Knowledge

Single-unit recording

Source đź“ť

307:. A charge distribution occurs across the electrode, which creates a potential which can be measured against a reference electrode. The method of neuronal potential recording is dependent on the type of electrode used. Non-polarizable electrodes are reversible (ions in the solution are charged and discharged). This creates a current flowing through the electrode, allowing for voltage measurement through the electrode with respect to time. Typically, non-polarizable electrodes are glass micropipettes filled with an ionic solution or metal. Alternatively, ideal polarized electrodes do not have the transformation of ions; these are typically metal electrodes. Instead, the ions and electrons at the surface of the metal become polarized with respect to the potential of the solution. The charges orient at the interface to create an electric double layer; the metal then acts like a capacitor. The change in capacitance with respect to time can be measured and converted to voltage using a bridge circuit. Using this technique, when neurons fire an action potential they create changes in potential fields that can be recorded using microelectrodes. Single unit recordings from the cortical regions of rodent models have been shown to dependent on the depth at which the microelectrode sites were located. When comparing anestheized vs. awake states, single unit activity in rodent models under 2% isoflurane has shown to lower the noise level in the neurological recordings; eventhough the awake state recordings showed an 14% increase in peak-to-peak voltage magnitude. 382:(KCl) solution. With Ag-AgCl electrodes, ions react with it to produce electrical gradients at the interface, creating a voltage change with respect to time. Electrically, glass microelectrode tips have high resistance and high capacitance. They have a tip size of approximately 0.5-1.5 ÎĽm with a resistance of about 10-50 MΩ. The small tips make it easy to penetrate the cell membrane with minimal damage for intracellular recordings. Micropipettes are ideal for measurement of resting membrane potentials and with some adjustments can record action potentials. There are some issues to consider when using glass micropipettes. To offset high resistance in glass micropipettes, a 118:, postsynaptic potentials and spikes through the soma (or axon). Alternatively, when the microelectrode is close to the cell surface extracellular recordings measure the voltage change (with respect to time) outside the cell, giving only spike information. Different types of microelectrodes can be used for single-unit recordings; they are typically high-impedance, fine-tipped and conductive. Fine tips allow for easy penetration without extensive damage to the cell, but they also correlate with high impedance. Additionally, electrical and/or ionic conductivity allow for recordings from both non-polarizable and 105:(fMRI)—but these do not allow for single-neuron resolution. Neurons are the basic functional units in the brain; they transmit information through the body using electrical signals called action potentials. Currently, single-unit recordings provide the most precise recordings from a single neuron. A single unit is defined as a single, firing neuron whose spike potentials are distinctly isolated by a recording microelectrode. 434:
for information assessing the relationship between brain structure, function, and behavior. By looking at brain activity at the neuron level, researchers can link brain activity to behavior and create neuronal maps describing flow of information through the brain. For example, Boraud et al. report the use of single unit recordings to determine the structural organization of the basal ganglia in patients with
415:
electrodes are very rugged and provide very stable recordings. This allows manufacturing of tungsten electrodes with very small tips to isolate high-frequencies. Tungsten, however, is very noisy at low frequencies. In mammalian nervous system where there are fast signals, noise can be removed with
467:
pilot clinical trial was initiated to "test the safety and feasibility of a neural interface system based on an intracortical 100-electrode silicon recording array". This initiative has been successful in advancement of BCIs and in 2011, published data showing long term computer control in a patient
360:
There are two main types of microelectrodes used for single-unit recordings: glass micropipettes and metal electrodes. Both are high-impedance electrodes, but glass micropipettes are highly resistive and metal electrodes have frequency-dependent impedance. Glass micropipettes are ideal for resting-
310:
Intracellularly, the electrodes directly record the firing of action, resting and postsynaptic potentials. When a neuron fires, current flows in and out through excitable regions in the axons and cell body of the neuron. This creates potential fields around the neuron. An electrode near a neuron can
433:
Noninvasive tools to study the CNS have been developed to provide structural and functional information, but they do not provide very high resolution. To offset this problem invasive recording methods have been used. Single unit recording methods give high spatial and temporal resolution to allow
331:
of microelectrode used will depend on the application. The high resistance of these electrodes creates a problem during signal amplification. If it were connected to a conventional amplifier with low input resistance, there would be a large potential drop across the microelectrode and the amplifier
