Knowledge (XXG)

Simple set

Source 📝

241: 463: 658: 529: 494: 327: 292: 144: 28:(c.e.) and co-infinite (i.e. its complement is infinite), but every infinite subset of its complement is not c.e.. Simple sets are examples of c.e. sets that are not 607: 580: 112: 627: 553: 391: 371: 351: 261: 188: 168: 787: 193: 760: 726: 396: 814: 79:. They give a construction for a set that is simple (and thus non-computable), but fails to compute the halting problem. 68:. He succeeded in the first part (which is obvious by definition), but for the other part, he managed only to prove a 500:
if it is c.e. and its complement is effectively immune. Every effectively simple set is simple and Turing-complete.
635: 506: 471: 304: 269: 121: 744: 25: 715:
Recursively enumerable sets and degrees. A study of computable functions and computably generated sets
17: 75:
Post's idea was validated by Friedberg and Muchnik in the 1950s using a novel technique called the
69: 755:. Studies in Logic and the Foundations of Mathematics. Vol. 125. Amsterdam: North Holland. 783: 756: 722: 45: 793: 766: 732: 61: 585: 558: 90: 797: 770: 736: 718: 76: 57: 749: 612: 538: 376: 356: 336: 246: 173: 153: 44:
in the search for a non-Turing-complete c.e. set. Whether such sets exist is known as
41: 29: 808: 48:. Post had to prove two things in order to obtain his result: that the simple set 751:
Classical recursion theory. The theory of functions and sets of natural numbers
782:. Oxford Logic Guides. Vol. 51. Oxford: Oxford University Press. 236:{\displaystyle W_{e}{\text{ infinite}}\implies W_{e}\not \subseteq I} 114:
denotes a standard uniformly c.e. listing of all the c.e. sets.
458:{\displaystyle W_{e}\subseteq I\implies \#(W_{e})<f(e)} 638: 615: 588: 561: 541: 509: 474: 399: 379: 359: 339: 307: 272: 249: 196: 176: 156: 124: 93: 353:is infinite, but there exists a recursive function 243:. Or equivalently: there is no infinite subset of 748: 664:if it is simple and its complement is hyperimmune. 652: 621: 601: 574: 547: 523: 488: 457: 385: 365: 345: 321: 286: 255: 235: 182: 162: 138: 106: 717:. Perspectives in Mathematical Logic. Berlin: 8: 20:, a subset of the natural numbers is called 298:if it is c.e. and its complement is immune. 420: 416: 216: 212: 646: 645: 637: 614: 593: 587: 566: 560: 540: 517: 516: 508: 482: 481: 473: 431: 404: 398: 378: 358: 338: 315: 314: 306: 280: 279: 271: 248: 221: 207: 201: 195: 175: 155: 132: 131: 123: 98: 92: 674: 653:{\displaystyle S\subseteq \mathbb {N} } 524:{\displaystyle I\subseteq \mathbb {N} } 489:{\displaystyle S\subseteq \mathbb {N} } 322:{\displaystyle I\subseteq \mathbb {N} } 287:{\displaystyle S\subseteq \mathbb {N} } 139:{\displaystyle I\subseteq \mathbb {N} } 83:Formal definitions and some properties 7: 582:is not computably dominated, where 421: 14: 170:is infinite, but for every index 52:is not computable, and that the 452: 446: 437: 424: 417: 213: 1: 780:Computability and randomness 40:Simple sets were devised by 831: 609:is the list of members of 373:such that for every index 36:Relation to Post's problem 713:Soare, Robert I. (1987). 35: 745:Odifreddi, Piergiorgio 654: 623: 603: 576: 549: 525: 490: 459: 387: 367: 347: 323: 288: 257: 237: 184: 164: 140: 108: 655: 624: 604: 602:{\displaystyle p_{I}} 577: 575:{\displaystyle p_{I}} 550: 526: 491: 460: 388: 368: 348: 324: 289: 258: 238: 185: 165: 141: 109: 107:{\displaystyle W_{e}} 26:computably enumerable 815:Computability theory 778:Nies, André (2009). 