Knowledge (XXG)

Similitude

Source 📝

1671:
structures can be successfully carried out using the complete and partial similarities. In the design of the scaled structures under complete similarity condition, all the derived scaling laws must be satisfied between the model and prototype which yields the perfect similarity between the two scales. However, the design of a scaled-down structure which is perfectly similar to its prototype has the practical limitation, especially for laminated structures. Relaxing some of the scaling laws may eliminate the limitation of the design under complete similarity condition and yields the scaled models that are partially similar to their prototype. However, the design of the scaled structures under the partial similarity condition must follow a deliberate methodology to ensure the accuracy of the scaled structure in predicting the structural response of the prototype. Scaled models can be designed to replicate the dynamic characteristic (e.g. frequencies, mode shapes and damping ratios) of their full-scale counterparts. However, appropriate response scaling laws need to be derived to predict the dynamic response of the full-scale prototype from the experimental data of the scaled model.
1064: 636: 1655: 1059:{\displaystyle {\begin{aligned}&R_{e}=\left({\frac {\rho VL}{\mu }}\right)&\longrightarrow &V_{\text{model}}=V_{\text{application}}\times \left({\frac {\rho _{a}}{\rho _{m}}}\right)\times \left({\frac {L_{a}}{L_{m}}}\right)\times \left({\frac {\mu _{m}}{\mu _{a}}}\right)\\&C_{p}=\left({\frac {2\Delta p}{\rho V^{2}}}\right),F=\Delta pL^{2}&\longrightarrow &F_{\text{application}}=F_{\text{model}}\times \left({\frac {\rho _{a}}{\rho _{m}}}\right)\times \left({\frac {V_{a}}{V_{m}}}\right)^{2}\times \left({\frac {L_{a}}{L_{m}}}\right)^{2}.\end{aligned}}} 1697: 43: 140: 267: 1663: 1930: 341:
especially by wave motions at the interface between the water and the air. The scaling requirements for each of these phenomena differ, so models cannot replicate what happens to a full sized vessel nearly so well as can be done for an aircraft or submarine—each of which operates entirely within one medium.
344:
Similitude is a term used widely in fracture mechanics relating to the strain life approach. Under given loading conditions the fatigue damage in an un-notched specimen is comparable to that of a notched specimen. Similitude suggests that the component fatigue life of the two objects will also be
1670:
Similitude analysis is a powerful engineering tool to design the scaled-down structures. Although both dimensional analysis and direct use of the governing equations may be used to derive the scaling laws, the latter results in more specific scaling laws. The design of the scaled-down composite
336:
It is often impossible to achieve strict similitude during a model test. The greater the departure from the application's operating conditions, the more difficult achieving similitude is. In these cases some aspects of similitude may be neglected, focusing on only the most important parameters.
340:
The design of marine vessels remains more of an art than a science in large part because dynamic similitude is especially difficult to attain for a vessel that is partially submerged: a ship is affected by wind forces in the air above it, by hydrodynamic forces within the water under it, and
1513:
Similitude has been well documented for a large number of engineering problems and is the basis of many textbook formulas and dimensionless quantities. These formulas and quantities are easy to use without having to repeat the laborious task of dimensional analysis and formula derivation.
1489: 357:
modeled at 1/40th scale. The application operates in sea water at 0.5 °C, moving at 5 m/s. The model will be tested in fresh water at 20 °C. Find the power required for the submarine to operate at the stated speed.
1517:
Similitude can be used to predict the performance of a new design based on data from an existing, similar design. In this case, the model is the existing design. Another use of similitude and models is in validation of
1360: 1211: 2177: 240:
Engineering models are used to study complex fluid dynamics problems where calculations and computer simulations aren't reliable. Models are usually smaller than the final design, but not always.
641: 625:, which will be the test measurement. Since the dimensionless parameters will stay constant for both the test and the real application, they will be used to formulate scaling laws for the test. 247:
Construction of a scale model, however, must be accompanied by an analysis to determine what conditions it is tested under. While the geometry may be simply scaled, other parameters, such as
1494:
Note that even though the model is scaled smaller, the water velocity needs to be increased for testing. This remarkable result shows how similitude in nature is often counterintuitive.