122:
electrodes. The two primary classes of electrodes are glass micropipettes and metal electrodes. Electrolyte-filled glass micropipettes are mainly used for intracellular single-unit recordings; metal electrodes (commonly made of stainless steel, platinum, tungsten or iridium) and used for both types
395:
Metal electrodes are made of various types of metals, typically silicon, platinum, and tungsten. They "resemble a leaky electrolytic capacitor, having a very high low-frequency impedance and low high-frequency impedance". They are more suitable for measurement of extracellular action potentials,
462:
or neurological disease. This technology has potential to reach a wide variety of patients but is not yet available clinically due to lack of reliability in recording signals over time. The primary hypothesis regarding this failure is that the chronic inflammatory response around the electrode
131:
patients to determine the position of epileptic foci. More recently, single-unit recordings have been used in brain machine interfaces (BMI). BMIs record brain signals and decode an intended response, which then controls the movement of an external device (such as a computer cursor or prosthetic
377:
characteristics of the different ions within the electrode should be similar. The ion must also be able to "provide current carrying capacity adequate for the needs of the experiment". And importantly, it must not cause biological changes in the cell it is recording from. Ag-AgCl electrodes are
113:
regions. This current creates a measurable, changing voltage potential within (and outside) the cell. This allows for two basic types of single-unit recordings. Intracellular single-unit recordings occur within the neuron and measure the voltage change (with respect to time) across the membrane
144:
has electrical properties. Since then, single unit recordings have become an important method for understanding mechanisms and functions of the nervous system. Over the years, single unit recording continued to provide insight on topographical mapping of the cortex. Eventual development of
126:
Single-unit recordings have provided tools to explore the brain and apply this knowledge to current technologies. Cognitive scientists have used single-unit recordings in the brains of animals and humans to study behaviors and functions. Electrodes can also be inserted into the brain of
424:
Single-unit recordings have allowed the ability to monitor single-neuron activity. This has allowed researchers to discover the role of different parts of the brain in function and behavior. More recently, recording from single neurons can be used to engineer "mind-controlled" devices.
442:
provide a method to couple behavior to brain function. By stimulating different responses, one can visualize what portion of the brain is activated. This method has been used to explore cognitive functions such as perception, memory, language, emotions, and motor control.
373:(Ag-AgCl) electrode is dipped into the filling solution as an electrical terminal. Ideally, the ionic solutions should have ions similar to ionic species around the electrode; the concentration inside the electrode and surrounding fluid should be the same. Additionally, the 405:
electrodes are platinum black plated and insulated with glass. "They normally give stable recordings, a high signal-to-noise ratio, good isolation, and they are quite rugged in the usual tip sizes". The only limitation is that the tips are very fine and fragile.
242:
1978: Schmidt et al. implanted chronic recording micro-cortical electrodes into the cortex of monkeys and showed that they could teach them to control neuronal firing rates, a key step to the possibility of recording neuronal signals and using them for
386:
must be used as the first-stage amplifier. Additionally, high capacitance develops across the glass and conducting solution which can attenuate high-frequency responses. There is also electrical interference inherent in these electrodes and amplifiers.
336:
device to collect the voltage and feed it to a conventional amplifier. To record from a single neuron, micromanipulators must be used to precisely insert an electrode into the brain. This is especially important for intracellular single-unit recording.
160:, a Spanish neuroscientist, revolutionized neuroscience with his neuron theory, describing the structure of the nervous system and presence of basic functional units— neurons. He won the Nobel Prize in Physiology or Medicine for this work in 1906. 400:
due to lower impedance for the frequency range of spike signals. They also have better mechanical stiffness for puncturing through brain tissue. Lastly, they are more easily fabricated into different tip shapes and sizes at large quantities.
410:
electrodes are alloy electrodes doped with silicon and an insulating glass cover layer. Silicon technology provides better mechanical stiffness and is a good supporting carrier to allow for multiple recording sites on a single electrode.
454:(BMIs) have been developed within the last 20 years. By recording single unit potentials, these devices can decode signals through a computer and output this signal for control of an external device such as a computer cursor or 1844:
Boraud T.; Bezard E.; et al. (2002). "From single extracellular unit recording in experimental and human Parkinsonism to the development of a functional concept of the role played by the basal ganglia in motor control".
