Knowledge (XXG)

Net (polyhedron)

Source đź“ť

42: 31: 220:, if the points are on adjacent faces one candidate for the shortest path is the path crossing the common edge; the shortest path of this kind is found using a net where the two faces are also adjacent. Other candidates for the shortest path are through the surface of a third face adjacent to both (of which there are two), and corresponding nets can be used to find the shortest path in each category. 117: 186: 239: 142:. However, the polyhedron formed in this way may have different faces than the ones specified as part of the net: some of the net polygons may have folds across them, and some of the edges between net polygons may remain unfolded. Additionally, the same net may have multiple valid gluing patterns, leading to different folded polyhedra. 129:
of the polyhedron, but cutting some spanning trees may cause the polyhedron to self-overlap when unfolded, rather than forming a net. Conversely, a given net may fold into more than one different convex polyhedron, depending on the angles at which its edges are folded and the choice of which edges to
215:
over the surface between two points on the surface of a polyhedron corresponds to a straight line on a suitable net for the subset of faces touched by the path. The net has to be such that the straight line is fully within it, and one may have to consider several nets to see which gives the shortest
165:
asked whether every convex polyhedron has at least one net, or simple edge-unfolding. This question, which is also known as DĂĽrer's conjecture, or DĂĽrer's unfolding problem, remains unanswered. There exist non-convex polyhedra that do not have nets, and it is possible to subdivide the faces of every
265:
that are connected by their faces and all occupy the same three-dimensional space, just as the polygon faces of a net of a polyhedron are connected by their edges and all occupy the same plane. The net of the tesseract, the four-dimensional
346:
of the tree describing the pairs of faces that are opposite each other on the folded hypercube. Using this representation, the number of different unfoldings for hypercubes of dimensions 2, 3, 4, ... have been counted as
124:
Many different nets can exist for a given polyhedron, depending on the choices of which edges are joined and which are separated. The edges that are cut from a convex polyhedron to form a net must form a
1161: 120:
Four hexagons that, when glued to form a regular octahedron as depicted, produce folds across three of the diagonals of each hexagon. The edges between the hexagons remain unfolded.
281: 452: 336: 309: 1154: 358: 155: 130:
glue together. If a net is given together with a pattern for gluing its edges together, such that each vertex of the resulting shape has positive
1147: 1050: 546: 1396: 919: 865: 1417: 528: 1317: 139: 966: 276: 203:, a continuous non-self-intersecting motion from its flat to its folded state that keeps each face flat throughout the motion. 1458: 223: 1528: 1224: 628: 568: 1255: 597: 1403: 1170: 572: 338:
nodes describing the pattern by which pairs of faces of the hypercube are glued together to form a net, together with a
1106: 981: 493:; Sternath, Maria Luise (July 2008), "New light on the rediscovery of the Archimedean solids during the Renaissance", 917:
Miller, Ezra; Pak, Igor (2008), "Metric combinatorics of convex polyhedra: Cut loci and nonoverlapping unfoldings",
1559: 1453: 81:
in general, as they allow for physical models of polyhedra to be constructed from material such as thin cardboard.
