Knowledge (XXG)

Silver–cadmium battery

Source 📝

62:
potassium hydroxide in water. Cells are provide with vent caps to prevent reaction of the electrolyte with carbon dioxide in the air. Theoretically as little of two grams of silver are required for each ampere-hour of capacity, but practical cells require between 3 and 3.5 grams. Because the charging voltage is higher than the discharge voltage, the watt-hour efficiency of a silver–cadmium cell is about 70%; ampere-hour efficiency is about 98%. The usual recommended charging method is constant-current charging at a 10 or 20 hour rate, (restoring the capacity of the battery over 10 or 20 hours), and cut off of charging at 1.6 volts per cell. Cells are commercially manufactured from 2 to 2500 ampere-hours capacity, but are often customized for particular uses.
58:
Renewed commercial development occurred during the 1950s, to take advantage of the better cycle life of the silver–cadmium system compared to silver-zinc. Like other silver-oxide battery systems, silver–cadmium batteries have relatively flat voltage during discharge. However, high-rate performance is not as good as for silver-zinc batteries. To preserve the operating life of cells, they may be shipped "dry" and the end-user adds electrolyte just before use.
651: 244: 61:
The positive electrode is made of sintered silver powder pasted onto a silver grid as current collector; the silver oxide may be formed in a separate process or may be formed on first charging of the cell. The cadmium negative electrode is formed of a pasted grid. Electrolytes are solutions of
57:
around 1900, who used them in a demonstration electric car and whose company commercially manufactured the cells. These original cells suffered from short life, and it was not until 1941 that an improved separator material was developed to prevent migration of the silver oxide within the cell.
46:. A silver–cadmium battery provides more energy than a nickel–cadmium cell of comparable weight. It has higher life cycle expectancy than silver–zinc cells, but lower terminal voltage and lower energy density. However, the high cost of silver and the 42:
oxide as the positive terminal, and an alkaline water-based electrolyte. It produces about 1.1 volts per cell on discharge, and about 40 watthours per kilogram
173: 688: 444: 331: 131: 484: 494: 717: 422: 107: 86: 504: 166: 469: 336: 479: 464: 432: 524: 271: 722: 539: 437: 544: 489: 474: 407: 366: 341: 321: 301: 681: 427: 159: 633: 534: 395: 499: 316: 146: 361: 377: 346: 182: 529: 514: 449: 417: 412: 228: 674: 519: 390: 243: 201: 593: 311: 281: 127: 103: 82: 47: 658: 707: 459: 454: 266: 206: 54: 712: 650: 326: 253: 43: 562: 216: 17: 701: 196: 400: 356: 291: 233: 211: 628: 613: 351: 276: 572: 306: 286: 618: 608: 598: 567: 223: 100:
Innovators in Battery Technology: Profiles of 95 Influential Electrochemists
296: 151: 603: 35: 39: 588: 155: 623: 662: 53:
The first silver–cadmium batteries were developed by
581: 553: 375: 251: 189: 682: 167: 8: 689: 675: 174: 160: 152: 34:is a type of rechargeable battery using 70: 118: 116: 657:This technology-related article is a 7: 647: 645: 79:Battery Reference Book third Edition 124:Handbook of Batteries Third Edition 661:. You can help Knowledge (XXG) by 25: 649: 242: 38:metal as its negative terminal, 1: 27:Type of rechargeable battery 50:restrict its applications. 739: 644: 332:Metal–air electrochemical 240: 44:specific energy density 718:Rechargeable batteries 634:Semipermeable membrane 423:Lithium–iron–phosphate 32:silver–cadmium battery 18:Silver-cadmium battery 505:Rechargeable alkaline 183:Electrochemical cells 147:List of battery types 89:pages 5-5 through 5-7 77:Thomas P J Crompton, 485:Nickel–metal hydride 122:Davide Linden (ed), 495:Polysulfide–bromide 337:Nickel oxyhydroxide 229:Thermogalvanic cell 134:, pages 33.1 – 33.2 126:,McGraw-Hill, 2002 48:toxicity of cadmium 258:(non-rechargeable) 202:Concentration cell 670: 669: 642: 641: 102:McFarland, 2016, 16:(Redirected from 730: 723:Technology stubs 691: 684: 677: 653: 646: 