108:
The ability to record signals from neurons is centered around the electric current flow through the neuron. As an action potential propagates through the cell, the electric current flows in and out of the soma and axons at
238:
1967: The first record of multi-electrode arrays for recording was published by Marg and Adams. They applied this method to record many units at a single time in a single patient for diagnostic and therapeutic brain
232:. They used single neuron recordings to map the visual cortex in unanesthesized, unrestrained cats using tungsten electrodes. This work won them the Nobel Prize in 1981 for information processing in the visual system. 361:
and action-potential measurement, while metal electrodes are best used for extracellular spike measurements. Each type has different properties and limitations, which can be beneficial in specific applications.
267:(ALS), a neurological condition affecting the ability to control voluntary movement, they were able to successfully record action potentials using microelectrode arrays to control a computer cursor. 62:
matching; they are primarily glass micro-pipettes, metal microelectrodes made of platinum, tungsten, iridium or even iridium oxide. Microelectrodes can be carefully placed close to the
256:
1994: The Michigan array, a silicon planar electrode with multiple recording sites, was developed. NeuroNexus, a private neurotechnology company, is formed based on this technology.
2284: 886:
LĂłpez-Muñoz F.; Boya J.; et al. (2006). "Neuron theory, the cornerstone of neuroscience, on the centenary of the Nobel Prize award to Santiago RamĂłn y Cajal".
58:. A microelectrode is inserted into the brain, where it can record the rate of change in voltage with respect to time. These microelectrodes must be fine-tipped, 246:
1981: Kruger and Bach assemble 30 individual microelectrodes in a 5x6 configuration and implant the electrodes for simultaneous recording of multiple units.
340:
Finally, the signals must be exported to a recording device. After amplification, signals are filtered with various techniques. They can be recorded by an
2005:
Baker S. N.; Philbin N.; et al. (1999). "Multiple single unit recording in the cortex of monkeys using independently moveable microelectrodes".
1672:
Usoro, Joshua O.; Dogra, Komal; Abbott, Justin R.; Radhakrishna, Rahul; Cogan, Stuart F.; Pancrazio, Joseph J.; Patnaik, Sourav S. (October 2021).
167:
in his 1928 publication "The Basis of Sensation". In this, he describes his recordings of electrical discharges in single nerve fibers using a
1723:
Sturgill, Brandon; Radhakrishna, Rahul; Thai, Teresa Thuc Doan; Patnaik, Sourav S.; Capadona, Jeffrey R.; Pancrazio, Joseph J. (2022-03-20).
278:, which aims to develop ultra-high bandwidth BMIs. In 2019, he and Neuralink published their work followed by a live-stream press conference. 102: 1947:"Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array" 670:"High-charge-capacity sputtered iridium oxide neural stimulation electrodes deposited using water vapor as a reactive plasma constituent" 2085:
BeMent S. L.; Wise K. D.; et al. (1986). "Solid-State Electrodes for Multichannel Multiplexed Intracortical Neuronal Recording".
538: 1455:
Rousche P. J.; Normann R. A. (1998). "Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex".
593:
Cogan, Stuart F.; Ehrlich, Julia; Plante, Timothy D.; Smirnov, Anton; Shire, Douglas B.; Gingerich, Marcus; Rizzo, Joseph F. (2009).
192:
1952: Li and Jasper applied the Renshaw, Forbes, & Morrison method to study electrical activity in the cerebral cortex of a cat.
2122:
Kennedy P. R.; Bakay R. A. E. (1997). "Activity of single action potentials in monkey motor cortex during long-term task learning".
668:
Maeng, Jimin; Chakraborty, Bitan; Geramifard, Negar; Kang, Tong; Rihani, Rashed T.; Joshi-Imre, Alexandra; Cogan, Stuart F. (2019).
50:, the signal propagates down the neuron as a current which flows in and out of the cell through excitable membrane regions in the 332:
would only measure a small portion of the true potential. To solve this problem, a cathode follower amplifier must be used as an
1316:
Schmidt E. M.; McIntosh J. S.; et al. (1978). "Fine control of operantly conditioned firing patterns of cortical neurons".
214:
used intracellular single-unit recording to study synaptic mechanisms in motoneurons (for which he won the Nobel Prize in 1963).
2188:
Schiller P. H.; Stryker M. (1972). "Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey".
978:
Renshaw B.; Forbes A.; et al. (1939). "Activity of Isocortex and Hippocampus: Electrical Studies with Micro-Electrodes".
2159:
Lewicki M. S. (1998). "A review of methods for spike sorting: the detection and classification of neural action potentials".