1030: 1194: 1488: 1424: 633: 227: 1330: 1130: 685: 182:, i.e., a network of geodesics which connect vertices of the polyhedron and form a graph with convex faces. 162: 1574: 1214: 811: 428: 175: 1199: 178:. Furthermore, in 2019 Barvinok and Ghomi showed that a generalization of DĂĽrer's conjecture fails for 1569: 1374: 1204: 1184: 995: 830: 697: 193: 105: 35: 171: 1341: 1322: 1111: 200: 189: 1564: 1503: 1326: 1301: 1125: 1013: 900: 874: 846: 820: 721: 668: 642: 510: 475: 371: 285: 863:
Barvinok, Nicholas; Ghomi, Mohammad (2019-04-03), "Pseudo-Edge Unfoldings of Convex Polyhedra",
1523: 1410: 1281: 1089: 1070: 1046: 962: 956: 892: 739: 542: 466: 446: 424: 101: 85: 1483: 1448: 1379: 1351: 1219: 1038: 1033:(November 2014), "Science Fiction, Art, and the Fourth Dimension", in Emmer, Michele (ed.), 1003: 986: 928: 884: 838: 790: 705: 652: 534: 502: 406: 343: 339: 271: 70: 942: 717: 664: 138:, then there necessarily exists exactly one polyhedron that can be folded from it; this is 1463: 1291: 1276: 938: 713: 660: 262: 74: 62: 17: 1250: 764: 743: 999: 834: 701: 484: 318: 1533: 1508: 1498: 1493: 1478: 1473: 1356: 1189: 620: 490: 294: 131: 97: 78: 589: 1553: 1286: 725: 480: 126: 904: 850: 1538: 1468: 1240: 1017: 616: 564: 470: 185: 479:, including a net for the regular dodecahedron. However, these cannot be found in 77:
of the polyhedron. Polyhedral nets are a useful aid to the study of polyhedra and
1518: 1209: 1134: 1042: 781:
Ghomi, Mohammad (2018-01-01), "DĂĽrer's Unfolding Problem for Convex Polyhedra",
672: 381: 230:
puzzle which involves finding the shortest path between two points on a cuboid.
41: 30: 1139: 1093: 888: 116: 1513: 1346: 1271: 933: 709: 631:(2002), "Enumerating foldings and unfoldings between polygons and polytopes", 624: 538: 506: 386: 376: 254: 58: 896: 533:, Science Networks. Historical Studies, vol. 59, Birkhäuser, p. 8, 1431: 1098: 1079: 842: 748: 312: 267: 247: 199:
A related open question asks whether every net of a convex polyhedron has a
167: 656: 1245: 1074: 280:(1954). The same tesseract net is central to the plot of the short story 258: 243: 212: 50: 514: 238: 144: 66: 647: 1296: 795: 879: 1008: 958:
How to Fold It: The Mathematics of Linkages, Origami and Polyhedra
825: 237: 184: 115: 40: 29: 809:
Ghomi, Mohammad (2014), "Affine unfoldings of convex polyhedra",
465:
Schreiber, Fischer, and Sternath claim that, earlier than DĂĽrer,
1121: 1116: 217: 1143: 690:
Mathematical Proceedings of the Cambridge Philosophical Society
1112:
Editable Printable Polyhedral Nets with an Interactive 3D View
530:
A History of Folding in Mathematics: Mathematizing the Margins
351:
1, 11, 261, 9694, 502110, 33064966, 2642657228, ... (sequence
433:, NĂĽrnberg: MĂĽnchen, SĂĽddeutsche Monatsheft, pp. 139–152 84:
An early instance of polyhedral nets appears in the works of
481:
online copies of the 1509 first printed edition of this work
590:"Nets: A Tool for Representing Polyhedra in Two Dimensions" 353: 574:
Geometric Folding Algorithms: Linkages, Origami, Polyhedra
174:
showed that every convex polyhedron admits a net after an
152:
Does every convex polyhedron have a simple edge unfolding?
