Knowledge

Kervaire invariant

Source đź“ť

1738:(two less than a power of two). The question is almost completely resolved: there are manifolds with nonzero Kervaire invariant in dimension 2, 6, 14, 30, 62, and none in all other dimensions other than possibly 126. However, Zhouli Xu (in collaboration with Weinan Lin and Guozhen Wang) announced on May 30, 2024 that there exists a manifold with nonzero Kervaire invariant in dimension 126. 494: 1901:
in dimension 64, and the octo-octonionic projective plane in dimension 128), specifically that there is a construction that takes these projective planes and produces a manifold with nonzero Kervaire invariant in two dimensions lower.
1857:
that there is such a manifold in dimension 126, and that the higher-dimensional manifolds with nonzero Kervaire invariant are related to well-known exotic manifolds two dimension higher, in dimensions 16, 32, 64, and 128, namely the
1463:. The quotients are the difficult parts of the groups. The map between these quotient groups is either an isomorphism or is injective and has an image of index 2. It is the latter if and only if there is an 286:
In any given dimension, there are only two possibilities: either all manifolds have Arf–Kervaire invariant equal to 0, or half have Arf–Kervaire invariant 0 and the other half have Arf–Kervaire invariant 1.
1533: 942: 1245: 2089: 2054: 395: 819: 2149: 1113:(in dimension greater than 4), with one step in the computation depending on the Kervaire invariant problem. Specifically, they show that the set of exotic spheres of dimension 867:
The Kervaire invariant is a generalization of the Arf invariant of a framed surface (that is, a 2-dimensional manifold with stably trivialized tangent bundle) which was used by
202: 1891: 1622: 302:(in collaboration with Weinan Lin and Guozhen Wang), announced during a seminar at Princeton University that the final case of dimension 126 has been settled. Xu stated that 1350: 1146: 745: 1467:-dimensional framed manifold of nonzero Kervaire invariant, and thus the classification of exotic spheres depends up to a factor of 2 on the Kervaire invariant problem. 1848: 332: 2332: 1663: 1402: 1284: 707: 653: 617: 563: 281: 129: 1822: 1784: 1736: 1079: 1046: 975: 857: 1457: 241: 56: 1020: 994: 672: 582: 403: 2850: 1318: 1560: 1103:, the first example of such a manifold, by showing that his invariant does not vanish on this PL manifold, but vanishes on all smooth manifolds of dimension 10. 156: 1422: 2590: 2251: 2216:
Anderson, Donald W.; Brown, Edgar H. Jr.; Peterson, Franklin P. (January 1966). "SU-corbodism, KO-characteristic Numbers, and the Kervaire Invariant".
2017:
invariant is a closely related invariant of framed surgery of a 2, 6 or 14-dimensional framed manifold, that gives isomorphisms from the 2nd and 6th
66:
converted into a sphere. This invariant evaluates to 0 if the manifold can be converted to a sphere, and 1 otherwise. This invariant was named after
1998:
The coefficient groups Ω(point) can detect non-vanishing Kervaire invariants: more precisely if the Kervaire invariant for manifolds of dimension
2697: 2340: 343: 337: 2793: 2823:
Hypersphere Exotica: Kervaire Invariant Problem Has a Solution! A 45-year-old problem on higher-dimensional spheres is solved–probably
1482: 2424: 1898: 877: 2018: 1357: 2324: 2290: 1742: 1169: 2866: 2809: 515:
on the middle dimensional homology of an (unframed) even-dimensional manifold; the framing yields the quadratic refinement.
2669: 2651: 2368: 1960:
showed that the Kervaire invariant is nonzero for some manifold of dimension 62. An alternative proof was given later by
1982:≥ 8. They constructed a cohomology theory Ω with the following properties from which their result follows immediately: 2664: 2646: 2363: 2469: 1894: 2803: 2375: 298:, this can happen in dimensions 2, 6, 14, 30, 62, and possibly 126, and in no other dimensions. On May 30, 2024, 2059: 2024: 1850:). Together with explicit constructions for lower dimensions (through 62), this leaves open only dimension 126. 365: 2659: 754: 2681: 2871: 1859: 1291: 527: 295: 21: 2098: 2260: 1750: 2641: 2612: 2388: 2295: 161: 2822: 1864: 344:
https://www.math.princeton.edu/events/computing-differentials-adams-spectral-sequence-2024-05-30t170000
2729: 2567: 2160: 1565: 508: 132: 2265: 2827: 2358: 619:
determined by the framing, or by the triviality/non-triviality of the normal bundles of embeddings
512: 504: 82: 1323: 2752: 2719: 2629: 2557: 2521: 2492: 2449: 2397: 2379: 2312: 2233: 1787: 1124: 712: 1827: 305: 2693: 2336: 2170: 1627: 1371: 1253: 1092: 676: 622: 586: 532: 250: 205: 98: 1801: 1756: 1708: 1051: 1025: 947: 824: 489:{\displaystyle q\colon H_{2m+1}(M;\mathbb {Z} /2\mathbb {Z} )\to \mathbb {Z} /2\mathbb {Z} ,} 294:
is the problem of determining in which dimensions the Kervaire invariant can be nonzero. For
2839: 2762: 2685: 2621: 2530: 2484: 2433: 2407: 2304: 2270: 2225: 1536: 1460: 1427: 1100: 211: 26: 2774: 2707: 2544: 2504: 2445: 2350: 2282: 998: 2770: 2703: 2607: 2603: 2540: 2500: 2461: 2441: 2419: 2383: 2346: 2278: 1791: 1424:
have easily understood cyclic factors, which are trivial or order two except in dimension
1156: 979: 657: 567: 523: 67: 2194: 1297: 2733: 2571: 1542: 138: 2582: 1854: 1674: 1666: 1407: 1365: 872: 868: 748: 359: 86: 63: 2249:(1984). "Relations amongst Toda brackets and the Kervaire invariant in dimension 62". 2860: 2535: 2516: 2512: 2453: 2246: 1670: 1110: 355: 78: 2203: 334:
survives so that there exists a manifold of Kervaire invariant 1 in dimension 126.