438:Lithium–titanate 383: 259: 246: 207:Electric battery 176: 169: 162: 153: 135: 120: 111: 96: 90: 75: 55:Waldemar Jungner 21: 738: 737: 733: 732: 731: 729: 728: 727: 698: 697: 696: 695: 643: 638: 577: 556: 549: 470:Nickel–hydrogen 428:Lithium–polymer 384: 381: 380: 371: 260: 257: 256: 247: 238: 185: 180: 143: 138: 121: 114: 110:, pages 115–116 98:Kevin Desmond, 97: 93: 76: 72: 68: 28: 23: 22: 15: 12: 11: 5: 736: 734: 726: 725: 720: 715: 710: 700: 699: 694: 693: 686: 679: 671: 668: 667: 654: 640: 639: 637: 636: 631: 626: 621: 616: 611: 606: 601: 596: 591: 585: 583: 579: 578: 576: 575: 570: 565: 563:Atomic battery 559: 557: 554: 551: 550: 548: 547: 542: 537: 535:Vanadium redox 532: 527: 522: 517: 512: 510:Silver–cadmium 507: 502: 497: 492: 487: 482: 480:Nickel–lithium 477: 472: 467: 465:Nickel–cadmium 462: 457: 452: 447: 442: 441: 440: 435: 433:Lithium–sulfur 430: 425: 420: 410: 405: 404: 403: 393: 387: 385: 382:(rechargeable) 378:Secondary cell 376: 373: 372: 370: 369: 364: 359: 354: 349: 344: 339: 334: 329: 324: 319: 314: 309: 304: 302:Edison–Lalande 299: 294: 289: 284: 279: 274: 269: 263: 261: 252: 249: 248: 241: 239: 237: 236: 231: 226: 221: 220: 219: 217:Trough battery 214: 204: 199: 193: 191: 187: 186: 181: 179: 178: 171: 164: 156: 150: 149: 142: 139: 137: 136: 112: 91: 69: 67: 64: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 735: 724: 721: 719: 716: 714: 711: 709: 706: 705: 703: 692: 687: 685: 680: 678: 673: 672: 666: 664: 660: 655: 652: 648: 635: 632: 630: 627: 625: 622: 620: 617: 615: 612: 610: 607: 605: 602: 600: 597: 595: 592: 590: 587: 586: 584: 580: 574: 571: 569: 566: 564: 561: 560: 558: 552: 546: 543: 541: 538: 536: 533: 531: 528: 526: 525:Sodium–sulfur 523: 521: 518: 516: 513: 511: 508: 506: 503: 501: 500:Potassium ion 498: 496: 493: 491: 488: 486: 483: 481: 478: 476: 473: 471: 468: 466: 463: 461: 458: 456: 453: 451: 448: 446: 443: 439: 436: 434: 431: 429: 426: 424: 421: 419: 416: 415: 414: 411: 409: 406: 402: 399: 398: 397: 394: 392: 389: 388: 386: 379: 374: 368: 365: 363: 360: 358: 355: 353: 350: 348: 345: 343: 340: 338: 335: 333: 330: 328: 325: 323: 320: 318: 317:Lithium metal 315: 313: 310: 308: 305: 303: 300: 298: 295: 293: 290: 288: 285: 283: 280: 278: 275: 273: 272:Aluminium–air 270: 268: 265: 264: 262: 255: 250: 245: 235: 232: 230: 227: 225: 222: 218: 215: 213: 210: 209: 208: 205: 203: 200: 198: 197:Galvanic cell 195: 194: 192: 188: 184: 177: 172: 170: 165: 163: 158: 157: 154: 148: 145: 144: 140: 133: 132:0-07-135978-8 129: 125: 119: 117: 113: 109: 105: 101: 95: 92: 88: 84: 81:Newnes, 2000 80: 74: 71: 65: 63: 59: 56: 51: 49: 45: 41: 37: 33: 19: 663:expanding it 656: 540:Zinc–bromine 509: 347:Silver oxide 282:Chromic acid 254:Primary cell 234:Voltaic pile 212:Flow battery 123: 99: 94: 78: 73: 60: 52: 31: 29: 629:Salt bridge 614:Electrolyte 545:Zinc–cerium 530:Solid state 515:Silver–zinc 490:Nickel–zinc 475:Nickel–iron 450:Molten salt 418:Dual carbon 413:Lithium ion 408:Lithium–air 367:Zinc–carbon 342:Silicon–air 322:Lithium–air 702:Categories 582:Cell parts 573:Solar cell 555:Other cell 520:Sodium ion 391:Automotive 108:1476622787 87:0080499953 66:References 619:Half-cell 609:Electrode 568:Fuel cell 445:Metal–air 396:Lead–acid 312:Leclanché 224:Fuel cell 599:Catalyst 460:Nanowire 455:Nanopore 401:gel–VRLA 362:Zinc–air 267:Alkaline 141:See also 708:Cadmium 604:Cathode 357:Zamboni 327:Mercury 292:Daniell 36:cadmium 713:Silver 594:Binder 352:Weston 277:Bunsen 130:  106:  85:  40:silver 589:Anode 307:Grove 287:Clark 190:Types 659:stub 624:Ions 128:ISBN 104:ISBN 83:ISBN 297:Dry 704:: 115:^ 30:A 690:e 683:t 676:v 665:. 175:e 168:t 161:v 20:)

Index

Silver-cadmium battery
cadmium
silver
specific energy density
toxicity of cadmium
Waldemar Jungner
ISBN
0080499953
ISBN
1476622787


ISBN
0-07-135978-8
List of battery types
v
t
e
Electrochemical cells
Galvanic cell
Concentration cell
Electric battery
Flow battery
Trough battery
Fuel cell
Thermogalvanic cell
Voltaic pile
Galvanic cell
Primary cell
Alkaline

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.