170:) so that the set of subdivided faces has a net. In 2014 90:
A Course in the Art of Measurement with Compass and Ruler
104:. These constructions were first called nets in 1543 by 94:
Unterweysung der Messung mit dem Zyrkel und Rychtscheyd
487:, so this claim should be regarded as unverified. See: 430:
Unterweysung der Messung mit dem Zyrkel und Rychtscheyd
1037:, Springer International Publishing, pp. 69–84, 321: 315:
can be found by representing these nets as a tree on
297: 1441: 1388: 1367: 1310: 1264: 1233: 1177: 571:(2007), "Chapter 22. Edge Unfolding of Polyhedra", 134:
and such that the sum of these defects is exactly 4
330: 303: 27:Edge-joined polygons which fold into a polyhedron 961:, Cambridge University Press, pp. 115–116, 73:which can be folded (along edges) to become the 1035:Imagine Math 3: Between Culture and Mathematics 291:The number of combinatorially distinct nets of 577:, Cambridge University Press, pp. 306–338 1155: 688:(1975), "Convex polytopes with convex nets", 8: 783:Notices of the American Mathematical Society 1162: 1148: 1140: 451:: CS1 maint: location missing publisher ( 1007: 932: 878: 824: 794: 646: 435:. English translation with commentary in 320: 296: 166:convex polyhedron (for instance along a 984:(1 January 1998), "Dali's dimensions", 398: 270:, is used prominently in a painting by 156:(more unsolved problems in mathematics) 444: 920:Discrete & Computational Geometry 866:Discrete & Computational Geometry 559: 557: 495:Archive for History of Exact Sciences 61:is an arrangement of non-overlapping 7: 1397:Geometric Exercises in Paper Folding 216:path. For example, in the case of a 1418:A History of Folding in Mathematics 25: 282:"—And He Built a Crooked House—" 234:Higher-dimensional polytope nets 1318:Alexandrov's uniqueness theorem 277:Crucifixion (Corpus Hypercubus) 147:Unsolved problem in mathematics 140:Alexandrov's uniqueness theorem 763:Moskovich, D. (June 4, 2012), 224:The spider and the fly problem 1: 1256:Regular paperfolding sequence 598:American Mathematical Society 246:, one of the 261 nets of the 1404:Geometric Folding Algorithms 1171:Mathematics of paper folding 1107:Regular 4d Polytope Foldouts 413:, Cambridge University Press 261:, is composed of polyhedral 1043:10.1007/978-3-319-01231-5_7 437:Strauss, Walter L. (1977), 1591: 1454:Margherita Piazzola Beloch 1031:Henderson, Linda Dalrymple 889:10.1007/s00454-019-00082-1 527:Friedman, Michael (2018), 18:Shephard's conjecture 1225:Yoshizawa–Randlett system 1117:Paper Models of Polyhedra 955:O’Rourke, Joseph (2011), 934:10.1007/s00454-008-9052-3 710:10.1017/s0305004100051860 539:10.1007/978-3-319-72487-4 507:10.1007/s00407-008-0024-z 45:The eleven nets of a cube 1425:Origami Polyhedra Design 634:Graphs and Combinatorics 228:recreational mathematics 112:Existence and uniqueness 96:) included nets for the 843:10.2140/gt.2014.18.3055 744:"Shephard's Conjecture" 1215:Napkin folding problem 469:drew several nets for 332: 305: 250: 196: 121: 46: 38: 657:10.1007/s003730200005 333: 306: 257:, a four-dimensional 241: 188: 176:affine transformation 119: 44: 33: 1375:Fold-and-cut theorem 1331:Steffen's