1920:
proved that the Kervaire invariant can be nonzero for manifolds of dimension 6, 14
2578: 2465: 2411: 1149: 1096: 2274: 1940:
proved that the Kervaire invariant can be nonzero for manifolds of dimension 30
2788: 2689: 2293:(1969). "The Kervaire invariant of framed manifolds and its generalization". 2806:, April 23, 2009, blog post by John Baez and discussion, The n-Category Café 2766: 2740: 1914:
proved that the Kervaire invariant is zero for manifolds of dimension 10, 18
299: 71: 2554:
Kervaire Invariant One (after M. A. Hill, M. J. Hopkins, and D. C. Ravenel)
2843: 2056:, and a homomorphism from the 14th stable homotopy group of spheres onto 1693:-dimensional framed manifolds of nonzero Kervaire invariant is called the 2798: 93: 59: 2422:(1960). "A manifold which does not admit any differentiable structure". 2633: 2496: 2437: 2316: 2237: 1926:
proved that the Kervaire invariant is zero for manifolds of dimension 8
1946:
proved that the Kervaire invariant is zero for manifolds of dimension
2386:(2016). "On the nonexistence of elements of Kervaire invariant one". 2625: 2488: 2308: 2229: 2198: 2789:
Slides and video of lecture by Hopkins at Edinburgh, 21 April, 2009
1677:
1), and thus the standard embedded torus has Kervaire invariant 0.
2757: 2724: 2562: 2402: 1476: 2743:(2016), "The Strong Kervaire invariant problem in dimension 62", 1985:
The coefficient groups Ω(point) have period 2 = 256 in
2335:, vol. 65, New York-Heidelberg: Springer, pp. ix+132, 131:, and thus analogous to the other invariants from L-theory: the 1528:{\displaystyle {\begin{pmatrix}0&1\\-1&0\end{pmatrix}}} 1117:– specifically the monoid of smooth structures on the standard 1991:
The coefficient groups Ω(point) have a "gap": they vanish for
1893:(dimension 16, octonionic projective plane) and the analogous 937:{\displaystyle \pi _{n+2}(S^{n})=\mathbb {Z} /2\mathbb {Z} } 2199:
Kervaire invariant: Why dimension 126 especially difficult?
2851:
Mathematicians solve 45-year-old Kervaire invariant puzzle
2224:(1). Mathematics Department, Princeton University: 54–67. 1459:, in which case they are large, with order related to the 1897:(the bi-octonionic projective plane in dimension 32, the 1749:), who reduced the problem from differential topology to 1240:{\displaystyle \Theta _{n}/bP_{n+1}\to \pi _{n}^{S}/J,\,} 1048:), which is the cobordism group of surfaces embedded in 338:"Computing differentials in the Adams spectral sequence" 2834:
Ball, Philip (2009). "Hidden riddle of shapes solved".
2002:
is nonzero then it has a nonzero image in Ω(point)
158:-dimensional invariant (either symmetric or quadratic, 1491: 522:
can be defined by algebraic topology using functional
2101: 2062: 2027: 1923: 1867: 1830: 1804: 1759: 1711: 1630: 1568: 1545: 1485: 1430: 1410: 1374: 1326: 1300: 1256: 1172: 1127: 1054: 1028: 1001: 982: 950: 880: 827: 757: 715: 679: 660: 625: 589: 570: 535: 406: 368: 308: 253: 214: 164: 141: 101: 29: 2799:
Harvard-MIT Summer Seminar on the Kervaire Invariant
1957: 1798:), who showed that there were no such manifolds for 362:
determined by the framing on the middle-dimensional