1391: 1525:
Another application of similitude is to replace the operating fluid with a different test fluid. Wind tunnels, for example, have trouble with air liquefying in certain conditions so
1637: 1311: 295: 1254: 1162: 619: 588: 444: 481: 1383: 1127: 1107: 1087: 1514:
Simplification of the formulas (by neglecting some aspects of similitude) is common, and needs to be reviewed by the engineer for each application.
1529:
is sometimes used. Other applications may operate in dangerous or expensive fluids so the testing is carried out in a more convenient substitute.
263:
may need to be altered. Similitude is achieved when testing conditions are created such that the test results are applicable to the real design.
324:
The values of the dimensionless parameters are held to be the same for both the scale model and application. This can be done because they are
2161: 1990: 1906: 1836: 291:– fluid flow of both the model and real application must undergo similar time rates of change motions. (fluid streamlines are similar) 1718: 1788:
Rezaeepazhand, J.; Simitses, G.J.; Starnes, J.H. (1996). "Scale models for laminated cylindrical shells subjected to axial compression".
1654: 1319: 1170: 1938: 2036: 1966: 1740: 126: 1658:
Scaled composite laminated I-beams with different scales and lamination schemes designed based on structural similitude analysis.
64: 299:– ratios of all forces acting on corresponding fluid particles and boundary surfaces in the two systems are constant. 2197: 2192: 1503: 107: 1948: 79: 60: 31: 1711: 1705: 1666:
Schematic of scaled composite laminated I-beams: prototype (top) and models with different scales and layups (bottom)
328:
and will ensure dynamic similitude between the model and the application. The resulting equations are used to derive
1893:. Conference Proceedings of the Society for Experimental Mechanics Series. Vol. 6. Springer. pp. 115–123. 1823:. Conference Proceedings of the Society for Experimental Mechanics Series. Vol. 4. Springer. pp. 115–126. 86: 53: 1680: 1484:{\displaystyle P=F_{\text{application}}\times V_{\text{application}}=F_{\text{model}}\times 17.2\ \mathrm {m/s} } 1722: 244:
allow testing of a design prior to building, and in many cases are a critical step in the development process.
198:
is often used as a catch-all because it implies that geometric and kinematic similitude have already been met.
550: 93: 1817:"Similitude Analysis of Composite I-Beams with Application to Subcomponent Testing of Wind Turbine Blades" 365:
is constructed and the relevant relationships of force and velocity are formulated using techniques from
279: 206: 75: 2103: 2062: 1613: 1548: 1259: 591: 556: 318: 314: 287: 229: 181: 553:
shows that the system can be described with two dimensionless numbers and one independent variable.
1581: 1519: 366: 308: 2091: 2119: 2078: 1220: 2157: 2032: 2015: 2009: 1996: 1986: 1902: 1832: 531: 362: 2131:
De Rosa, S.; Franco, F. (2015). "Analytical similitudes applied to thin cylindrical shells".
1217:
A model test is then conducted at that velocity and the force that is measured in the model (
1132: 2140: 2111: 2070: 1894: 1865: 1824: 1797: 1633: 597: 566: 429: 1629: 1605: 1593: 1569: 1544: 560: 466: 222: 2051:"Turbulent Air-water Flows in Hydraulic Structures: Dynamic Similarity and Scale Effects" 2107: 2066: 100: 2046: 1617: 1577: 1368: 1112: 1092: 1072: 165: 2186: 2123: 2082: 1886: 1853: 1816: 1801: 1766: 1552: 521: 496: 214: 307:
All parameters required to describe the system are identified using principles from
1556: 241: 1887:"Predicting the Vibration Response in Subcomponent Testing of Wind Turbine Blades" 1256:) is then scaled to find the force that can be expected for the real application ( 266: 17: 2115: 2050: 1898: 1828: 621:). These dimensionless numbers account for all the variables listed above except 270:
The three conditions required for a model to have similitude with an application.
1609: 1573: 252: 162: 147: 42: 1522:
with the ultimate goal of eliminating the need for physical models altogether.