polyhedron 1195:Huzita–Hatori axioms 1185:Big-little-big lemma 765:"DĂĽrer's conjecture" 588:Malkevitch, Joseph, 439:The Painter's Manual 407:Wenninger, Magnus J. 319: 295: 194:regular dodecahedron 106:Augustin Hirschvogel 36:regular dodecahedron 1323:Flexible polyhedron 1000:1998Natur.391...27K 835:2013arXiv1305.3231G 769:Open Problem Garden 702:1975MPCPS..78..389S 100:and several of the 1504:Toshikazu Kawasaki 1327:Bricard octahedron 1302:Yoshimura buckling 1200:Kawasaki's theorem 1090:Weisstein, Eric W. 1071:Weisstein, Eric W. 740:Weisstein, Eric W. 621:Demaine, Martin L. 489:Schreiber, Peter; 476:Divina proportione 372:Cardboard modeling 331:{\displaystyle 2n} 328: 301: 286:Robert A. Heinlein 251: 197: 122: 102:Archimedean solids 88:, whose 1525 book 47: 39: 1560:Types of polygons 1547: 1546: 1411:Geometric Origami 1282:Paper bag problem 1205:Maekawa's theorem 1052:978-3-319-01230-8 548:978-3-319-72486-7 467:Leonardo da Vinci 411:Polyhedron Models 304:{\displaystyle n} 16:(Redirected from 1582: 1484:David A. Huffman 1449:Roger C. Alperin 1352:Source unfolding 1220:Pureland origami 1164: 1157: 1150: 1141: 1103: 1102: 1084: 1083: 1056: 1055: 1027: 1021: 1020: 1011: 978: 972: 971: 952: 946: 945: 936: 927:(1–3): 339–388, 914: 908: 907: 882: 860: 854: 853: 828: 819:(5): 3055–3090, 806: 800: 799: 798: 796:10.1090/noti1609 778: 772: 771: 760: 754: 753: 752: 735: 729: 728: 682: 676: 675: 650: 629:O'Rourke, Joseph 617:Demaine, Erik D. 613: 607: 606: 605: 604: 585: 579: 578: 569:O'Rourke, Joseph 565:Demaine, Erik D. 561: 552: 551: 524: 518: 517: 483:nor in the 1498 463: 457: 456: 450: 442: 434: 421: 415: 414: 403: 356: 344:complement graph 340:perfect matching 337: 335: 334: 329: 310: 308: 307: 302: 148: 137: 21: 1590: 1589: 1585: 1584: 1583: 1581: 1580: 1579: 1550: 1549: 1548: 1543: 1529:Joseph O'Rourke 1464:Robert Connelly 1437: 1384: 1363: 1306: 1292:Schwarz lantern 1277:Modular origami 1260: 1229: 1173: 1168: 1088: 1087: 1069: 1068: 1065: 1060: 1059: 1053: 1029: 1028: 1024: 980: 979: 975: 969: 954: 953: 949: 916: 915: 911: 862: 861: 857: 808: 807: 803: 780: 779: 775: 762: 761: 757: 738: 737: 736: 732: 686:Shephard, G. C. 684: 683: 679: 615: 614: 610: 602: 600: 594:Feature Columns 587: 586: 582: 563: 562: 555: 549: 526: 525: 521: 491:Fischer, Gisela 488: 464: 460: 443: 436: 425:DĂĽrer, Albrecht 423: 422: 418: 405: 404: 400: 395: 368: 352: 317: 316: 293: 292: 236: 209: 159: 158: 153: 150: 146: 135: 114: 98:Platonic solids 28: 23: 22: 15: 12: 11: 5: 1588: 1586: 1578: 1577: 1572: 1567: 1562: 1552: 1551: 1545: 1544: 1542: 1541: 1536: 1534:Tomohiro Tachi 1531: 1526: 1521: 1516: 1511: 1509:Robert J. Lang 1506: 1501: 1499:Humiaki Huzita 1496: 1491: 1486: 1481: 1479:Rona Gurkewitz 1476: 1474:Martin Demaine 1471: 1466: 1461: 1456: 1451: 1445: 1443: 1439: 1438: 1436: 1435: 1428: 1421: 1414: 1407: 1400: 1392: 1390: 1386: 1385: 1383: 1382: 1377: 1371: 1369: 1365: 1364: 1362: 1361: 1360: 1359: 1357:Star unfolding 1354: 1349: 1344: 1334: 1320: 1314: 1312: 1308: 1307: 1305: 1304: 1299: 1294: 1289: 1284: 1279: 1274: 1268: 1266: 1262: 1261: 1259: 1258: 1253: 1248: 1243: 1237: 1235: 1231: 1230: 