2517:"Some differentials in the Adams spectral sequence" 526:, and geometrically via the self-intersections of 2143: 2083: 2048: 1967: 1885: 1842: 1816: 1795: 1778: 1730: 1657: 1616: 1554: 1527: 1451: 1416: 1396: 1344: 1312: 1278: 1239: 1140: 1073: 1040: 1014: 988: 969: 936: 851: 813: 739: 701: 666: 647: 611: 576: 557: 488: 389: 326: 275: 235: 196: 150: 123: 50: 2678:Stable homotopy around the Arf-Kervaire invariant 1753:and showed that the only possible dimensions are 1539:), and the skew-quadratic refinement is given by 2333:Ergebnisse der Mathematik und ihrer Grenzgebiete 1970:showed that the Kervaire invariant is zero for 1937: 89:. It can be thought of as the simply-connected 2716:The Arf-Kervaire Invariant of framed manifolds 1917: 1106: 2583:"Differential topology forty-six years later" 2197:by AndrĂ© Henriques Jul 1, 2012 at 19:26, on " 1163:. They compute this latter in terms of a map 8: 2591:Notices of the American Mathematical Society 1673:0 (most of its elements have norm 0; it has 62:that measures whether the manifold could be 1368:, which is also a cyclic group. The groups 2252:Journal of the London Mathematical Society 2084:{\displaystyle \mathbb {Z} /2\mathbb {Z} } 2049:{\displaystyle \mathbb {Z} /2\mathbb {Z} } 390:{\displaystyle \mathbb {Z} /2\mathbb {Z} } 2756: 2723: 2561: 2534: 2401: 2264: 2131: 2127: 2110: 2106: 2100: 2095:= 2, 6, 14 there is an exotic framing on 2077: 2076: 2068: 2064: 2063: 2061: 2042: 2041: 2033: 2029: 2028: 2026: 1877: 1868: 1866: 1829: 1803: 1764: 1758: 1716: 1710: 1629: 1567: 1544: 1486: 1484: 1429: 1409: 1382: 1373: 1336: 1331: 1325: 1299: 1264: 1255: 1236: 1225: 1219: 1214: 1195: 1183: 1177: 1171: 1132: 1126: 1059: 1053: 1027: 1006: 1000: 981: 955: 949: 930: 929: 921: 917: 916: 904: 885: 879: 826: 790: 762: 756: 714: 684: 678: 659: 630: 624: 594: 588: 569: 540: 534: 479: 478: 470: 466: 465: 455: 454: 446: 442: 441: 417: 405: 383: 382: 374: 370: 369: 367: 318: 313: 307: 258: 252: 213: 185: 169: 163: 140: 106: 100: 77:The Kervaire invariant is defined as the 28: 1911: 1786:, and those of Michael A. Hill, 1624:: the basis curves don't self-link; and 1084: 814:{\displaystyle S^{4m+2+k}\to S^{2m+1+k}} 2804:'Kervaire Invariant One Problem' Solved 2610:(1971), "On the Kervaire obstruction", 2187: 1943: 1746: 2825:, by Davide Castelvecchi, August 2009 2794:Arf-Kervaire home page of Doug Ravenel 2245:Barratt, Michael G.; Jones, J. D. S.; 1479:, the skew-symmetric form is given by 2329:Surgery on simply-connected manifolds 2177: + 1)-dimensional invariant 2144:{\displaystyle S^{n/2}\times S^{n/2}} 1924:Anderson, Brown & Peterson (1966) 1701:is 2 mod 4, and indeed one must have 1121:-sphere – is isomorphic to the group 7: 2684:, vol. 273, Birkhäuser Verlag, 1958:Barratt, Jones & Mahowald (1984) 1950:not of the form 2 −  1685:The question of in which dimensions 2151:with Kervaire–Milnor invariant 1. 1974:-dimensional framed manifolds for 1968:Hill, Hopkins & Ravenel (2016) 1961: 1174: 1129: 197:{\displaystyle L^{4k}\cong L_{4k}} 14: 2425:Commentarii Mathematici Helvetici 1899:quateroctonionic projective plane 1886:{\displaystyle \mathbf {O} P^{2}} 1091: = 10 to construct the 499:and is thus sometimes called the 2019:stable homotopy group of spheres 1869: 1665:: a (1,1) self-links, as in the 1358:stable homotopy group of spheres 1081:with trivialized normal bundle. 503:. The quadratic form (properly, 2470:"Groups of homotopy spheres: I" 1617:{\displaystyle Q(1,0)=Q(0,1)=0} 2853:, Erica Klarreich, 20 Jul 2009 1741:The main results are those of 1646: 1634: 1605: 1593: 1584: 1572: 1535:(with respect to the standard 1207: 983: 910: 897: 783: 661: 571: 462: 459: 432: 354:The Kervaire invariant is the 230: 215: 45: 30: 1: 1938:Mahowald & Tangora (1967) 2536:10.1016/0040-9383(67)90023-7 1918:Kervaire & Milnor (1963) 1562:with respect to this basis: 1345:{\displaystyle \pi _{n}^{S}} 1107:Kervaire & Milnor (1963) 397:-coefficient homology group 2665:Encyclopedia of Mathematics 2660:"Kervaire-Milnor invariant" 2647:Encyclopedia of Mathematics 2412:10.4007/annals.2016.184.1.1 2364:Encyclopedia of Mathematics 2357:Chernavskii, A.V. (2001) , 1895:Rosenfeld projective planes 1697:. This is only possible if 1141:{\displaystyle \Theta _{n}} 740:{\displaystyle m\neq 0,1,3} 336:Xu, Zhouli (May 30, 2024). 