139: 2144: 2074: 1870: 210: 177: 2019: 1532:
Some common applications of similitude and associated dimensionless numbers;
484: 354: 317:
is used to express the system with as few independent variables and as many
202: 173: 144: 1854:"Vibration prediction of thin-walled composite I-beams using scaled models" 2000: 539: 256: 248: 1662: 1164:) in the pressure coefficient. This gives a required test velocity of: 447: 283:– the model is the same shape as the application, usually scaled. 218: 2178:
MIT open courseware lecture notes on Similitude for marine engineering
1526: 543: 390: 1885:
Eydani Asl, M.; Niezrecki, C.; Sherwood, J.; Avitabile, P. (2015).
1661: 1653: 1355:{\displaystyle F_{\text{application}}=F_{\text{model}}\times 3.44} 1206:{\displaystyle V_{\text{model}}=V_{\text{application}}\times 21.9} 535: 505: 408: 265: 260: 138: 2154:
Scale models in engineering : fundamentals and applications
1923: 1852:
Asl, M.E.; Niezrecki, C.; Sherwood, J.; Avitabile, P. (2017).
1815:
Asl, M.E.; Niezrecki, C.; Sherwood, J.; Avitabile, P. (2016).
1690: 303:
To satisfy the above conditions the application is analyzed;
36: 1778:
5 variables - 3 fundamental units ⇒ 2 dimensionless numbers.
1762: 274:
The following criteria are required to achieve similitude;
217:
models. It is also the primary theory behind many textbook
2092:"Scale Effects in Physical Hydraulic Engineering Models" 2011:
Modern Developments in Fluid Mechanics, High Speed Flow
27:
Concept applicable to the testing of engineering models
530:
This example has five independent variables and three
1394: 1371: 1322: 1262: 1223: 1173: 1135: 1115: 1095: 1075: 639: 600: 569: 469: 432: 1089:) is not one of the five variables, but the force ( 67:. Unsourced material may be challenged and removed. 2152:Emori, Richard I.; Schuring, Dieterich J. (2016). 1483: 1377: 1354: 1305: 1248: 1205: 1156: 1121: 1101: 1081: 1058: 613: 582: 475: 438: 154:with the real application to ensure valid results. 369:. The variables which describe the system are: 228:The concept of similitude is strongly tied to 192:are interchangeable in this context. The term 8: 1385:in watts required by the submarine is then: 2133:Advances in Aircraft and Spacecraft Science 559:is used to rearrange the units to form the 172:with the real application if the two share 161:is a concept applicable to the testing of 1967:Learn how and when to remove this message 1869: 1741:Learn how and when to remove this message 1472: 1468: 1451: 1442: 1429: 1416: 1401: 1393: 1370: 1340: 1327: 1321: 1267: 1261: 1228: 1222: 1191: 1178: 1172: 1148: 1139: 1134: 1114: 1094: 1074: 1043: 1031: 1021: 1015: 1001: 989: 979: 973: 953: 943: 937: 924: 911: 894: 862: 841: 828: 807: 797: 791: 772: 762: 756: 737: 727: 721: 708: 695: 662: 649: 640: 638: 605: 599: 574: 568: 468: 431: 127:Learn how and when to remove this message 1704:This article includes a list of general 371: 1754: 332:which dictate model testing conditions. 