1541:
Kennedy P. R.; Bakay R. A. E. (1998). "Restoration of neural output from a paralyzed patient by a direct brain connection".
153:
in the 1790s with his studies on dissected frogs. He discovered that you can induce a dead frog leg to twitch with a spark.
2319: 264: 478: 451: 82: 503: 463:
causes neurodegeneration that reduces the number of neurons it is able to record from (Nicolelis, 2001). In 2004, the
303:
to react with the electrode creating an electrode-electrolyte interface. The forming of this layer has been termed the
253:
which can access the columnar structure of the cerebral cortex for neurophysiological or neuroprosthetic applications".
345: 843:
Piccolino M (1997). "Luigi Galvani and animal electricity: two centuries after the foundation of electrophysiology".
416:
a high-pass filter. Slow signals are lost if filtered so tungsten is not a good choice for recording these signals.
396:
although glass micropipettes can also be used. Metal electrodes are beneficial in some cases because they have high
493: 1784:
Geddes, L. A. (1972). Electrodes and the Measurement of Bioelectric Events. New York, John Wiley & Sons, Inc.
370: 157: 193: 2309: 349: 38:(also, single-neuron recordings) provide a method of measuring the electro-physiological responses of a single 1498:
Hoogerwerf A. C.; Wise K. D. (1994). "A three dimensional microelectrode array for chronic neural recording".
1368: 1083:"A quantitative description of membrane current and its application to conduction and excitation in nerve" 513: 498: 435: 260: 98: 94: 1412:
Jones K. E.; Huber R. B.; et al. (1992). "A glass:silicon composite intracortical electrode array".
2314: 397: 168: 1795: 1958: 1901: 1597: 1359:
Kruger J.; Bach M. (1981). "Simultaneous recording with 30 microelectrodes in monkey visual cortex".
1239: 1186: 1139: 528: 508: 287:
The basis of single-unit recordings relies on the ability to record electrical signals from neurons.
250: 59: 1373: 374: 2213: 2147: 2110: 2073: 2030: 1927: 1870: 1826: 1566: 1523: 1480: 1437: 1394: 1341: 1263: 1230:
Wolbarsht M. L.; MacNichol E. F.; et al. (1960). "Glass Insulated Platinum Microelectrode".
1212: 911: 868: 825: 379: 333: 110: 2256: 2205: 2176: 2139: 2102: 2065: 2022: 1984: 1919: 1862: 1818: 1764: 1746: 1725:"Characterization of Active Electrode Yield for Intracortical Arrays: Awake versus Anesthesia" 1705: 1627: 1558: 1515: 1472: 1429: 1386: 1333: 1298: 1255: 1204: 1155: 1112: 1063: 1014: 1005:
Woldring S, Dirken MN (1950). "Spontaneous unit-activity in the superficial cortical layers".
960: 903: 860: 745: 691: 624: 575: 518: 211: 185:
1950: Woldring and Dirken report the ability to obtain spike activity from the surface of the
115: 74: 2246: 2238: 2197: 2168: 2131: 2094: 2055: 2014: 1974: 1966: 1909: 1854: 1810: 1754: 1736: 1695: 1685: 1654: 1617: 1607: 1550: 1507: 1464: 1421: 1378: 1325: 1290: 1247: 1194: 1147: 1102: 1094: 1053: 1045: 987: 950: 942: 895: 852: 817: 735: 727: 681: 614: 606: 571: 567: 523: 439: 383: 324: 197: 47: 1674:"Influence of Implantation Depth on the Performance of Intracortical Probe Recording Sites" 304: 295:
When a microelectrode is inserted into an aqueous ionic solution, there is a tendency for
218: 186: 163:
1928: One of the earliest accounts of being able to record from the nervous system was by
1962: 1905: 1243: 1190: 1143: 259:
1998: A key breakthrough for BMIs was achieved by Kennedy and Bakay with development of
2251: 2226: 1979: 1970: 1946: 1759: 1724: 1700: 1673: 1622: 1107: 1082: 1058: 1033: 955: 930: 899: 740: 715: 619: 594: 229: 225: 175: 174:
1940: Renshaw, Forbes & Morrison performed original studies recording discharge of
149:
1790s: The first evidence of electrical activity in the nervous system was observed by
141: 119: 43: 2135: 2018: 1858: 1468: 856: 2303: 1554: 1329: 1294: 1034:"Microelectrode Studies of the Electrical Activity of the Cerebral Cortex in the Cat" 483: 150: 67: 63: 17: 2289: 2217: 2151: 2114: 2077: 2034: 1874: 1830: 1484: 1441: 1345: 915: 872: 829: 1931: 1585: 1570: 1527: 1216: 1098: 1049: 341: 164: 78: 31: 1281:
Marg E.; Adams J. E. (1967). "Indwelling Multiple Micro-Electrodes in the Brain".
