kinetic energy of the balls is much higher in SMAT. 134: 934:
Gilman, P.S.; Benjamin, J.S. (1983). "Mechanical alloying".
765:"A review on high-pressure torsion (HPT) from 1935 to 1988" 1493:
Fundamentals and engineering of severe plastic deformation
438: 648:
is the temperature-independent component of the pipe
388: 154:) is applied, while one anvil is rotated to create a 1600:
Wu, X; Tao, N; Hong, Y; Xu, B; Lu, J; Lu, K (2002).
1156: 1154: 596: 1560: 1558: 8: 1495:. Hauppauge, N.Y.: Nova Science Publishers. 1486: 1484: 1482: 1480: 1319:Journal of Materials Research and Technology 893: 891: 1348:Journal of Materials Processing Technology 1015: 1013: 26:) is a generic term describing a group of 1707: 1330: 1072: 879: 739: 588: 573: 568: 561: 541: 536: 529: 509: 497: 481: 474: 469: 437: 433: 419: 395: 389: 387: 969: 967: 184:Repetitive corrugation and straightening 133: 686: 611:is the minimum grain size and b is the 321:and UFG titanium for medical implants. 279:However, other effects of SPD, such as 822: 820: 660:is the dislocation velocity, k is the 291:processes) and magnetic properties of 1125:Materials and Manufacturing Processes 792: 790: 788: 786: 50:(NC) structure (d < 100 nm). 7: 1518:Materials Science and Engineering: A 1436:Materials Science and Engineering: A 1164:Materials Science and Engineering: A 1055:Edalati, Kaveh; et al. (2024). 829:Materials Science and Engineering: A 769:Materials Science and Engineering: A 763:Kaveh Edalati, Zenji Horita (2016). 696:Materials Science and Engineering: A 333:, which can result in a significant 198:being rolled are opposite, creating 1393:10.1146/annurev.ms.19.080189.001005 958:10.1146/annurev.ms.13.080183.001431 607:On the left side of the equation: d 1372:Annual Review of Materials Science 937:Annual Review of Materials Science 14: 295:are highly dependent on texture. 1674:Edalati, K.; Horita, Z. (2011). 1356:10.1016/j.jmatprotec.2006.11.045 976:Materials Science and Technology 16:Group of metalworking techniques 1061:Journal of Alloys and Compounds 121:Equal channel angular extrusion 1280:Advanced Engineering Materials 1192:Advanced Engineering Materials 107:Equal channel angular Pressing 73:equal-channel angular pressing 1: 1754:10.1016/j.actamat.2014.01.036 1700:10.1016/j.actamat.2011.07.046 1661:10.1016/S1359-6454(03)00230-1 1626:10.1016/S1359-6454(02)00051-4 1587:10.1016/j.actamat.2006.07.008 1421:10.1016/S1359-6462(02)00048-9 1110:10.1016/S1359-6454(98)00365-6 1074:10.1016/j.jallcom.2024.174667 1042:10.1016/j.actamat.2004.05.023 921:10.1016/j.actamat.2008.12.002 841:10.1016/S0921-5093(99)00248-8 811:10.1016/j.pmatsci.2008.03.002 799:Progress in Materials Science 741:10.1080/21663831.2022.2029779 1228:Journal of Materials Science 1137:10.1080/10426914.2014.973600 