1650:Solid mechanics: structural similitude 1891:Special Topics in Structural Dynamics 7: 1769:can be expressed in terms of kg·m/s. 201:Similitude's main application is in 65:adding citations to reliable sources 2029:Similitude and Approximation Theory 150:test. The test is designed to have 1821:Experimental and Applied Mechanics 1710:it lacks sufficient corresponding 1477: 1469: 1452: 1402: 884: 847: 25: 1928: 1695: 1109:) is. The pressure difference (Δ 41: 1306:{\displaystyle F_{application}} 1129:) has thus been replaced with ( 52:needs additional citations for 1456: 1448: 1406: 1398: 902: 686: 1: 2096:Journal of Hydraulic Research 2055:Environmental Fluid Mechanics 1951:and help improve the section. 1559:for open channel hydraulics) 1504:List of dimensionless numbers 534:. The fundamental units are: 2116:10.1080/00221686.2011.578914 1899:10.1007/978-3-319-15048-2_11 1829:10.1007/978-3-319-22449-7_14 1802:10.1016/0263-8223(95)00154-9 1981:Binder, Raymond C. (1973). 32:Similitude (disambiguation) 2214: 2156:(2nd ed.). Elsevier. 2027:Kline, Stephen J. (1986). 1501: 168:. A model is said to have 29: 2145:10.12989/aas.2015.2.4.403 2075:10.1007/s10652-008-9078-3 2008:Howarth, L., ed. (1953). 1871:10.1016/j.tws.2017.01.020 1681:Similitude of ship models 1249:{\displaystyle F_{model}} 1625:Boundary layer thickness 319:dimensionless parameters 2022:– via HathiTrust. 1725:more precise citations. 1601:Centrifugal compressors 1157:{\displaystyle F/L^{2}} 1858:Thin-Walled Structures 1667: 1659: 1589:Flow-excited vibration 1485: 1379: 1356: 1307: 1250: 1207: 1158: 1123: 1103: 1083: 1060: 615: 584: 477: 440: 271: 155: 1665: 1657: 1486: 1380: 1357: 1308: 1251: 1208: 1159: 1124: 1104: 1084: 1061: 616: 614:{\displaystyle C_{p}} 585: 583:{\displaystyle R_{e}} 478: 441: 439:{\displaystyle \rho } 269: 207:aerospace engineering 142: 2198:Conceptual modelling 2193:Dimensional analysis 1790:Composite Structures 1614:pressure coefficient 1549:pressure coefficient 1541:(see example above) 1520:computer simulations 1498:Typical applications 1392: 1369: 1320: 1260: 1221: 1171: 1133: 1113: 1093: 1073: 637: 598: 592:pressure coefficient 567: 557:Dimensional analysis 551:Buckingham π theorem 476:{\displaystyle \mu } 467: 430: 315:Dimensional analysis 288:Kinematic similarity 280:Geometric similarity 230:dimensional analysis 61:improve this article 30:For other uses, see 2108:2011JHydR..49..293H 2090:Heller, V. (2011). 2067:2009EFM.....9..125C 2014:. Clarendon Press. 