1228: 1227: 1222: 1217: 1212: 1207: 1202: 1197: 1192: 1190:Crease pattern 1187: 1181: 1179: 1175: 1174: 1169: 1167: 1166: 1159: 1152: 1144: 1138: 1137: 1128: 1119: 1114: 1109: 1104: 1085: 1064: 1063:External links 1061: 1058: 1057: 1051: 1022: 973: 967: 947: 909: 873:(3): 671–689, 855: 801: 773: 755: 730: 696:(3): 389–403, 677: 608: 580: 553: 547: 519: 501:(4): 457–467, 458: 416: 397: 396: 394: 391: 390: 389: 384: 379: 374: 367: 364: 363: 362: 327: 324: 300: 235: 232: 208: 205: 172:Mohammad Ghomi 163:G. C. Shephard 154: 151: 145: 132:angular defect 113: 110: 86:Albrecht DĂĽrer 79:solid geometry 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1587: 1576: 1575:Spanning tree 1573: 1571: 1568: 1566: 1563: 1561: 1558: 1557: 1555: 1540: 1537: 1535: 1532: 1530: 1527: 1525: 1522: 1520: 1517: 1515: 1512: 1510: 1507: 1505: 1502: 1500: 1497: 1495: 1492: 1490: 1487: 1485: 1482: 1480: 1477: 1475: 1472: 1470: 1467: 1465: 1462: 1460: 1457: 1455: 1452: 1450: 1447: 1446: 1444: 1440: 1434: 1433: 1429: 1427: 1426: 1422: 1420: 1419: 1415: 1413: 1412: 1408: 1406: 1405: 1401: 1399: 1398: 1394: 1393: 1391: 1387: 1381: 1380:Lill's method 1378: 1376: 1373: 1372: 1370: 1368:Miscellaneous 1366: 1358: 1355: 1353: 1350: 1348: 1345: 1343: 1340: 1339: 1338: 1335: 1332: 1328: 1324: 1321: 1319: 1316: 1315: 1313: 1309: 1303: 1300: 1298: 1295: 1293: 1290: 1288: 1287:Rigid origami 1285: 1283: 1280: 1278: 1275: 1273: 1270: 1269: 1267: 1265:3d structures 1263: 1257: 1254: 1252: 1249: 1247: 1244: 1242: 1239: 1238: 1236: 1234:Strip folding 1232: 1226: 1223: 1221: 1218: 1216: 1213: 1211: 1208: 1206: 1203: 1201: 1198: 1196: 1193: 1191: 1188: 1186: 1183: 1182: 1180: 1176: 1172: 1165: 1160: 1158: 1153: 1151: 1146: 1145: 1142: 1136: 1132: 1129: 1127: 1123: 1120: 1118: 1115: 1113: 1110: 1108: 1105: 1101: 1100: 1095: 1091: 1086: 1082: 1081: 1076: 1072: 1067: 1066: 1062: 1054: 1048: 1044: 1040: 1036: 1032: 1026: 1023: 1019: 1015: 1010: 1009:10.1038/34063 1005: 1001: 997: 993: 989: 988: 983: 977: 974: 970: 968:9781139498548 964: 960: 959: 951: 948: 944: 940: 935: 930: 926: 922: 921: 913: 910: 906: 902: 898: 894: 890: 886: 881: 876: 872: 868: 867: 859: 856: 852: 848: 844: 840: 836: 832: 827: 822: 818: 814: 813: 805: 802: 797: 792: 788: 784: 777: 774: 770: 766: 759: 756: 751: 750: 745: 741: 734: 731: 727: 723: 719: 715: 711: 707: 703: 699: 695: 691: 687: 681: 678: 674: 670: 666: 662: 658: 654: 649: 648:cs.CG/0107024 644: 641:(1): 93–104, 640: 636: 635: 630: 626: 622: 618: 612: 609: 599: 595: 591: 584: 581: 576: 575: 570: 566: 560: 558: 554: 550: 544: 540: 536: 532: 531: 523: 520: 516: 512: 508: 504: 500: 496: 492: 486: 485:Geneva ms 210 482: 478: 477: 472: 468: 462: 459: 454: 448: 440: 432: 431: 426: 420: 417: 412: 408: 402: 399: 392: 388: 385: 383: 380: 378: 375: 373: 370: 369: 365: 360: 355: 350: 349: 348: 345: 341: 325: 322: 314: 311:-dimensional 298: 289: 287: 283: 279: 278: 273: 272:Salvador DalĂ­ 269: 264: 260: 256: 249: 245: 240: 233: 231: 229: 225: 221: 219: 214: 213:shortest path 207:Shortest path 206: 204: 202: 195: 191: 187: 183: 181: 177: 173: 169: 164: 157: 143: 141: 133: 128: 127:spanning tree 118: 111: 109: 107: 103: 99: 95: 91: 87: 82: 80: 76: 72: 68: 64: 60: 56: 52: 43: 37: 32: 19: 1539:Eve Torrence 1469:Erik Demaine 1430: 1423: 1416: 1409: 1402: 1395: 1389:Publications 1336: 1251:Möbius strip 1241:Dragon curve 1178:Flat folding 1133:package for 1097: 1078: 1034: 1025: 994:(6662): 27, 991: 985: 982:Kemp, Martin 976: 957: 950: 924: 918: 912: 870: 864: 858: 816: 812:Geom. Topol. 