Knowledge

Signature (topology)

Source đź“ť

237: 991: 1053: 532: 306: 136: 369: 1150: 881: 724: 1101: 394: 465: 808: 764: 690: 653: 590: 563: 148: 424:
due to Poincaré duality, as it pairs non-degenerately with itself. More generally, the signature can be defined in this way for any general compact
891:. Such forms do not have a signature invariant; if they are non-degenerate, any two such forms are equivalent. However, if one takes a 1292: 1250: 1211: 1111:(1954) showed that the signature of a manifold is a cobordism invariant, and in particular is given by some linear combination of its 1165: 931: 996: 1206: 1181: 47: 1340: 888: 614:
has dimension not divisible by 4, its signature is usually defined to be 0. There are alternative generalization in
472: 1112: 1345: 482: 397: 264: 94: 25: 330: 1278: 1121: 596:
is not connected, its signature is defined to be the sum of the signatures of its connected components.
1216: 1189: 1153: 892: 43: 827: 699: 1283: 1177: 900: 321: 1180:
is homotopy equivalent to a manifold if and only if its signature satisfies the expression of the
1071: 377: 908: 819: 693: 1056: 441: 1288: 1246: 777: 767: 733: 36: 662: 625: 1115: 317: 86: 568: 541: 1309: 896: 59: 1193: 421: 79: 1334: 904: 232:{\displaystyle \alpha ^{p}\smile \beta ^{q}=(-1)^{pq}(\beta ^{q}\smile \alpha ^{p})} 1108: 1237: 884: 75: 1169: 425: 1192:
says that the signature of a 4-dimensional simply connected manifold with a
255: 615: 605: 396:. Therefore the cup product, under these hypotheses, does give rise to a 63: 29: 17: 42:
This invariant of a manifold has been studied in detail, starting with
1157: 1156:(1954) found an explicit expression for this linear combination as the 692:
and these invariants do not always vanish for other dimensions. The
1245:(Repr. ed.). Cambridge: Cambridge Univ. Pr. p. 250. 1310:"Quelques proprietes globales des varietes differentiables" 986:{\displaystyle \sigma (M\sqcup N)=\sigma (M)+\sigma (N)} 1048:{\displaystyle \sigma (M\times N)=\sigma (M)\sigma (N)} 1315:(in French). Comm. Math. Helvetici 28 (1954), S. 17–86 907:. The resulting invariant of a manifold is called the 1124: 1074: 999: 934: 830: 780: 736: 702: 665: 628: 571: 544: 485: 444: 380: 333: 267: 151: 97: 903:need not be equivalent, being distinguished by the 1277:. Annals of Mathematics Studies 246. p. 224. 1144: 1118:. For example, in four dimensions, it is given by 1095: 1047: 985: 875: 802: 758: 718: 684: 647: 622:-dimensional (simply connected) symmetric L-group 584: 557: 526: 459: 388: 363: 300: 231: 130: 770:is a mod 2 invariant of manifolds of dimension 4 1168:(1962) proved that a simply connected compact 8: 618:: the signature can be interpreted as the 4 887:), the same construction gives rise to an 810:); the other dimensional L-groups vanish. 1282: 1131: 1125: 1123: 1073: 998: 933: 829: 785: 779: 741: 735: 708: 703: 701: 670: 664: 633: 627: 576: 570: 549: 543: 518: 505: 484: 443: 381: 379: 353: 338: 332: 290: 272: 266: 220: 207: 191: 169: 156: 150: 120: 102: 96: 1228: 895:of the form, which occurs if one has a 142:The basic identity for the cup product 1273:Milnor, John; Stasheff, James (1962). 