2888: 2714:Snaith, Victor P. (2010), 2676:Snaith, Victor P. (2009), 2515:; Tangora, Martin (1967). 1695:Kervaire invariant problem 1681:Kervaire invariant problem 1475:For the standard embedded 1286:is the cyclic subgroup of 292:Kervaire invariant problem 85:on the middle dimensional 2690:10.1007/978-3-7643-9904-7 2009:Kervaire–Milnor invariant 1843:{\displaystyle n\geq 254} 327:{\displaystyle h_{6}^{2}} 2658:Shtan'ko, M.A. (2001) , 2640:Shtan'ko, M.A. (2001) , 2552:Miller, Haynes (2012) , 2275:10.1112/jlms/s2-30.3.533 1658:{\displaystyle Q(1,1)=1} 1397:{\displaystyle bP_{n+1}} 1279:{\displaystyle bP_{n+1}} 1101:differentiable structure 702:{\displaystyle M^{4m+2}} 648:{\displaystyle S^{2m+1}} 612:{\displaystyle M^{4m+2}} 558:{\displaystyle S^{2m+1}} 296:differentiable manifolds 276:{\displaystyle L^{4k+1}} 124:{\displaystyle L_{4k+2}} 2767:10.2140/gt.2016.20.1611 2745:Geometry & Topology 2682:Progress in Mathematics 1860:Cayley projective plane 1817:{\displaystyle k\geq 8} 1779:{\displaystyle 2^{k}-2} 1731:{\displaystyle 2^{k}-2} 1292:parallelizable manifold 1087:used his invariant for 1074:{\displaystyle S^{n+2}} 1041:{\displaystyle n\geq 2} 970:{\displaystyle S^{n+2}} 871:in 1950 to compute the 852:{\displaystyle m=0,1,3} 2556:, Seminaire Bourbaki, 2167:-dimensional invariant 2145: 2085: 2050: 1887: 1853:It was conjectured by 1844: 1818: 1780: 1751:stable homotopy theory 1732: 1659: 1618: 1556: 1529: 1453: 1452:{\displaystyle n=4k+3} 1418: 1398: 1346: 1314: 1290:-spheres that bound a 1280: 1241: 1142: 1109:computes the group of 1075: 1042: 1016: 990: 971: 938: 853: 815: 741: 703: 668: 649: 613: 578: 559: 501:Arf–Kervaire invariant 490: 391: 328: 277: 237: 236:{\displaystyle (4k+1)} 198: 152: 125: 52: 51:{\displaystyle (4k+2)} 2867:Differential topology 2844:10.1038/news.2009.427 2812:at the manifold atlas 2613:Annals of Mathematics 2477:Annals of Mathematics 2389:Annals of Mathematics 2296:Annals of Mathematics 2218:Annals of Mathematics 2146: 2086: 2051: 1888: 1845: 1819: 1781: 1733: 1669:. This form thus has 1660: 1619: 1557: 1530: 1454: 1419: 1399: 1347: 1315: 1281: 1242: 1143: 1076: 1043: 1017: 1015:{\displaystyle S^{n}} 991: 972: 939: 854: 816: 742: 704: 669: 650: 614: 579: 560: 491: 392: 329: 278: 238: 199: 153: 126: 70:who built on work of 53: 20:is an invariant of a 2817:Popular news stories 2642:"Kervaire invariant" 2099: 2060: 2025: 1865: 1828: 1802: 1757: 1709: 1628: 1566: 1543: 1483: 1428: 1408: 1372: 1364:is the image of the 1324: 1298: 1254: 1170: 1155:classes of oriented 1125: 1052: 1026: 999: 989:{\displaystyle \to } 980: 948: 878: 825: 755: 713: 677: 667:{\displaystyle \to } 658: 623: 587: 577:{\displaystyle \to } 568: 533: 509:quadratic refinement 404: 366: 306: 251: 212: 162: 139: 99: 27: 16:In mathematics, the 2828:Scientific American 2734:2010arXiv1001.4751S 2608:Sullivan, Dennis P. 2572:2011arXiv1104.4523M 2462:Kervaire, Michel A. 2420:Kervaire, Michel A. 2384:Ravenel, Douglas C. 2380:Hopkins, Michael J. 1743:William Browder 1341: 1313:{\displaystyle n+1} 1224: 1095:, a 10-dimensional 518:The quadratic form 505:skew-quadratic form 323: 83:skew-quadratic form 2438:10.1007/bf02565940 2141: 2081: 2046: 1978:= 2− 2 with 1883: 1840: 1814: 1792:Douglas C. Ravenel 1788:Michael J. Hopkins 1776: 1728: 1655: 1614: 1555:{\displaystyle xy} 1552: 1525: 1519: 1449: 1414: 1394: 1342: 1327: 1310: 1276: 1237: 1210: 1138: 1071: 1038: 1012: 986: 967: 934: 849: 811: 737: 699: 664: 645: 609: 574: 555: 486: 387: 324: 309: 273: 233: 194: 151:{\displaystyle 4k} 148: 121: 48: 18:Kervaire invariant 2699:978-3-7643-9903-0 2513:Mahowald, Mark E. 2342:978-0-387-05629-6 2247:Mahowald, Mark E. 2220:. Second Series. 