1582:specific heat ratio 1539:Incompressible flow 367:continuum mechanics 309:continuum mechanics 1668: 1660: 1638:dynamic similarity 1565:Compressible flows 1481: 1375: 1352: 1303: 1246: 1203: 1154: 1119: 1099: 1079: 1056: 1054: 611: 580: 473: 436: 296:Dynamic similarity 272: 195:dynamic similitude 156: 152:dynamic similitude 18:Similitude (model) 2163:978-0-08-020860-2 1992:978-0-13-322594-5 1985:. Prentice-Hall. 1977: 1976: 1969: 1908:978-3-319-15048-2 1838:978-3-319-22449-7 1765:system of units, 1751: 1750: 1743: 1647: 1646: 1467: 1445: 1432: 1419: 1378:{\displaystyle P} 1343: 1330: 1194: 1181: 1122:{\displaystyle p} 1102:{\displaystyle F} 1082:{\displaystyle p} 1037: 995: 959: 927: 914: 869: 813: 778: 743: 711: 698: 678: 532:fundamental units 528: 527: 485:dynamic viscosity 363:free body diagram 137: 136: 129: 111: 16:(Redirected from 2205: 2167: 2148: 2127: 2086: 2042: 2023: 2004: 1972: 1965: 1961: 1958: 1952: 1947:Please read the 1943:may need cleanup 1932: 1931: 1924: 1913: 1912: 1882: 1876: 1875: 1873: 1849: 1843: 1842: 1812: 1806: 1805: 1785: 1779: 1776: 1770: 1759: 1746: 1739: 1735: 1732: 1726: 1721:this article by 1712:inline citations 1699: 1698: 1691: 1634:Womersley number 1535: 1534: 1490: 1488: 1487: 1482: 1480: 1476: 1465: 1455: 1447: 1446: 1443: 1434: 1433: 1430: 1421: 1420: 1417: 1405: 1384: 1382: 1381: 1376: 1361: 1359: 1358: 1353: 1345: 1344: 1341: 1332: 1331: 1328: 1312: 1310: 1309: 1304: 1302: 1301: 1255: 1253: 1252: 1247: 1245: 1244: 1212: 1210: 1209: 1204: 1196: 1195: 1192: 1183: 1182: 1179: 1163: 1161: 1160: 1155: 1153: 1152: 1143: 1128: 1126: 1125: 1120: 1108: 1106: 1105: 1100: 1088: 1086: 1085: 1080: 1065: 1063: 1062: 1057: 1055: 1048: 1047: 1042: 1038: 1036: 1035: 1026: 1025: 1016: 1006: 1005: 1000: 996: 994: 993: 984: 983: 974: 964: 960: 958: 957: 948: 947: 938: 929: 928: 925: 916: 915: 912: 899: 898: 874: 870: 868: 867: 866: 853: 842: 833: 832: 822: 818: 814: 812: 811: 802: 801: 792: 783: 779: 777: 776: 767: 766: 757: 748: 744: 742: 741: 732: 731: 722: 713: 712: 709: 700: 699: 696: 683: 679: 674: 663: 654: 653: 643: 620: 618: 617: 612: 610: 609: 589: 587: 586: 581: 579: 578: 524:  (kg m/s) 482: 480: 479: 474: 445: 443: 442: 437: 372: 213:conditions with 132: 125: 121: 118: 112: 110: 69: 45: 37: 21: 2213: 2212: 2208: 2207: 2206: 2204: 2203: 2202: 2183: 2182: 2174: 2164: 2151: 2130: 2089: 2047:Chanson, Hubert 2045: 2039: 2026: 2007: 1993: 1983:Fluid Mechanics 1980: 1973: 1962: 1956: 1953: 1946: 1939:Further reading 1933: 1929: 1922: 1920:Further reading 1917: 1916: 1909: 1884: 1883: 1879: 1851: 1850: 1846: 1839: 1814: 1813: 1809: 1787: 1786: 1782: 1777: 1773: 1760: 1756: 1747: 1736: 1730: 1727: 1717:Please help to 1716: 1700: 1696: 1689: 1677: 1652: 1630:Reynolds number 1606:Reynolds number 1594:Strouhal number 1570:Reynolds number 1545:Reynolds number 1511: 1509:Fluid mechanics 1506: 1500: 1438: 1425: 1412: 1390: 1389: 1367: 1366: 1336: 1323: 1318: 1317: 1263: 1258: 1257: 1224: 1219: 1218: 1187: 1174: 1169: 1168: 1144: 1131: 1130: 1111: 1110: 1091: 1090: 1071: 1070: 1053: 1052: 1027: 1017: 1011: 1010: 985: 975: 969: 968: 949: 939: 933: 920: 907: 905: 900: 890: 858: 854: 843: 837: 824: 820: 819: 803: 793: 787: 768: 758: 752: 733: 723: 717: 704: 691: 689: 684: 664: 658: 645: 635: 634: 601: 596: 595: 570: 565: 564: 561:Reynolds number 465: 464: 428: 427: 351: 238: 223:fluid mechanics 180:similarity and 133: 122: 116: 113: 70: 68: 58: 46: 35: 28: 23: 22: 15: 12: 11: 5: 2211: 2209: 2201: 2200: 2195: 2185: 2184: 2181: 2180: 2173: 2172:External links 2170: 2169: 2168: 2162: 2149: 2139:(4): 403–425. 