81:Institute of Metals Physics 1800: 1530:10.1016/j.msea.2004.09.061 1471:10.1016/j.wear.2011.06.001 1448:10.1016/j.msea.2006.07.159 1332:10.1016/j.jmrt.2020.01.041 1176:10.1016/j.msea.2012.04.073 996:10.1179/026708300101507019 777:10.1016/j.msea.2015.11.074 728:Materials Research Letters 708:10.1016/j.msea.2004.03.064 325:Grain refinement mechanism 210: 165: 118: 20:Severe plastic deformation 1248:10.1007/s10853-015-8957-5 881:10.1007/s11837-006-0213-7 168:Accumulative roll bonding 162:Accumulative roll bonding 1774:Deformation (mechanics) 1292:10.1002/adem.201600663 1204:10.1002/adem.201600100 771:. 0921–5093: 325–352. 598: 335:refining of the grains 304:hot isostatic pressing 148:Nobel Prize in Physics 139: 116: 46:< 1000 nm) or 1544:US patent 6399215 666:stacking fault energy 650:diffusion coefficient 599: 137: 130:High pressure torsion 114: 77:high-pressure torsion 1465:. 286–287: 136–144. 1350:. 187–188: 725–729. 386: 308:amorphous structures 285:Lankford coefficient 92:hydrostatic pressure 1746:2014AcMat..69...68E 1692:2011AcMat..59.6831E 1653:2003AcMat..51.4107M 1618:2002AcMat..50.2075W 1579:2007AcMat..55...13M 1385:1989AnRMS..19..121K 1240:2015JMatS..50.4003S 1102:1999AcMat..47..579S 1034:2004AcMat..52.4101Z 988:2000MatST..16.1095C 950:1983AnRMS..13..279G 913:2009AcMat..57.1586Q 872:2006JOM....58d..33V 213:Mechanical alloying 207:Mechanical alloying 59:pioneering work of 1409:Scripta Materialia 662:Boltzmann constant 594: 460: 378:mechanical milling 234:Surface treatments 193:Asymmetric rolling 176:temperature), and 140: 117: 65:Harvard University 1784:Materials science 1686:(17): 6831–6836. 1647:(14): 4107–4119. 1234:(11): 4003–4011. 1131:(10): 1262–1271. 1028:(14): 4101–4110. 982:(20): 1095–1101. 581: 554: 522: 459: 410: 174:recrystallization 1791: 1758: 1757: 1728: 1722: 1721: 1711: 1671: 1665: 1664: 1636: 1630: 1629: 1612:(8): 2075–2084. 1597: 1591: 1590: 1562: 1553: 1552: 1551: 1547: 1540: 1534: 1533: 1513: 1507: 1506: 1488: 1475: 1474: 1458: 1452: 1451: 1431: 1425: 1424: 1403: 1397: 1396: 1366: 1360: 1359: 1343: 1337: 1336: 1334: 1325:(3): 2903–2913. 1310: 1304: 1303: 1274: 1268: 1267: 1222: 1216: 1215: 1198:(8): 1434–1443. 1186: 1180: 1179: 1158: 1149: 1148: 1120: 1114: 1113: 1085: 1079: 1078: 1076: 1052: 1046: 1045: 1017: 1008: 1007: 971: 962: 961: 931: 925: 924: 907:(5): 1586–1601. 895: 886: 885: 883: 851: 845: 844: 835:(1–2): 322–333. 824: 815: 814: 794: 781: 780: 760: 754: 753: 743: 718: 712: 711: 691: 603: 601: 600: 595: 593: 592: 587: 586: 582: 574: 566: 565: 560: 559: 555: 553: 542: 534: 533: 528: 527: 523: 521: 514: 513: 503: 502: 501: 489: 488: 475: 467: 463: 462: 461: 458: 447: 439: 424: 423: 411: 406: 405: 390: 310:to be retained. 