527:{\displaystyle \sigma (M)=n_{+}-n_{-}} 301:{\displaystyle H^{4k}(M,\mathbf {R} )} 131:{\displaystyle H^{2k}(M,\mathbf {R} )} 726:) for framed manifolds of dimension 4 412:); and therefore to a quadratic form 364:{\displaystyle H^{0}(M,\mathbf {R} )} 7: 534:where any diagonal matrix defining 1212:Genus of a multiplicative sequence 1145:{\displaystyle {\frac {p_{1}}{3}}} 14: 28:which is defined for an oriented 704: 696:is a mod 2 (i.e., an element of 382: 354: 291: 121: 659:-dimensional quadratic L-group 432:-dimensional PoincarĂ© duality. 1084: 1078: 1068:is an oriented boundary, then 1042: 1036: 1030: 1024: 1015: 1003: 980: 974: 965: 959: 950: 938: 876:{\displaystyle d=4k+2=2(2k+1)} 870: 855: 719:{\displaystyle \mathbf {Z} /2} 495: 489: 454: 448: 358: 344: 295: 281: 226: 200: 188: 178: 125: 111: 1: 374:which can be identified with 1207:Hirzebruch signature theorem 1182:Hirzebruch signature theorem 1096:{\displaystyle \sigma (M)=0} 389:{\displaystyle \mathbf {R} } 48:Hirzebruch signature theorem 993:by definition, and satisfy 920:Compact oriented manifolds 889:antisymmetric bilinear form 1362: 817: 774:+1 (the symmetric L-group 730:+2 (the quadratic L-group 603: 460:{\displaystyle \sigma (M)} 883:is twice an odd integer ( 803:{\displaystyle L^{4k+1}} 759:{\displaystyle L_{4k+2}} 1236:Hatcher, Allen (2003). 685:{\displaystyle L_{4k},} 648:{\displaystyle L^{4k},} 398:symmetric bilinear form 312:If we assume also that 1275:Characteristic classes 1146: 1097: 1049: 987: 877: 804: 760: 720: 686: 649: 586: 559: 528: 461: 390: 365: 302: 233: 132: 1147: 1098: 1050: 988: 899:, then the resulting 878: 805: 761: 721: 687: 650: 604:Further information: 592:negative entries. If 587: 585:{\displaystyle n_{-}} 565:positive entries and 560: 558:{\displaystyle n_{+}} 529: 471:is by definition the 462: 391: 366: 324:identifies this with 303: 258:. It takes values in 234: 133: 85:on the 'middle' real 46:for 4-manifolds, and 1154:Friedrich Hirzebruch 1122: 1072: 997: 932: 893:quadratic refinement 828: 778: 734: 700: 663: 626: 569: 542: 483: 442: 378: 331: 265: 149: 95: 1196:is divisible by 16. 1341:Geometric topology 1239:Algebraic topology 1142: 1093: 1045: 983: 909:Kervaire invariant 873: 820:Kervaire invariant 814:Kervaire invariant 800: 756: 716: 694:Kervaire invariant 682: 645: 582: 555: 524: 457: 386: 361: 298: 229: 128: 1217:Rokhlin's theorem 1190:Rokhlin's theorem 1140: 901:ε-quadratic forms 768:de Rham invariant 44:Rokhlin's theorem 37:divisible by four 1353: 1325: 1324: 1322: 1320: 1314: 1305: 1299: 1298: 1286: 1270: 1264: 1263: 1261: 1259: 1244: 1233: 1178:PoincarĂ© duality 1160:of the manifold. 