1267: 1251: 1398: 369:
Glass micropipettes are filled with an ionic solution to make them conductive; a
171:. He won the Nobel Prize in 1932 for his work revealing the function of neurons. 2279: 1151: 792:
Bioelectric Recording Techniques: Part A Cellular Processes and Brain Potentials
533: 179: 821: 114:
during action potentials. This outputs as a trace with information on membrane
2172: 1814: 1645:
Robinson, D. A. (1968). "The Electrical Properties of Metal Microelectrodes".
455: 51: 2201: 2098: 1750: 488: 464: 459: 320: 275: 271: 140:
The ability to record from single units started with the discovery that the
2260: 2180: 2026: 1988: 1923: 1866: 1768: 1709: 1658: 1631: 1586:"An integrated brain-machine interface platform with thousands of channels" 1476: 1259: 1208: 1159: 1116: 1067: 1018: 991: 964: 946: 907: 768:
Cognition, Brain, and Consciousness: Introduction to Cognitive Neuroscience
749: 695: 628: 579: 2209: 2143: 2106: 2069: 2044:"Single units and sensation: A neuron doctrine for perceptual psychology?" 1822: 1562: 1519: 1433: 1390: 1302: 864: 1337: 412: 402: 128: 731: 686: 669: 610: 558:
Cogan, Stuart F. (2008). "Neural Stimulation and Recording Electrodes".
1741: 1690: 1425: 1382: 1175:"A Simple Microelectrode for recording from the Central Nervous System" 407: 249:
1992: Development of the "Utah Intracortical Electrode Array (UIEA), a
235:
1960: Glass-insulated platinum microelectrodes developed for recording.
204: 145:
microelectrode arrays allowed recording from multiple units at a time.
93:
There are many techniques available to record brain activity—including
1511: 319:
The basic equipment needed to record single units is microelectrodes,
1914: 1889: 1199: 1174: 808:
Gesteland, R. C.; Howland, B. (1959). "Comments on Microelectrodes".
674:
Journal of Biomedical Materials Research Part B: Applied Biomaterials
599:
Journal of Biomedical Materials Research Part B: Applied Biomaterials
296: 39: 2242: 2060: 2043: 1602: 1612: 1130:
Dowben R. M.; Rose J. E. (1953). "A Metal-Filled Microelectrode".
352:
techniques can allow for separation and analysis of single units.
344:
and camera, but more modern techniques convert the signal with an
300: 1796:"An Integrated-Circuit Approach to Extracellular Microelectrodes" 595:"Sputtered iridium oxide films for neural stimulation electrodes" 458:. BMIs have the potential to restore function in patients with 55: 311:
detect these extracellular potential fields, creating a spike.
2280:
American College of Neuropsychopharmacology: Electrophysiology
655:
Neurophysiological techniques: applications to neural systems
2294: 2274: 803: 801: 716:"Human Intracranial Recordings and Cognitive Neuroscience" 85:(BMI) technologies for brain control of external devices. 2227:"How advances in neural recording affect data analysis" 77:, where it permits the analysis of human cognition and 200:
to determine the exact mechanism of action potentials.