293:electrical steel 1799: 1798: 1794: 1793: 1792: 1790: 1789: 1788: 1764: 1763: 1762: 1761: 1734:Acta Materialia 1730: 1729: 1725: 1680:Acta Materialia 1673: 1672: 1668: 1641:Acta Materialia 1638: 1637: 1633: 1606:Acta Materialia 1599: 1598: 1594: 1567:Acta Materialia 1564: 1563: 1556: 1549: 1542: 1541: 1537: 1515: 1514: 1510: 1503: 1490: 1489: 1478: 1460: 1459: 1455: 1433: 1432: 1428: 1405: 1404: 1400: 1368: 1367: 1363: 1345: 1344: 1340: 1312: 1311: 1307: 1276: 1275: 1271: 1224: 1223: 1219: 1188: 1187: 1183: 1160: 1159: 1152: 1122: 1121: 1117: 1090:Acta Materialia 1087: 1086: 1082: 1054: 1053: 1049: 1022:Acta Materialia 1019: 1018: 1011: 973: 972: 965: 933: 932: 928: 901:Acta Materialia 897: 896: 889: 853: 852: 848: 826: 825: 818: 796: 795: 784: 762: 761: 757: 720: 719: 715: 693: 692: 688: 683: 668:, and H is the 659: 647: 640: 636: 632: 628: 621: 610: 569: 567: 546: 537: 535: 505: 504: 493: 477: 476: 470: 468: 448: 440: 429: 425: 415: 391: 384: 383: 327: 287:(important for 265: 241:ultrasonic horn 236: 215: 209: 195: 186: 170: 164: 132: 123: 109: 101: 56: 48:nanocrystalline 17: 12: 11: 5: 1797: 1795: 1787: 1786: 1781: 1776: 1766: 1765: 1760: 1759: 1723: 1666: 1631: 1592: 1554: 1535: 1524:(1–2): 12–21. 1508: 1501: 1476: 1453: 1442:(1–2): 46–53. 1426: 1415:(9): 661–665. 1398: 1379:(1): 121–143. 1361: 1338: 1305: 1286:(3): 1600663. 1269: 1217: 1181: 1150: 1115: 1096:(2): 579–583. 1080: 1047: 1009: 963: 926: 887: 846: 816: 805:(6): 893–979. 782: 755: 734:(4): 163–256. 713: 702:(1–2): 71–79. 685: 684: 682: 679: 674: 673: 657: 645: 642: 638: 634: 630: 626: 623: 622:is a constant. 619: 616: 613:Burgers vector 608: 591: 585: 580: 577: 572: 564: 558: 552: 549: 545: 540: 532: 526: 520: 517: 512: 508: 500: 496: 492: 487: 484: 480: 473: 466: 457: 454: 451: 446: 443: 436: 432: 428: 422: 418: 414: 409: 404: 401: 398: 394: 359: 358: 351: 348: 345: 326: 323: 264: 261: 235: 232: 211:Main article: 208: 205: 200:shear stresses 194: 191: 185: 182: 166:Main article: 163: 160: 144:Percy Bridgman 131: 128: 119:Main article: 108: 105: 100: 97: 83:in modern-day 55: 52: 32:defect density 15: 13: 10: 9: 6: 4: 3: 2: 1796: 1785: 1782: 1780: 1779:Metal forming 1777: 1775: 1772: 1771: 1769: 1755: 1751: 1747: 1743: 1739: 1735: 1727: 1724: 1719: 1715: 1710: 1705: 1701: 1697: 1693: 1689: 1685: 1681: 1677: 1670: 1667: 1662: 1658: 1654: 1650: 1646: 1642: 1635: 1632: 1627: 1623: 1619: 1615: 1611: 1607: 1603: 1596: 1593: 1588: 1584: 1580: 1576: 1572: 1568: 1561: 1559: 1555: 1545: 1539: 1536: 1531: 1527: 1523: 1519: 1512: 1509: 1504: 1502:9781616681906 1498: 1494: 1487: 1485: 1483: 1481: 1477: 1472: 1468: 1464: 1457: 1454: 1449: 1445: 1441: 1437: 1430: 1427: 1422: 1418: 1414: 1410: 1402: 1399: 1394: 1390: 1386: 1382: 1378: 1374: 1373: 1365: 1362: 1357: 1353: 1349: 1342: 1339: 1333: 1328: 1324: 1320: 1316: 1309: 1306: 1301: 1297: 1293: 1289: 1285: 1281: 1278:Properties". 