2171:De Rham invariant 1461:Bernoulli numbers 1417:{\displaystyle J} 1093:Kervaire manifold 206:De Rham invariant 2879: 2847: 2777: 2760: 2751:(3): 1611–1624, 2736: 2727: 2710: 2672: 2654: 2636: 2604:Rourke, Colin P. 2599: 2587: 2574: 2565: 2548: 2538: 2508: 2474: 2457: 2415: 2405: 2376:Hill, Michael A. 2371: 2353: 2325:Browder, William 2320: 2291:Browder, William 2286: 2268: 2241: 2207: 2192: 2150: 2148: 2147: 2142: 2140: 2139: 2135: 2119: 2118: 2114: 2090: 2088: 2087: 2082: 2080: 2072: 2067: 2055: 2053: 2052: 2047: 2045: 2037: 2032: 1995:= -1, -2, and -3 1892: 1890: 1889: 1884: 1882: 1881: 1872: 1849: 1847: 1846: 1841: 1823: 1821: 1820: 1815: 1785: 1783: 1782: 1777: 1769: 1768: 1737: 1735: 1734: 1729: 1721: 1720: 1664: 1662: 1661: 1656: 1623: 1621: 1620: 1615: 1561: 1559: 1558: 1553: 1537:symplectic basis 1534: 1532: 1531: 1526: 1524: 1523: 1458: 1456: 1455: 1450: 1423: 1421: 1420: 1415: 1403: 1401: 1400: 1395: 1393: 1392: 1351: 1349: 1348: 1343: 1340: 1335: 1319: 1317: 1316: 1311: 1285: 1283: 1282: 1277: 1275: 1274: 1246: 1244: 1243: 1238: 1229: 1223: 1218: 1206: 1205: 1187: 1182: 1181: 1147: 1145: 1144: 1139: 1137: 1136: 1080: 1078: 1077: 1072: 1070: 1069: 1047: 1045: 1044: 1039: 1021: 1019: 1018: 1013: 1011: 1010: 995: 993: 992: 987: 976: 974: 973: 968: 966: 965: 943: 941: 940: 935: 933: 925: 920: 909: 908: 896: 895: 858: 856: 855: 850: 820: 818: 817: 812: 810: 809: 782: 781: 747:) and the mod 2 746: 744: 743: 738: 708: 706: 705: 700: 698: 697: 673: 671: 670: 665: 654: 652: 651: 646: 644: 643: 618: 616: 615: 610: 608: 607: 583: 581: 580: 575: 564: 562: 561: 556: 554: 553: 524:Steenrod squares 513:ε-symmetric form 495: 493: 492: 487: 482: 474: 469: 458: 450: 445: 431: 430: 396: 394: 393: 388: 386: 378: 373: 341: 333: 331: 330: 325: 322: 317: 282: 280: 279: 274: 272: 271: 242: 240: 239: 234: 203: 201: 200: 195: 193: 192: 177: 176: 157: 155: 154: 149: 130: 128: 127: 122: 120: 119: 57: 55: 54: 49: 2887: 2886: 2882: 2881: 2880: 2878: 2877: 2876: 2857: 2856: 2833: 2819: 2785: 2780: 2739: 2713: 2700: 2675: 2657: 2639: 2626:10.2307/1970764 2602: 2585: 2579:Milnor, John W. 2577: 2551: 2511: 2489:10.2307/1970128 2472: 2466:Milnor, John W. 2460: 2418: 2374: 2359:"Arf invariant" 2356: 2343: 2323: 2309:10.2307/1970686 2289: 2266:10.1.1.212.1163 2244: 2230:10.2307/1970470 2215: 2211: 2210: 2193: 2189: 2184: 2157: 2123: 2102: 2097: 2096: 2058: 2057: 2023: 2022: 2015:Kervaire–Milnor 2011: 1912:Kervaire (1960) 1908: 1873: 1863: 1862: 1826: 1825: 1800: 1799: 1760: 1755: 1754: 1712: 1707: 1706: 1705:is of the form 1683: 1626: 1625: 1564: 1563: 1541: 1540: 1518: 1517: 1512: 1503: 1502: 1497: 1487: 1481: 1480: 1473: 1426: 1425: 1406: 1405: 1378: 1370: 1369: 1322: 1321: 1296: 1295: 1260: 1252: 1251: 1191: 1173: 1168: 1167: 1128: 1123: 1122: 1085:Kervaire (1960) 1055: 1050: 1049: 1024: 1023: 1002: 997: 996: 978: 977: 951: 946: 945: 900: 881: 876: 875: 865: 823: 822: 786: 758: 753: 752: 711: 710: 680: 675: 674: 656: 655: 626: 621: 620: 590: 585: 584: 566: 565: 536: 531: 530: 413: 402: 401: 364: 363: 352: 335: 304: 303: 254: 249: 248: 210: 209: 181: 165: 160: 159: 137: 136: 102: 97: 96: 68:Michel Kervaire 25: 24: 12: 11: 5: 2885: 2883: 2875: 2874: 2872:Surgery theory 2869: 2859: 2858: 2855: 2854: 2848: 2831: 2818: 2815: 2814: 2813: 2810:Exotic spheres 2807: 2801: 2796: 2791: 2784: 2783:External links 2781: 2779: 2778: 2737: 2711: 2698: 2673: 2655: 2637: 2620:(3): 397–413, 2600: 2575: 2549: 2529:(3): 349–369. 