1283:
Electroencephalography and Clinical Neurophysiology
785: 783: 781: 779: 777: 1945:Simeral J. D.; Kim S. P.; et al. (2011). 1794:Wise K. D.; Angell J. B.; et al. (1970). 709: 707: 705: 648: 646: 644: 642: 640: 638: 328: 8: 761: 759: 2087:IEEE Transactions on Biomedical Engineering 1803:IEEE Transactions on Biomedical Engineering 1500:IEEE Transactions on Biomedical Engineering 274:co-founded and invested $ 100 million for 81:. This information can then be applied to 73:Single-unit recordings are widely used in 2250: 2059: 1978: 1913: 1780: 1778: 1758: 1740: 1699: 1689: 1621: 1611: 1601: 1372: 1198: 1106: 1057: 954: 739: 685: 618: 221:microelectrodes developed for recording. 207:microelectrodes developed for recording. 2225:Stevenson I. H.; Kording K. P. (2011). 572:10.1146/annurev.bioeng.10.061807.160518 560:Annual Review of Biomedical Engineering 550: 27:Method to measure responses of a neuron 2161:Network: Computation in Neural Systems 348:and output to a computer to be saved. 103:functional magnetic resonance imaging 7: 1590:Journal of Medical Internet Research 1081:Hodgkin A. L.; Huxley A. F. (1952). 657:. Clifton, New Jersey: Humana Press. 182:using glass microelectrodes in cats. 46:system. When a neuron generates an 900:10.1016/j.brainresbull.2006.07.010 539:Responsive neurostimulation device 468:with tetraplegia (Simeral, 2011). 291:Neuronal potentials and electrodes 25: 66:, allowing the ability to record 1555:10.1097/00001756-199806010-00007 1414:Annals of Biomedical Engineering 196:was revealed, where they used a 2275:Electrophysiology of the Neuron 2007:Journal of Neuroscience Methods 1457:Journal of Neuroscience Methods 1099:10.1113/jphysiol.1952.sp004764 1050:10.1113/jphysiol.1953.sp004935 1: 2136:10.1016/s0006-8993(97)00051-6 2019:10.1016/s0165-0270(99)00121-1 1951:Journal of Neural Engineering 1859:10.1016/s0301-0082(01)00033-8 1469:10.1016/s0165-0270(98)00031-4 1252:10.1126/science.132.3436.1309 857:10.1016/s0166-2236(97)01101-6 265:amyotrophic lateral sclerosis 1971:10.1088/1741-2560/8/2/025027 1330:10.1016/0014-4886(78)90252-2 1295:10.1016/0013-4694(67)90126-5 1032:Li C.-L.; Jasper H. (1952). 1007:Acta Physiol Pharmacol Neerl 504:Electrical brain stimulation 2290:Scholarpedia- Voltage Clamp 1888:Nicolelis M. A. L. (2001). 1361:Experimental Brain Research 1152:10.1126/science.118.3053.22 794:. New York: Academic Press. 346:analog-to-digital converter 327:and recording devices. The 2336: 2190:Journal of Neurophysiology 980:Journal of Neurophysiology 822:10.1109/jrproc.1959.287156 494:Chronic electrode implants 2173:10.1088/0954-898x_9_4_001 1815:10.1109/tbme.1970.4502738 1087:The Journal of Physiology 2202:10.1152/jn.1972.35.6.915 2099:10.1109/tbme.1986.325895 1847:Progress in Neurobiology 931:"The Basis of Sensation" 790:Thompson, R. F. (1973). 479:Brain–computer interface 452:Brain–machine interfaces 447:Brain–machine interfaces 356:Types of microelectrodes 251:multiple-electrode array 1890:"Actions from thoughts" 1647:Proceedings of the IEEE 935:British Medical Journal 888:Brain Research Bulletin 845:Trends in Neurosciences 653:Boulton, A. A. (1990). 261:neurotrophic electrodes 83:brain–machine interface 1659:10.1109/proc.1968.6458 1318:Experimental Neurology 992:10.1152/jn.1940.3.1.74 947:10.1136/bmj.1.4857.287 929:Adrian, E. D. (1954). 