1273: 1270: 1265: 1261: 1257: 1253: 1249: 1245: 1241: 1237: 1233: 1229: 1221: 1218: 1213: 1209: 1205: 1201: 1197: 1193: 1185: 1182: 1177: 1173: 1169: 1165: 1157: 1155: 1151: 1146: 1142: 1138: 1134: 1130: 1126: 1119: 1116: 1111: 1107: 1103: 1099: 1095: 1091: 1084: 1081: 1075: 1070: 1066: 1062: 1058: 1051: 1048: 1043: 1039: 1035: 1031: 1027: 1023: 1016: 1014: 1010: 1005: 1001: 997: 993: 989: 985: 981: 977: 970: 968: 964: 959: 955: 951: 947: 943: 939: 938: 930: 927: 922: 918: 914: 910: 906: 902: 894: 892: 888: 882: 877: 873: 869: 865: 861: 857: 850: 847: 842: 838: 834: 830: 823: 821: 817: 812: 808: 804: 800: 793: 791: 789: 787: 783: 778: 774: 770: 766: 759: 756: 751: 747: 742: 737: 733: 729: 725: 717: 714: 709: 705: 701: 697: 690: 687: 680: 678: 671: 667: 663: 655: 654:shear modulus 651: 643: 624: 617: 614: 606: 605: 604: 589: 583: 578: 575: 570: 562: 556: 550: 547: 543: 538: 530: 524: 518: 515: 510: 506: 498: 494: 490: 485: 482: 478: 471: 464: 455: 452: 449: 444: 441: 434: 430: 426: 420: 416: 412: 407: 402: 399: 396: 392: 381: 379: 374: 372: 368: 364: 356: 352: 349: 346: 343: 340: 339: 338: 336: 332: 324: 322: 320: 316: 311: 309: 305: 301: 300:metal powders 296: 294: 290: 286: 282: 277: 275: 274:melt spinning 270: 262: 260: 256: 254: 250: 246: 242: 233: 231: 229: 224: 220: 214: 206: 204: 201: 192: 190: 183: 181: 179: 175: 169: 161: 159: 157: 153: 149: 145: 136: 129: 127: 122: 113: 106: 104: 98: 96: 93: 88: 86: 85:Yekaterinburg 82: 78: 74: 70: 66: 62: 61:P.W. Bridgman 53: 51: 49: 45: 41: 37: 33: 29: 25: 21: 1740:(8): 68–77. 1737: 1733: 1726: 1683: 1679: 1669: 1644: 1640: 1634: 1609: 1605: 1595: 1573:(1): 13–28. 1570: 1566: 1538: 1521: 1517: 1511: 1492: 1462: 1456: 1439: 1435: 1429: 1412: 1408: 1401: 1376: 1370: 1364: 1347: 1341: 1322: 1318: 1308: 1283: 1279: 1272: 1231: 1227: 1220: 1195: 1191: 1184: 1167: 1163: 1128: 1124: 1118: 1093: 1089: 1083: 1064: 1060: 1050: 1025: 1021: 979: 975: 941: 935: 929: 904: 900: 866:(4): 33–39. 863: 859: 849: 832: 828: 802: 798: 768: 758: 731: 727: 716: 699: 695: 689: 675: 382: 375: 366: 362: 360: 342:Dislocations 331:dislocations 328: 312: 297: 289:deep drawing 278: 266: 263:Applications 257: 253:shot peening 237: 227: 216: 196: 187: 171: 141: 124: 102: 89: 57: 42:(UFG) size ( 38:"ultrafine" 28:metalworking 23: 19: 18: 944:: 279–300. 664:, γ is the 652:, G is the 317:targets by 249:strain rate 223:cold welded 152:gigapascals 69:Nobel Prize 1768:Categories 1709:2324/25601 1067:: 174667. 681:References 315:Sputtering 269:Hall-Petch 1718:137003355 1300:136241453 1264:137364496 1256:0022-2461 1212:138744444 1170:: 32–39. 