2128: 2102:(3): 293–306. 2087: 2061:(2): 125–142. 2043: 2037: 2024: 2005: 1991: 1975: 1974: 1936: 1934: 1927: 1921: 1918: 1915: 1914: 1907: 1877: 1844: 1837: 1807: 1780: 1771: 1753: 1752: 1749: 1748: 1703: 1701: 1694: 1688: 1685: 1684: 1683: 1676: 1673: 1651: 1648: 1645: 1644: 1641: 1640: 1627: 1621: 1620: 1618:velocity ratio 1603: 1597: 1596: 1591: 1585: 1584: 1578:Prandtl number 1567: 1561: 1560: 1542: 1510: 1507: 1499: 1496: 1492: 1491: 1479: 1475: 1471: 1464: 1461: 1458: 1454: 1450: 1441: 1437: 1428: 1424: 1415: 1411: 1408: 1404: 1400: 1397: 1374: 1363: 1362: 1351: 1348: 1339: 1335: 1326: 1300: 1297: 1294: 1291: 1288: 1285: 1282: 1279: 1276: 1273: 1270: 1266: 1243: 1240: 1237: 1234: 1231: 1227: 1215: 1214: 1202: 1199: 1190: 1186: 1177: 1151: 1147: 1142: 1138: 1118: 1098: 1078: 1069:The pressure ( 1067: 1066: 1051: 1046: 1041: 1034: 1030: 1024: 1020: 1014: 1009: 1004: 999: 992: 988: 982: 978: 972: 967: 963: 956: 952: 946: 942: 936: 932: 923: 919: 910: 906: 904: 901: 897: 893: 889: 886: 883: 880: 877: 873: 865: 861: 857: 852: 849: 846: 840: 836: 831: 827: 823: 821: 817: 810: 806: 800: 796: 790: 786: 782: 775: 771: 765: 761: 755: 751: 747: 740: 736: 730: 726: 720: 716: 707: 703: 694: 690: 688: 685: 682: 677: 673: 670: 667: 661: 657: 652: 648: 644: 642: 608: 604: 577: 573: 526: 525: 519: 517:to be measured 514: 509: 501: 500: 494: 491: 488: 472: 461: 460: 457: 454: 451: 435: 424: 423: 420: 415: 412: 404: 403: 400: 397: 394: 393:of submarine) 386: 385: 382: 379: 376: 350: 347: 334: 333: 322: 312: 301: 300: 292: 284: 237: 234: 135: 134: 49: 47: 40: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2210: 2199: 2196: 2194: 2191: 2190: 2188: 2179: 2176: 2175: 2171: 2165: 2159: 2155: 2150: 2146: 2142: 2138: 2134: 2129: 2125: 2121: 2117: 2113: 2109: 2105: 2101: 2097: 2093: 2088: 2084: 2080: 2076: 2072: 2068: 2064: 2060: 2056: 2052: 2048: 2044: 2040: 2038:0-387-16518-5 2034: 2030: 2025: 2021: 2017: 2013: 2012: 2006: 2002: 1998: 1994: 1988: 1984: 1979: 1978: 1971: 1968: 1960: 1950: 1949:editing guide 1944: 1940: 1935: 1926: 1925: 1919: 1910: 1904: 1900: 1896: 1892: 1888: 1881: 1878: 1872: 1867: 1863: 1859: 1855: 1848: 1845: 1840: 1834: 1830: 1826: 1822: 1818: 1811: 1808: 1803: 1799: 1795: 1791: 1784: 1781: 1775: 1772: 1768: 1764: 1758: 1755: 1745: 1742: 1734: 1724: 1720: 1714: 1713: 1707: 1702: 1693: 1692: 1686: 1682: 1679: 1678: 1674: 1672: 1664: 1656: 1649: 1643: 1642: 1639: 1635: 1631: 1628: 1626: 1623: 1622: 1619: 1615: 1611: 1607: 1604: 1602: 1599: 1598: 1595: 1592: 1590: 1587: 1586: 1583: 1579: 1575: 1571: 1568: 1566: 1563: 1562: 1558: 1554: 1553:Froude number 1550: 1546: 