636: 613: 586: 559: 539: 507: 472: 397: 377: 357: 337: 305: 270: 247: 194: 174: 154: 122: 91: 18:computability theory 650: 619: 599: 572: 545: 521: 498:effectively simple 486: 455: 383: 363: 343: 331:effectively immune 319: 284: 253: 233: 180: 160: 136: 104: 70:many-one reduction 789:978-0-19-923076-1 622:{\displaystyle I} 555:is infinite, but 548:{\displaystyle I} 386:{\displaystyle e} 366:{\displaystyle f} 346:{\displaystyle I} 256:{\displaystyle I} 210: 183:{\displaystyle e} 163:{\displaystyle I} 87:In what follows, 822: 801: 774: 754: 740: 700: 699:Nies (2009) p.37 697: 691: 690:Nies (2009) p.27 688: 682: 681:Nies (2009) p.35 679: 659: 657: 656: 651: 649: 628: 626: 625: 620: 608: 606: 605: 600: 598: 597: 581: 579: 578: 573: 571: 570: 554: 552: 551: 546: 530: 528: 527: 522: 520: 495: 493: 492: 487: 485: 464: 462: 461: 456: 436: 435: 409: 408: 392: 390: 389: 384: 372: 370: 369: 364: 352: 350: 349: 344: 328: 326: 325: 320: 318: 293: 291: 290: 285: 283: 262: 260: 259: 254: 242: 240: 239: 234: 226: 225: 211: 208: 206: 205: 189: 187: 186: 181: 169: 167: 166: 161: 145: 143: 142: 137: 135: 113: 111: 110: 105: 103: 102: 830: 829: 825: 824: 823: 821: 820: 819: 805: 804: 790: 777: 763: 743: 729: 719:Springer-Verlag 712: 709: 704: 703: 698: 694: 689: 685: 680: 676: 671: 634: 633: 611: 610: 589: 584: 583: 562: 557: 556: 537: 536: 505: 504: 470: 469: 427: 400: 395: 394: 393:, we have that 375: 374: 355: 354: 335: 334: 303: 302: 268: 267: 245: 244: 217: 197: 192: 191: 172: 171: 152: 151: 120: 119: 94: 89: 88: 85: 77:priority method 58:halting problem 38: 12: 11: 5: 828: 826: 818: 817: 807: 806: 803: 802: 788: 775: 761: 741: 727: 708: 705: 702: 701: 692: 683: 673: 672: 670: 667: 666: 665: 648: 644: 641: 630: 618: 596: 592: 569: 565: 544: 519: 515: 512: 501: 484: 480: 477: 466: 454: 451: 448: 445: 442: 439: 434: 430: 426: 423: 419: 415: 412: 407: 403: 382: 362: 342: 317: 313: 310: 299: 282: 278: 275: 264: 252: 232: 229: 224: 220: 215: 209: infinite 204: 200: 179: 159: 134: 130: 127: 101: 97: 84: 81: 46:Post's problem 42:Emil Leon Post 37: 34: 13: 10: 9: 6: 4: 3: 2: 827: 816: 813: 812: 810: 799: 795: 791: 785: 781: 776: 772: 768: 764: 762:0-444-87295-7 758: 753: 752: 746: 742: 738: 734: 730: 728:3-540-15299-7 724: 720: 716: 711: 710: 706: 696: 693: 687: 684: 678: 675: 668: 663: 642: 639: 631: 616: 594: 590: 567: 563: 542: 534: 513: 510: 502: 499: 478: 475: 467: 449: 443: 440: 432: 428: 413: 410: 405: 401: 380: 360: 340: 332: 311: 308: 300: 297: 276: 273: 265: 263:that is c.e.. 250: 230: 227: 222: 218: 202: 198: 177: 157: 149: 128: 125: 117: 116: 115: 99: 95: 82: 80: 78: 73: 71: 67: 63: 62:Turing-reduce 59: 55: 51: 47: 43: 33: 31: 27: 23: 19: 779: 750: 714: 695: 686: 677: 661: 532: 497: 330: 295: 147: 86: 74: 65: 53: 49: 39: 21: 15: 662:hypersimple 533:hyperimmune 60:, does not 798:1169.03034 771:0661.03029 737:0667.03030 707:References 660:is called 531:is called 496:is called 329:is called 190:, we have 146:is called 30:computable 643:⊆ 629:in order. 514:⊆ 479:⊆ 422:# 418:⟹ 411:⊆ 312:⊆ 294:is called 277:⊆ 214:⟹ 129:⊆ 24:if it is 809:Category 747:(1988). 228:⊈ 296:simple 796:  786:  769:  759:  735:  725:  632:A set 503:A set 468:A set 301:A set 266:A set 148:immune 118:A set 56:, the 22:simple 669:Notes 784:ISBN 757:ISBN 723:ISBN 441:< 794:Zbl 767:Zbl 733:Zbl 535:if 333:if 150:if 64:to 16:In 811:: 792:. 765:. 731:. 721:. 72:. 32:. 800:. 773:. 739:. 647:N 640:S 617:I 595:I 591:p 568:I 564:p 543:I 518:N 511:I 483:N 476:S 465:. 453:) 450:e 447:( 444:f 438:) 433:e 429:W 425:( 414:I 406:e 402:W 381:e 361:f 341:I 316:N 309:I 281:N 274:S 251:I 231:I 223:e 219:W 203:e 199:W 178:e 158:I 133:N 126:I 100:e 96:W 66:A 54:K 50:A

Index

computability theory
computably enumerable
computable
Emil Leon Post
Post's problem
halting problem
Turing-reduce
many-one reduction
priority method
Springer-Verlag
ISBN
3-540-15299-7
Zbl
0667.03030
Odifreddi, Piergiorgio
Classical recursion theory. The theory of functions and sets of natural numbers
ISBN
0-444-87295-7
Zbl
0661.03029
ISBN
978-0-19-923076-1
Zbl
1169.03034
Category
Computability theory

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.