1145:136416712 1004:137413931 750:246959065 544:γ 507:ν 442:β 435:− 371:diffusion 319:Honeywell 219:ball mill 146:the 1946 670:hardness 355:equiaxed 36:equiaxed 1742:Bibcode 1688:Bibcode 1649:Bibcode 1614:Bibcode 1575:Bibcode 1381:Bibcode 1236:Bibcode 1098:Bibcode 1030:Bibcode 984:Bibcode 946:Bibcode 909:Bibcode 868:Bibcode 281:texture 228:in-situ 156:torsion 99:Methods 54:History 1716:  1550:  1499:  1298:  1262:  1254:  1210:  1143:  1002:  748:  367:et al. 363:et al. 357:shape. 178:rolled 1714:S2CID 1296:S2CID 1260:S2CID 1208:S2CID 1141:S2CID 1000:S2CID 746:S2CID 633:/Q (Q 245:balls 40:grain 1497:ISBN 1463:Wear 1252:ISSN 1065:1002 590:1.25 531:0.25 34:and 1750:doi 1704:hdl 1696:doi 1657:doi 1622:doi 1583:doi 1526:doi 1522:393 1467:doi 1444:doi 1440:463 1417:doi 1389:doi 1352:doi 1327:doi 1288:doi 1244:doi 1200:doi 1172:doi 1168:551 1133:doi 1106:doi 1069:doi 1038:doi 992:doi 954:doi 917:doi 876:doi 860:JOM 837:doi 833:271 807:doi 773:doi 736:doi 704:doi 700:381 656:, ν 625:β=Q 609:min 563:0.5 63:at 24:SPD 1770:: 1748:. 1738:69 1736:. 1712:. 1702:. 1694:. 1684:59 1682:. 1678:. 1655:. 1645:51 1643:. 1620:. 1610:50 1608:. 1604:. 1581:. 1571:55 1569:. 1557:^ 1520:. 1479:^ 1438:. 1413:46 1411:. 1387:. 1377:19 1375:. 1321:. 1317:. 1294:. 1284:19 1282:. 1258:. 1250:. 1242:. 1232:50 1230:. 1206:. 1196:18 1194:. 1166:. 1153:^ 1139:. 1129:30 1127:. 1104:. 1094:47 1092:. 1063:. 1059:. 1036:. 1026:52 1024:. 1012:^ 998:. 990:. 980:16 978:. 966:^ 952:. 942:13 940:. 915:. 905:57 903:. 890:^ 874:. 864:58 862:. 858:. 831:. 819:^ 803:53 801:. 785:^ 767:. 744:. 732:10 730:. 726:. 698:. 646:p0 629:−Q 276:. 87:. 1756:. 1752:: 1744:: 1720:. 1706:: 1698:: 1690:: 1663:. 1659:: 1651:: 1628:. 1624:: 1616:: 1589:. 1585:: 1577:: 1532:. 1528:: 1505:. 1473:. 1469:: 1450:. 1446:: 1423:. 1419:: 1395:. 1391:: 1383:: 1358:. 1354:: 1335:. 1329:: 1323:9 1302:. 1290:: 1266:. 1246:: 1238:: 1214:. 1202:: 1178:. 1174:: 1147:. 1135:: 1112:. 1108:: 1100:: 1077:. 1071:: 1044:. 1040:: 1032:: 1006:. 994:: 986:: 960:. 956:: 948:: 923:. 919:: 911:: 884:. 878:: 870:: 843:. 839:: 813:. 809:: 779:. 775:: 752:. 738:: 710:. 706:: 672:. 658:0 644:D 639:m 635:p 631:m 627:p 620:3 618:A 615:. 584:) 579:H 576:G 571:( 557:) 551:b 548:G 539:( 525:) 519:T 516:k 511:0 499:2 495:b 491:G 486:0 483:p 479:D 472:( 465:) 456:T 453:R 450:4 445:Q 431:e 427:( 421:3 417:A 413:= 408:b 403:n 400:i 397:m 393:d 44:d 22:(

Index

metalworking
defect density
equiaxed
grain
d
nanocrystalline
P.W. Bridgman
Harvard University
Nobel Prize
equal-channel angular pressing
high-pressure torsion
Institute of Metals Physics
Yekaterinburg
hydrostatic pressure

Equal channel angular extrusion

Percy Bridgman
Nobel Prize in Physics
gigapascals
torsion
Accumulative roll bonding
recrystallization
rolled
shear stresses
Mechanical alloying
ball mill
cold welded
ultrasonic horn
balls

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.