1543: 1540: 1537: 1536: 1533: 1530: 1528: 1523: 1521: 1515: 1508: 1505: 1497: 1495: 1473: 1462: 1459: 1439: 1435: 1426: 1422: 1413: 1409: 1395: 1388: 1387: 1386: 1372: 1349: 1346: 1337: 1333: 1324: 1316: 1315: 1314: 1298: 1295: 1292: 1289: 1286: 1283: 1280: 1277: 1274: 1271: 1268: 1264: 1241: 1238: 1235: 1232: 1229: 1225: 1200: 1197: 1188: 1184: 1175: 1167: 1166: 1165: 1149: 1145: 1140: 1136: 1116: 1096: 1076: 1049: 1044: 1039: 1032: 1028: 1022: 1018: 1012: 1007: 1002: 997: 990: 986: 980: 976: 970: 965: 961: 954: 950: 944: 940: 934: 930: 921: 917: 908: 895: 891: 887: 881: 878: 875: 871: 863: 859: 855: 850: 844: 838: 834: 829: 825: 815: 808: 804: 798: 794: 788: 784: 780: 773: 769: 763: 759: 753: 749: 745: 738: 734: 728: 724: 718: 714: 705: 701: 692: 680: 675: 671: 668: 665: 659: 655: 650: 646: 633: 632: 631: 630: 629:Scaling laws: 626: 624: 606: 602: 593: 575: 571: 562: 558: 554: 552: 549:Invoking the 547: 545: 541: 537: 533: 523: 520: 518: 515: 513: 510: 507: 503: 502: 498: 495: 492: 489: 486: 470: 463: 462: 458: 455: 452: 449: 433: 426: 425: 421: 419: 416: 413: 410: 406: 405: 401: 398: 395: 392: 388: 387: 383: 381:Scaled model 380: 377: 374: 373: 370: 368: 364: 359: 356: 348: 346: 342: 338: 331: 327: 326:dimensionless 323: 320: 316: 313: 310: 306: 305: 304: 298: 297: 293: 290: 289: 285: 282: 281: 277: 276: 275: 268: 264: 262: 258: 254: 250: 245: 243: 235: 233: 231: 226: 224: 220: 216: 212: 208: 204: 199: 197: 196: 191: 187: 183: 179: 175: 171: 167: 164: 160: 153: 149: 146: 143:A full scale 141: 131: 128: 120: 109: 106: 102: 99: 95: 92: 88: 85: 81: 78: –  77: 73: 72:Find sources: 66: 62: 56: 55: 50:This article 48: 44: 39: 38: 33: 19: 2153: 2136: 2132: 2099: 2095: 2058: 2054: 2031:. Springer. 2028: 2010: 1982: 1963: 1954: 1942: 1890: 1880: 1861: 1857: 1847: 1820: 1810: 1796:(4): 371–9. 1793: 1789: 1783: 1774: 1757: 1737: 1728: 1709: 1669: 1624: 1600: 1588: 1564: 1557:Weber number 1538: 1531: 1524: 1516: 1512: 1493: 1364: 1216: 1068: 628: 627: 622: 555: 548: 529: 516: 511: 417: 378:Application 360: 352: 343: 339: 335: 330:scaling laws 329: 325: 321:as possible. 302: 294: 286: 278: 273: 259:and type of 246: 242:Scale models 239: 227: 200: 194: 193: 189: 185: 184:similarity. 176:similarity, 169: 158: 157: 151: 123: 114: 104: 97: 90: 83: 76:"Similitude" 71: 59:Please help 54:verification 51: 1864:: 151–161. 1723:introducing 1610:Mach number 1574:Mach number 1431:application 1418:application 1329:application 1193:application 913:application 710:application 499:·s (N s/m) 353:Consider a 253:temperature 163:engineering 148:wind tunnel 2187:Categories 1941:" section 1706:references 1687:References 1502:See also: 1365:The power 349:An example 211:fluid flow 190:similitude 186:Similarity 170:similitude 159:Similitude 87:newspapers 2124:121563448 2083:121960118 2020:572735435 1957:July 2023 1460:× 1423:× 1347:× 1198:× 1008:× 966:× 951:ρ 941:ρ 931:× 903:⟶ 885:Δ 856:ρ 848:Δ 805:μ 795:μ 785:× 750:× 735:ρ 725:ρ 715:× 687:⟶ 676:μ 666:ρ 512:calculate 471:μ 434:ρ 418:calculate 375:Variable 355:submarine 345:similar. 