810:Proceedings of the IRE 514:Electroencephalography 499:Deep brain stimulation 378:primarily used with a 371:silver-silver chloride 158:Santiago RamĂłn y Cajal 99:magnetoencephalography 95:electroencephalography 36:single-unit recordings 2042:Barlow H. B. (1972). 1038:Journal of Physiology 766:Baars, B. J. (2010). 169:Lippmann electrometer 18:Single unit recording 2320:Neurology procedures 1173:Green J. D. (1958). 529:Multielectrode array 509:Electrocorticography 194:Hodgkin–Huxley model 189:with platinum wires. 1963:2011JNEng...8b5027S 1906:2001Natur.409..403N 1584:Musk, Elon (2019). 1244:1960Sci...132.1309W 1238:(3436): 1309–1310. 1191:1958Natur.182..962G 1144:1953Sci...118...22D 770:. Oxford: Elsevier. 732:10.1038/nature09510 726:(7319): 1104–1108. 687:10.1002/jbm.b.34442 611:10.1002/jbm.b.31223 436:Parkinson's disease 365:Glass micropipettes 263:. In patients with 1742:10.3390/mi13030480 1691:10.3390/mi12101158 1426:10.1007/bf02368134 1383:10.1007/bf00236609 380:potassium chloride 334:impedance matching 315:Experimental setup 111:excitable membrane 2285:Neural Recordings 1900:(6818): 403–407. 1512:10.1109/10.335862 941:(4857): 287–290. 816:(11): 1856–1862. 519:Electrophysiology 440:Evoked potentials 429:Cognitive science 325:micromanipulators 283:Electrophysiology 224:1959: Studies by 116:resting potential 75:cognitive science 16:(Redirected from 2327: 2264: 2254: 2221: 2184: 2155: 2130:(1–2): 251–254. 2118: 2081: 2063: 2038: 1993: 1992: 1982: 1942: 1936: 1935: 1917: 1915:10.1038/35053191 1885: 1879: 1878: 1841: 1835: 1834: 1800: 1791: 1785: 1782: 1773: 1772: 1762: 1744: 1720: 1714: 1713: 1703: 1693: 1669: 1663: 1662: 1653:(6): 1065–1071. 1642: 1636: 1635: 1625: 1615: 1605: 1581: 1575: 1574: 1549:(8): 1707–1711. 1538: 1532: 1531: 1495: 1489: 1488: 1452: 1446: 1445: 1409: 1403: 1402: 1376: 1356: 1350: 1349: 1313: 1307: 1306: 1278: 1272: 1271: 1227: 1221: 1220: 1202: 1200:10.1038/182962a0 1170: 1164: 1163: 1127: 1121: 1120: 1110: 1078: 1072: 1071: 1061: 1029: 1023: 1022: 1002: 996: 995: 975: 969: 968: 958: 926: 920: 919: 894:(4–6): 391–405. 883: 877: 876: 840: 834: 833: 805: 796: 795: 787: 772: 771: 763: 754: 753: 743: 714:Cerf, M (2010). 711: 700: 699: 689: 665: 659: 658: 650: 633: 632: 622: 590: 584: 583: 555: 524:Intracranial EEG 384:cathode follower 198:squid giant axon 79:cortical mapping 48:action potential 21: 2335: 2334: 2330: 2329: 2328: 2326: 2325: 2324: 2310:Neurophysiology 2300: 2299: 2271: 2243:10.1038/nn.2731 2224: 2187: 2158: 2121: 2084: 2061:10.1068/p010371 2041: 2004: 2001: 1996: 1944: 1943: 1939: 1887: 1886: 1882: 1843: 1842: 1838: 1798: 1793: 1792: 1788: 1783: 1776: 1722: 1721: 1717: 1671: 1670: 1666: 1644: 1643: 1639: 1583: 1582: 1578: 1540: 1539: 1535: 1506:(12): 1136–46. 1497: 1496: 1492: 1454: 1453: 1449: 1411: 1410: 1406: 1374:10.1.1.320.7615 1358: 1357: 1353: 1315: 1314: 1310: 1280: 1279: 1275: 1229: 1228: 1224: 1172: 1171: 1167: 1138:(3053): 22–24. 1129: 1128: 1124: 1080: 1079: 1075: 1031: 1030: 1026: 1004: 1003: 999: 977: 976: 972: 928: 927: 923: 885: 884: 880: 851:(10): 443–448. 842: 841: 837: 807: 806: 799: 789: 788: 775: 765: 764: 757: 713: 712: 703: 667: 666: 662: 652: 651: 636: 592: 591: 587: 557: 556: 552: 548: 543: 474: 456:prosthetic limb 449: 431: 422: 398:signal-to-noise 393: 367: 358: 350:Data-processing 317: 305:Helmholtz layer 293: 285: 219:Stainless steel 187:cerebral cortex 176:pyramidal cells 138: 123:of recordings. 