2509: 2483:(3): 504–537. 2458: 2416: 2372: 2354: 2341: 2321: 2303:(1): 157–186. 2287: 2259:(3): 533–550. 2242: 2212: 2209: 2208: 2186: 2185: 2183: 2180: 2179: 2178: 2168: 2156: 2153: 2138: 2134: 2130: 2126: 2122: 2117: 2113: 2109: 2105: 2079: 2075: 2071: 2066: 2044: 2040: 2036: 2031: 2010: 2007: 2006: 2005: 2004: 2003: 1996: 1989: 1965: 1955: 1944:Browder (1969) 1941: 1935: 1921: 1915: 1907: 1904: 1880: 1876: 1871: 1855:Michael Atiyah 1839: 1836: 1833: 1813: 1810: 1807: 1790:, and 1775: 1772: 1767: 1763: 1727: 1724: 1719: 1715: 1682: 1679: 1675:isotropy index 1667:Hopf fibration 1654: 1651: 1648: 1645: 1642: 1639: 1636: 1633: 1613: 1610: 1607: 1604: 1601: 1598: 1595: 1592: 1589: 1586: 1583: 1580: 1577: 1574: 1571: 1551: 1548: 1522: 1516: 1513: 1511: 1508: 1505: 1504: 1501: 1498: 1496: 1493: 1492: 1490: 1472: 1469: 1448: 1445: 1442: 1439: 1436: 1433: 1413: 1391: 1388: 1385: 1381: 1377: 1366:J-homomorphism 1339: 1334: 1330: 1309: 1306: 1303: 1273: 1270: 1267: 1263: 1259: 1248: 1247: 1235: 1232: 1228: 1222: 1217: 1213: 1209: 1204: 1201: 1198: 1194: 1190: 1186: 1180: 1176: 1135: 1131: 1111:exotic spheres 1068: 1065: 1062: 1058: 1037: 1034: 1031: 1009: 1005: 985: 964: 961: 958: 954: 932: 928: 924: 919: 915: 912: 907: 903: 899: 894: 891: 888: 884: 873:homotopy group 869:Lev Pontryagin 864: 861: 848: 845: 842: 839: 836: 833: 830: 808: 805: 802: 799: 796: 793: 789: 785: 780: 777: 774: 771: 768: 765: 761: 749:Hopf invariant 736: 733: 730: 727: 724: 721: 718: 696: 693: 690: 687: 683: 663: 642: 639: 636: 633: 629: 606: 603: 600: 597: 593: 573: 552: 549: 546: 543: 539: 497: 496: 485: 481: 477: 473: 468: 464: 461: 457: 453: 449: 444: 440: 437: 434: 429: 426: 423: 420: 416: 412: 409: 385: 381: 377: 372: 360:quadratic form 351: 348: 321: 316: 312: 270: 267: 264: 261: 257: 232: 229: 226: 223: 220: 217: 191: 188: 184: 180: 175: 172: 168: 147: 144: 118: 115: 112: 109: 105: 87:homology group 47: 44: 41: 38: 35: 32: 13: 10: 9: 6: 4: 3: 2: 2884: 2873: 2870: 2868: 2865: 2864: 2862: 2852: 2849: 2845: 2841: 2837: 2832: 2830: 2829: 2824: 2821: 2820: 2816: 2811: 2808: 2805: 2802: 2800: 2797: 2795: 2792: 2790: 2787: 2786: 2782: 2776: 2772: 2768: 2764: 2759: 2754: 2750: 2746: 2742: 2738: 2735: 2731: 2726: 2721: 2717: 2712: 2709: 2705: 2701: 2695: 2691: 2687: 2683: 2679: 2674: 2671: 2667: 2666: 2661: 2656: 2653: 2649: 2648: 2643: 2638: 2635: 2631: 2627: 2623: 2619: 2615: 2614: 2609: 2605: 2601: 2597: 2593: 2592: 2584: 2580: 2576: 2573: 2569: 2564: 2559: 2555: 2550: 2546: 2542: 2537: 2532: 2528: 2524: 2523: 2518: 2514: 2510: 2506: 2502: 2498: 2494: 2490: 2486: 2482: 2478: 2471: 2467: 2463: 2459: 2455: 2451: 2447: 2443: 2439: 2435: 2431: 2427: 2426: 2421: 2417: 2413: 2409: 2404: 2399: 2395: 2391: 2390: 2385: 2381: 2377: 2373: 2370: 2366: 2365: 2360: 2355: 2352: 2348: 2344: 2338: 2334: 2330: 2326: 2322: 2318: 2314: 2310: 2306: 2302: 2298: 2297: 2292: 2288: 2284: 2280: 2276: 2272: 2267: 2262: 2258: 2254: 2253: 2248: 2243: 2239: 2235: 2231: 2227: 2223: 2219: 2214: 2213: 2206: 2205: 2200: 2196: 2191: 2188: 2181: 2176: 2172: 2169: 2166: 2162: 2159: 2158: 2154: 