203:hydraulic 178:kinematic 174:geometric 2049:(2009). 1731:May 2009 1675:See also 540:kilogram 493:1.00x10 490:1.88x10 391:diameter 257:velocity 249:pressure 236:Overview 219:formulas 209:to test 117:May 2009 2104:Bibcode 2063:Bibcode 1767:newtons 1761:In the 1719:improve 459:(kg/m) 448:density 255:or the 182:dynamic 101:scholar 2160:  2122:  2081:  2035:  2018:  2001:393400 1999:  1989:  1937:This " 1905:  1835:  1708:, but 1527:helium 1466:  590:) and 544:second 422:(m/s) 384:Units 215:scaled 166:models 103:  96:  89:  82:  74:  2120:S2CID 2079:S2CID 1444:model 1342:model 1180:model 926:model 697:model 536:meter 506:force 453:1028 409:speed 399:1/40 261:fluid 108:JSTOR 94:books 2158:ISBN 2033:ISBN 2016:OCLC 1997:OCLC 1987:ISBN 1903:ISBN 1833:ISBN 1555:and 1463:17.2 1350:3.44 1201:21.9 456:998 402:(m) 205:and 188:and 145:X-43 80:news 2141:doi 2112:doi 2071:doi 1895:doi 1866:doi 1862:113 1825:doi 1798:doi 1551:, ( 1313:): 504:F ( 407:V ( 389:L ( 221:in 63:by 2189:: 2135:. 2118:. 2110:. 2100:49 2098:. 2094:. 2077:. 2069:. 2057:. 2053:. 1995:. 1901:. 1889:. 1860:. 1856:. 1831:. 1819:. 1794:34 1792:. 1763:SI 1636:, 1632:, 1616:, 1612:, 1608:, 1580:, 1576:, 1572:, 1547:, 546:. 542:, 538:, 508:) 497:Pa 487:) 450:) 414:5 411:) 396:1 361:A 251:, 232:. 225:. 2166:. 2147:. 2143:: 2137:2 2126:. 2114:: 2106:: 2085:. 2073:: 2065:: 2059:9 2041:. 2003:. 1970:) 1964:( 1959:) 1955:( 1945:. 1911:. 1897:: 1874:. 1868:: 1841:. 1827:: 1804:. 1800:: 1744:) 1738:( 1733:) 1729:( 1715:. 1478:s 1474:/ 1470:m 1457:] 1453:N 1449:[ 1440:F 1436:= 1427:V 1414:F 1410:= 1407:] 1403:W 1399:[ 1396:P 1373:P 1338:F 1334:= 1325:F 1299:n 1296:o 1293:i 1290:t 1287:a 1284:c 1281:i 1278:l 1275:p 1272:p 1269:a 1265:F 1242:l 1239:e 1236:d 1233:o 1230:m 1226:F 1213:. 1189:V 1185:= 1176:V 1150:2 1146:L 1141:/ 1137:F 1117:p 1097:F 1077:p 1050:. 1045:2 1040:) 1033:m 1029:L 1023:a 1019:L 1013:( 1003:2 998:) 991:m 987:V 981:a 977:V 971:( 962:) 955:m 945:a 935:( 922:F 918:= 909:F 896:2 892:L 888:p 882:= 879:F 876:, 872:) 864:2 860:V 851:p 845:2 839:( 835:= 830:p 826:C 816:) 809:a 799:m 789:( 781:) 774:m 770:L 764:a 760:L 754:( 746:) 739:m 729:a 719:( 706:V 702:= 693:V 681:) 672:L 669:V 660:( 656:= 651:e 647:R 623:F 607:p 603:C 594:( 576:e 572:R 563:( 522:N 483:( 446:( 311:. 130:) 124:( 119:) 115:( 105:· 98:· 91:· 84:· 57:. 34:. 20:)

Index

Similitude (model)
Similitude (disambiguation)

verification
improve this article
adding citations to reliable sources
"Similitude"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message

X-43
wind tunnel
engineering
models
geometric
kinematic
dynamic
hydraulic
aerospace engineering
fluid flow
scaled
formulas
fluid mechanics
dimensional analysis
Scale models
pressure

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.