810: 804: 789:(1): 25–27, 786: 782: 776: 768: 758: 747: 733: 693: 689: 680: 638: 632: 611: 601:, retrieved 593: 583: 573: 529: 522: 498: 494: 474: 471:Luca Pacioli 461: 438: 429: 419: 410: 401: 290: 275: 252: 222: 210: 198: 180:pseudo edges 179: 160: 123: 93: 89: 83: 54: 48: 1570:4-polytopes 1524:KĹŤryĹŤ Miura 1519:Jun Maekawa 1494:KĂ´di Husimi 1210:Map folding 1135:Mathematica 1094:"Unfolding" 625:Lubiw, Anna 382:Paper model 253:A net of a 34:A net of a 1554:Categories 1514:Anna Lubiw 1347:Common net 1272:Miura fold 880:1709.04944 603:2014-05-14 441:, New York 393:References 387:UV mapping 377:Common net 313:hypercubes 255:4-polytope 244:DalĂ­ cross 59:polyhedron 1565:Polyhedra 1432:Origamics 1311:Polyhedra 1131:Unfolding 1099:MathWorld 1080:MathWorld 897:0179-5376 826:1305.3231 749:MathWorld 726:122287769 268:hypercube 248:tesseract 168:cut locus 161:In 1975, 1489:Tom Hull 1459:Yan Chen 1342:Blooming 1246:Flexagon 1122:Unfolder 905:37547025 851:16827957 515:41134285 447:citation 427:(1525), 409:(1971), 366:See also 259:polytope 201:blooming 190:Blooming 67:polygons 65:-joined 51:geometry 1126:Blender 1018:5317132 996:Bibcode 943:2383765 831:Bibcode 718:0390915 698:Bibcode 665:1892436 357:in the 354:A091159 342:on the 69:in the 1442:People 1297:Sonobe 1049:  1016:  987:Nature 965:  941:  903:  895:  849:  724:  716:  671:  663:  545:  513:  1075:"Net" 1014:S2CID 901:S2CID 875:arXiv 847:S2CID 821:arXiv 722:S2CID 669:S2CID 643:arXiv 511:JSTOR 263:cells 226:is a 75:faces 71:plane 57:of a 1124:for 1047:ISBN 963:ISBN 893:ISSN 673:1489 543:ISBN 453:link 359:OEIS 242:The 218:cube 211:The 63:edge 53:, a 1337:Net 1039:doi 1004:doi 992:391 929:doi 885:doi 839:doi 791:doi 706:doi 653:doi 535:doi 503:doi 473:'s 284:by 55:net 49:In 1556:: 1329:, 1096:, 1092:, 1077:, 1073:, 1045:, 1012:, 1002:, 990:, 939:MR 937:, 925:39 923:, 899:, 891:, 883:, 871:64 869:, 845:, 837:, 829:, 817:18 815:, 787:65 785:, 767:, 746:, 742:, 720:, 714:MR 712:, 704:, 694:78 692:, 667:, 661:MR 659:, 651:, 639:18 637:, 627:; 623:; 619:; 596:, 592:, 567:; 556:^ 541:, 509:, 499:62 497:, 449:}} 445:{{ 288:. 274:, 192:a 108:. 1333:) 1325:( 1163:e 1156:t 1149:v 1041:: 1006:: 998:: 931:: 887:: 877:: 841:: 833:: 823:: 793:: 708:: 700:: 655:: 645:: 537:: 505:: 455:) 361:) 326:n 323:2 299:n 149:: 136:Ď€ 92:( 20:)

Index

Shephard's conjecture

regular dodecahedron

geometry
polyhedron
edge
polygons
plane
faces
solid geometry
Albrecht DĂĽrer
Platonic solids
Archimedean solids
Augustin Hirschvogel

spanning tree
angular defect
Alexandrov's uniqueness theorem
(more unsolved problems in mathematics)
G. C. Shephard
cut locus
Mohammad Ghomi
affine transformation

Blooming
regular dodecahedron
blooming
shortest path
cube

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