2152: 2136: 2132: 2128: 2124: 2120: 2115: 2111: 2107: 2103: 2094: 2073: 2069: 2038: 2034: 2020: 2016: 2008: 2001: 1997: 1994: 1990: 1988: 1984: 1983: 1981: 1977: 1973: 1969: 1966: 1963: 1959: 1956: 1953: 1949: 1945: 1942: 1939: 1936: 1933: 1929: 1925: 1922: 1919: 1916: 1913: 1910: 1909: 1905: 1903: 1900: 1896: 1878: 1874: 1861: 1856: 1851: 1837: 1834: 1831: 1811: 1808: 1805: 1797: 1793: 1789: 1773: 1770: 1765: 1761: 1752: 1748: 1744: 1739: 1725: 1722: 1717: 1713: 1704: 1700: 1696: 1692: 1688: 1680: 1678: 1676: 1672: 1671:Arf invariant 1668: 1652: 1649: 1643: 1640: 1637: 1631: 1611: 1608: 1602: 1599: 1596: 1590: 1587: 1581: 1578: 1575: 1569: 1549: 1546: 1538: 1520: 1514: 1509: 1506: 1499: 1494: 1488: 1478: 1470: 1468: 1466: 1462: 1446: 1443: 1440: 1437: 1434: 1431: 1411: 1389: 1386: 1383: 1379: 1375: 1367: 1363: 1359: 1355: 1337: 1332: 1328: 1307: 1304: 1301: 1294:of dimension 1293: 1289: 1271: 1268: 1265: 1261: 1257: 1233: 1230: 1226: 1220: 1215: 1211: 1202: 1199: 1196: 1192: 1188: 1184: 1178: 1166: 1165: 1164: 1162: 1160: 1154: 1152: 1133: 1120: 1116: 1112: 1108: 1104: 1102: 1098: 1094: 1090: 1086: 1082: 1066: 1063: 1060: 1056: 1035: 1032: 1029: 1007: 1003: 962: 959: 956: 952: 926: 922: 913: 905: 901: 892: 889: 886: 882: 874: 870: 862: 860: 846: 843: 840: 837: 834: 831: 828: 806: 803: 800: 797: 794: 791: 787: 778: 775: 772: 769: 766: 763: 759: 750: 734: 731: 728: 725: 722: 719: 716: 694: 691: 688: 685: 681: 640: 637: 634: 631: 627: 604: 601: 598: 595: 591: 550: 547: 544: 541: 537: 529: 525: 521: 516: 514: 511:of the usual 510: 506: 502: 483: 475: 471: 451: 447: 438: 435: 427: 424: 421: 418: 414: 410: 407: 400: 399: 398: 379: 375: 361: 357: 356:Arf invariant 349: 347: 345: 339: 319: 314: 310: 301: 297: 293: 288: 284: 268: 265: 262: 259: 255: 246: 243:-dimensional 227: 224: 221: 218: 207: 189: 186: 182: 178: 173: 170: 166: 145: 142: 134: 116: 113: 110: 107: 103: 95: 92: 88: 84: 80: 79:Arf invariant 75: 73: 69: 65: 61: 58:-dimensional 42: 39: 36: 33: 23: 19: 2835: 2826: 2748: 2744: 2715: 2677: 2663: 2645: 2617: 2611: 2598:(6): 804–809 2595: 2589: 2553: 2526: 2520: 2480: 2476: 2429: 2423: 2396:(1): 1–262. 2393: 2387: 2362: 2328: 2300: 2294: 2256: 2250: 2221: 2217: 2204:MathOverflow 2202: 2190: 2174: 2164: 2092: 2014: 2012: 1999: 1992: 1986: 1979: 1975: 1971: 1951: 1947: 1931: 1927: 1852: 1740: 1702: 1698: 1694: 1690: 1686: 1684: 1474: 1464: 1361: 1353: 1287: 1249: 1158: 1150: 1118: 1114: 1105: 1088: 1083: 866: 519: 517: 500: 498: 353: 291: 289: 285: 244: 90: 76: 17: 15: 2432:: 257–270. 1097:PL manifold 204:), and the 2861:Categories 2741:Xu, Zhouli 2182:References 1689:there are 1153:-cobordism 528:immersions 350:Definition 247:invariant 64:surgically 2758:1410.6199 2725:1001.4751 2670:EMS Press 2652:EMS Press 2563:1104.4523 2454:120977898 2403:0908.3724 2369:EMS Press 2261:CiteSeerX 2161:Signature 2121:× 1962:Xu (2016) 1835:≥ 1809:≥ 1771:− 1723:− 1507:− 1329:π 1212:π 1208:→ 1175:Θ 1157:homotopy 1130:Θ 1033:≥ 984:→ 883:π 784:→ 720:≠ 662:→ 572:→ 463:→ 411:: 300:Zhouli Xu 245:symmetric 179:≅ 133:signature 91:quadratic 72:Cahit Arf 2581:(2011), 2522:Topology 2468:(1963). 2327:(1972), 2155:See also 1471:Examples 1161:-spheres 1099:with no 944:of maps 751:of maps 60:manifold 2775:3523064 2730:Bibcode 2708:2498881 2634:1970764 2616:, (2), 2568:Bibcode 2545:0214072 2505:0148075 2497:1970128 2446:0139172 2351:0358813 2317:1970686 2283:0810962 2238:1970470 2195:comment 1930:+2 for 1906:History 1794: ( 1745: ( 1352:is the 863:History 507:) is a 358:of the 94:L-group 81:of the 2836:Nature 2773:  2706:  2696:  2632:  2543:  2503:  2495:  2452:  2444:  2349:  2339:  2315:  2281:  2263:  2236:  2173:, a (4 2091:. For 1360:, and 1250:where 22:framed 2753:arXiv 2720:arXiv 2630:JSTOR 2586:(PDF) 2558:arXiv 2493:JSTOR 2473:(PDF) 2450:S2CID 2398:arXiv 2313:JSTOR 2255:. 