1151: 1149: 1148: 1143: 1141: 1136: 1135: 1126: 1102: 1100: 1099: 1094: 1054: 1052: 1051: 1046: 992: 990: 989: 984: 882: 880: 879: 874: 809: 807: 806: 801: 799: 798: 765: 763: 762: 757: 755: 754: 725: 723: 722: 717: 712: 707: 691: 689: 688: 683: 678: 677: 654: 652: 651: 646: 641: 640: 600:Other dimensions 591: 589: 588: 583: 581: 580: 564: 562: 561: 556: 554: 553: 533: 531: 530: 525: 523: 522: 510: 509: 466: 464: 463: 458: 395: 393: 392: 387: 385: 370: 368: 367: 362: 357: 343: 342: 322:PoincarĂ© duality 307: 305: 304: 299: 294: 280: 279: 242:shows that with 238: 236: 235: 230: 225: 224: 212: 211: 199: 198: 174: 173: 161: 160: 137: 135: 134: 129: 124: 110: 109: 87:cohomology group 78:gives rise to a 16:In the field of 1361: 1360: 1356: 1355: 1354: 1352: 1351: 1350: 1346:Quadratic forms 1331: 1330: 1329: 1328: 1318: 1316: 1312: 1307: 1306: 1302: 1295: 1272: 1271: 1267: 1257: 1255: 1253: 1242: 1235: 1234: 1230: 1225: 1203: 1166:William Browder 1127: 1120: 1119: 1070: 1069: 1057:KĂĽnneth formula 995: 994: 930: 929: 917: 897:framed manifold 826: 825: 822: 816: 781: 776: 775: 737: 732: 731: 698: 697: 666: 661: 660: 629: 624: 623: 608: 602: 572: 567: 566: 545: 540: 539: 514: 501: 481: 480: 440: 439: 376: 375: 334: 329: 328: 268: 263: 262: 254:the product is 216: 203: 187: 165: 152: 147: 146: 98: 93: 92: 56: 12: 11: 5: 1359: 1357: 1349: 1348: 1343: 1333: 1332: 1327: 1326: 1300: 1294:978-0691081229 1293: 1284:10.1.1.448.869 1265: 1252:978-0521795401 1251: 1227: 1226: 1224: 1221: 1220: 1219: 1214: 1209: 1202: 1199: 1198: 1197: 1194:spin structure 1186: 1185: 1162: 1161: 1139: 1134: 1130: 1105: 1104: 1092: 1089: 1086: 1083: 1080: 1077: 1061: 1060: 1044: 1041: 1038: 1035: 1032: 1029: 1026: 1023: 1020: 1017: 1014: 1011: 1008: 1005: 1002: 982: 979: 976: 973: 970: 967: 964: 961: 958: 955: 952: 949: 946: 943: 940: 937: 916: 913: 872: 869: 866: 863: 860: 857: 854: 851: 848: 845: 842: 839: 836: 833: 818:Main article: 815: 812: 797: 794: 791: 788: 784: 753: 750: 747: 744: 740: 715: 711: 706: 681: 676: 673: 669: 644: 639: 636: 632: 601: 598: 579: 575: 552: 548: 521: 517: 513: 508: 504: 500: 497: 494: 491: 488: 456: 453: 450: 447: 422:non-degenerate 384: 372: 371: 360: 356: 352: 349: 346: 341: 337: 310: 309: 297: 293: 289: 286: 283: 278: 275: 271: 240: 239: 228: 223: 219: 215: 210: 206: 202: 197: 194: 190: 186: 183: 180: 177: 172: 168: 164: 159: 155: 140: 139: 127: 123: 119: 116: 113: 108: 105: 101: 80:quadratic form 70:of dimension 4 55: 52: 24:is an integer 13: 10: 9: 6: 4: 3: 2: 1358: 1347: 1344: 1342: 1339: 1338: 1336: 1311: 1304: 1301: 1296: 1290: 1285: 1280: 1276: 1269: 1266: 1254: 1248: 1241: 1240: 1232: 1229: 1222: 1218: 1215: 1213: 1210: 1208: 1205: 1204: 1200: 1195: 1191: 1188: 1187: 1183: 1179: 1176:-dimensional 1175: 1171: 1167: 1164: 1163: 1159: 1155: 1137: 1132: 1128: 1117: 1114: 1110: 1107: 1106: 1090: 1087: 1081: 1075: 1067: 1063: 1062: 1058: 1039: 1033: 1027: 1021: 1018: 1012: 1009: 1006: 1000: 977: 971: 968: 962: 956: 953: 947: 944: 941: 935: 927: 923: 919: 918: 914: 912: 910: 906: 905:Arf invariant 902: 898: 894: 890: 886: 867: 864: 861: 858: 852: 849: 846: 843: 840: 837: 834: 831: 821: 813: 811: 795: 792: 789: 786: 782: 773: 769: 766:), while the 751: 748: 745: 742: 738: 729: 713: 709: 695: 679: 674: 671: 667: 658: 642: 637: 634: 630: 621: 617: 613: 607: 599: 597: 595: 577: 573: 550: 546: 537: 519: 515: 