2. 2234:JSTOR 2163:, a 4 1934:>1 1477:torus 1022:(for 821:(for 709:(for 2694:ISBN 2337:ISBN 2013:The 1796:2016 1747:1969 1404:and 290:The 208:, a 135:, a 2840:doi 2763:doi 2686:doi 2622:doi 2531:doi 2485:doi 2434:doi 2408:doi 2394:184 2305:doi 2271:doi 2226:doi 2201:", 2021:to 1838:254 1356:th 1148:of 859:). 342:. ( 2863:: 2838:. 2771:MR 2769:, 2761:, 2749:20 2747:, 2728:, 2718:, 2704:MR 2702:, 2692:, 2680:, 2668:, 2662:, 2650:, 2644:, 2628:, 2618:94 2606:; 2596:58 2594:, 2588:, 2566:, 2541:MR 2539:. 2525:. 2519:. 2501:MR 2499:. 2491:. 2481:77 2479:. 2475:. 2464:; 2448:. 2442:MR 2440:. 2430:34 2428:. 2406:. 2392:. 2382:; 2378:; 2367:, 2361:, 2347:MR 2345:, 2331:, 2311:. 2301:90 2299:. 2279:MR 2277:. 2269:. 2257:30 2232:. 2222:83 1320:, 346:) 283:. 74:. 2846:. 2842:: 2765:: 2755:: 2732:: 2722:: 2688:: 2624:: 2570:: 2560:: 2547:. 2533:: 2527:6 2507:. 2487:: 2456:. 2436:: 2414:. 2410:: 2400:: 2319:. 2307:: 2285:. 2273:: 2240:. 2228:: 2175:k 2165:k 2137:2 2133:/ 2129:n 2125:S 2116:2 2112:/ 2108:n 2104:S 2093:n 2078:Z 2074:2 2070:/ 2065:Z 2043:Z 2039:2 2035:/ 2030:Z 2000:n 1993:n 1987:n 1980:k 1976:n 1972:n 1964:. 1954:. 1952:2 1948:n 1932:n 1928:n 1879:2 1875:P 1870:O 1832:n 1824:( 1812:8 1806:k 1774:2 1766:k 1762:2 1726:2 1718:k 1714:2 1703:n 1699:n 1691:n 1687:n 1653:1 1650:= 1647:) 1644:1 1641:, 1638:1 1635:( 1632:Q 1612:0 1609:= 1606:) 1603:1 1600:, 1597:0 1594:( 1591:Q 1588:= 1585:) 1582:0 1579:, 1576:1 1573:( 1570:Q 1550:y 1547:x 1521:) 1515:0 1510:1 1500:1 1495:0 1489:( 1465:n 1447:3 1444:+ 1441:k 1438:4 1435:= 1432:n 1412:J 1390:1 1387:+ 1384:n 1380:P 1376:b 1362:J 1354:n 1338:S 1333:n 1308:1 1305:+ 1302:n 1288:n 1272:1 1269:+ 1266:n 1262:P 1258:b 1234:, 1231:J 1227:/ 1221:S 1216:n 1203:1 1200:+ 1197:n 1193:P 1189:b 1185:/ 1179:n 1159:n 1151:h 1134:n 1119:n 1115:n 1089:n 1067:2 1064:+ 1061:n 1057:S 1036:2 1030:n 1008:n 1004:S 963:2 960:+ 957:n 953:S 931:Z 927:2 923:/ 918:Z 914:= 911:) 906:n 902:S 898:( 893:2 890:+ 887:n 847:3 844:, 841:1 838:, 835:0 832:= 829:m 807:k 804:+ 801:1 798:+ 795:m 792:2 788:S 779:k 776:+ 773:2 770:+ 767:m 764:4 760:S 735:3 732:, 729:1 726:, 723:0 717:m 695:2 692:+ 689:m 686:4 682:M 641:1 638:+ 635:m 632:2 628:S 605:2 602:+ 599:m 596:4 592:M 551:1 548:+ 545:m 542:2 538:S 520:q 484:, 480:Z 476:2 472:/ 467:Z 460:) 456:Z 452:2 448:/ 443:Z 439:; 436:M 433:( 428:1 425:+ 422:m 419:2 415:H 408:q 384:Z 380:2 376:/ 371:Z 340:. 320:2 315:6 311:h 269:1 266:+ 263:k 260:4 256:L 231:) 228:1 225:+ 222:k 219:4 216:( 190:k 187:4 183:L 174:k 171:4 167:L 146:k 143:4 117:2 114:+ 111:k 108:4 104:L 46:) 43:2 40:+ 37:k 34:4 31:(

Index

framed
manifold
surgically
Michel Kervaire
Cahit Arf
Arf invariant
skew-quadratic form
homology group
L-group
signature
De Rham invariant
differentiable manifolds
Zhouli Xu
"Computing differentials in the Adams spectral sequence"
https://www.math.princeton.edu/events/computing-differentials-adams-spectral-sequence-2024-05-30t170000
Arf invariant
quadratic form
skew-quadratic form
quadratic refinement
ε-symmetric form
Steenrod squares
immersions
Hopf invariant
Lev Pontryagin
homotopy group
Kervaire (1960)
Kervaire manifold
PL manifold
differentiable structure
Kervaire & Milnor (1963)

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