511: 506: 502: 498: 492: 486: 478: 474: 470: 451: 445: 438: 433: 431: 427: 423: 419: 415: 411: 407: 403: 399: 350: 347: 339: 335: 327: 326: 325: 323: 319: 315: 287: 284: 276: 273: 269: 261: 260: 259: 257: 253: 249: 245: 221: 217: 213: 208: 204: 195: 192: 184: 181: 175: 170: 166: 162: 157: 153: 145: 144: 143: 117: 114: 106: 103: 99: 91: 90: 89: 88: 84: 81: 77: 73: 69: 65: 61: 53: 51: 49: 45: 40: 38: 35:of dimension 34: 31: 27: 23: 19: 1317:. Retrieved 1308:Thom, RenĂ©. 1303: 1274: 1268: 1256:. Retrieved 1238: 1231: 1173: 1065: 925: 921: 823: 771: 727: 656: 619: 611: 609: 593: 535: 476: 468: 436: 434: 429: 417: 413: 409: 405: 401: 373: 313: 311: 251: 247: 243: 241: 141: 82: 71: 67: 57: 41: 32: 21: 15: 885:singly even 655:or as the 4 479:, that is, 416:. The form 76:cup product 1335:Categories 1319:26 October 1223:References 1170:polyhedron 1113:Pontryagin 915:Properties 426:polyhedron 54:Definition 1279:CiteSeerX 1258:8 January 1109:RenĂ© Thom 1076:σ 1034:σ 1022:σ 1010:× 1001:σ 972:σ 957:σ 945:⊔ 936:σ 578:− 520:− 512:− 487:σ 473:signature 446:σ 437:signature 256:symmetric 218:α 214:⌣ 205:β 182:− 167:β 163:⌣ 154:α 66:manifold 60:connected 26:invariant 22:signature 1201:See also 928:satisfy 616:L-theory 606:L-theory 64:oriented 58:Given a 30:manifold 18:topology 1158:L genus 1116:numbers 318:compact 1291:  1281:  1249:  1172:with 4 74:, the 20:, the 1313:(PDF) 1243:(PDF) 1055:by a 824:When 428:with 1321:2019 1289:ISBN 1260:2017 1247:ISBN 924:and 538:has 435:The 62:and 1064:If 610:If 475:of 467:of 420:is 400:on 316:is 250:= 2 1337:: 1287:. 1152:. 911:. 430:4n 320:, 246:= 50:. 39:. 1323:. 1297:. 1262:. 1184:. 1174:n 1138:3 1133:1 1129:p 1103:. 1091:0 1088:= 1085:) 1082:M 1079:( 1066:M 1059:. 1043:) 1040:N 1037:( 1031:) 1028:M 1025:( 1019:= 1016:) 1013:N 1007:M 1004:( 981:) 978:N 975:( 969:+ 966:) 963:M 960:( 954:= 951:) 948:N 942:M 939:( 926:N 922:M 871:) 868:1 865:+ 862:k 859:2 856:( 853:2 850:= 847:2 844:+ 841:k 838:4 835:= 832:d 796:1 793:+ 790:k 787:4 783:L 772:k 752:2 749:+ 746:k 743:4 739:L 728:k 714:2 710:/ 705:Z 680:, 675:k 672:4 668:L 657:k 643:, 638:k 635:4 631:L 620:k 612:M 594:M 574:n 551:+ 547:n 536:Q 516:n 507:+ 503:n 499:= 496:) 493:M 490:( 477:Q 469:M 455:) 452:M 449:( 418:Q 414:Q 410:R 408:, 406:M 404:( 402:H 383:R 359:) 355:R 351:, 348:M 345:( 340:0 336:H 314:M 308:. 296:) 292:R 288:, 285:M 282:( 277:k 274:4 270:H 252:k 248:q 244:p 227:) 222:p 209:q 201:( 196:q 193:p 189:) 185:1 179:( 176:= 171:q 158:p 138:. 126:) 122:R 118:, 115:M 112:( 107:k 104:2 100:H 83:Q 72:k 68:M 33:M

Index

topology
invariant
manifold
divisible by four
Rokhlin's theorem
Hirzebruch signature theorem
connected
oriented
cup product
quadratic form
cohomology group
symmetric
compact
Poincaré duality
symmetric bilinear form
non-degenerate
polyhedron
signature
L-theory
L-theory
Kervaire invariant
de Rham invariant
Kervaire invariant
singly even
antisymmetric bilinear form
quadratic refinement
framed manifold
ε-quadratic forms
Arf invariant
Kervaire invariant

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