91: 68:extracellularly 28: 23: 22: 15: 12: 11: 5: 2333: 2331: 2323: 2322: 2317: 2312: 2302: 2301: 2298: 2297: 2292: 2287: 2282: 2277: 2270: 2269:External links 2267: 2266: 2265: 2237:(2): 139–142. 2222: 2196:(6): 915–924. 2185: 2156: 2124:Brain Research 2119: 2093:(2): 230–241. 2082: 2054:(4): 371–394. 2039: 2000: 1997: 1995: 1994: 1937: 1880: 1853:(4): 265–283. 1836: 1809:(3): 238–246. 1786: 1774: 1715: 1664: 1637: 1603:10.1101/703801 1596:(10): e16194. 1576: 1533: 1490: 1447: 1404: 1351: 1324:(2): 349–369. 1308: 1289:(3): 277–280. 1273: 1222: 1165: 1122: 1093:(4): 500–544. 1073: 1044:(1): 117–140. 1024: 997: 970: 921: 878: 835: 797: 773: 755: 701: 680:(3): 880–891. 660: 634: 605:(2): 353–361. 585: 549: 547: 544: 542: 541: 536: 531: 526: 521: 516: 511: 506: 501: 496: 491: 486: 481: 475: 473: 470: 448: 445: 430: 427: 421: 418: 392: 389: 366: 363: 357: 354: 316: 313: 292: 289: 284: 281: 280: 279: 268: 257: 254: 247: 244: 240: 236: 233: 230:Torsten Wiesel 226:David H. Hubel 222: 215: 208: 201: 190: 183: 172: 161: 154: 142:nervous system 137: 134: 90: 87: 44:microelectrode 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2332: 2321: 2318: 2316: 2313: 2311: 2308: 2307: 2305: 2296: 2293: 2291: 2288: 2286: 2283: 2281: 2278: 2276: 2273: 2272: 2268: 2262: 2258: 2253: 2248: 2244: 2240: 2236: 2232: 2228: 2223: 2219: 2215: 2211: 2207: 2203: 2199: 2195: 2191: 2186: 2182: 2178: 2174: 2170: 2167:(4): R53–78. 2166: 2162: 2157: 2153: 2149: 2145: 2141: 2137: 2133: 2129: 2125: 2120: 2116: 2112: 2108: 2104: 2100: 2096: 2092: 2088: 2083: 2079: 2075: 2071: 2067: 2062: 2057: 2053: 2049: 2045: 2040: 2036: 2032: 2028: 2024: 2020: 2016: 2012: 2008: 2003: 2002: 1998: 1990: 1986: 1981: 1976: 1972: 1968: 1964: 1960: 1957:(2): 025027. 1956: 1952: 1948: 1941: 1938: 1933: 1929: 1925: 1921: 1916: 1911: 1907: 1903: 1899: 1895: 1891: 1884: 1881: 1876: 1872: 1868: 1864: 1860: 1856: 1852: 1848: 1840: 1837: 1832: 1828: 1824: 1820: 1816: 1812: 1808: 1804: 1797: 1790: 1787: 1781: 1779: 1775: 1770: 1766: 1761: 1756: 1752: 1748: 1743: 1738: 1734: 1730: 1729:Micromachines 1726: 1719: 1716: 1711: 1707: 1702: 1697: 1692: 1687: 1683: 1679: 1678:Micromachines 1675: 1668: 1665: 1660: 1656: 1652: 1648: 1641: 1638: 1633: 1629: 1624: 1619: 1614: 1613:10.2196/16194 1609: 1604: 1599: 1595: 1591: 1587: 1580: 1577: 1572: 1568: 1564: 1560: 1556: 1552: 1548: 1544: 1537: 1534: 1529: 1525: 1521: 1517: 1513: 1509: 1505: 1501: 1494: 1491: 1486: 1482: 1478: 1474: 1470: 1466: 1462: 1458: 1451: 1448: 1443: 1439: 1435: 1431: 1427: 1423: 1420:(4): 423–37. 1419: 1415: 1408: 1405: 1400: 1396: 1392: 1388: 1384: 1380: 1375: 1370: 1366: 1362: 1355: 1352: 1347: 1343: 1339: 1335: 1331: 1327: 1323: 1319: 1312: 1309: 1304: 1300: 1296: 1292: 1288: 1284: 1277: 1274: 1269: 1265: 1261: 1257: 1253: 1249: 1245: 1241: 1237: 1233: 1226: 1223: 1218: 1214: 1210: 1206: 1201: 1196: 1192: 1188: 1185:(4640): 962. 1184: 1180: 1176: 1169: 1166: 1161: 1157: 1153: 1149: 1145: 1141: 1137: 1133: 1126: 1123: 1118: 1114: 1109: 1104: 1100: 1096: 1092: 1088: 1084: 1077: 1074: 1069: 1065: 1060: 1055: 1051: 1047: 1043: 1039: 1035: 1028: 1025: 1020: 1016: 1013:(3): 369–79. 1012: 1008: 1001: 998: 993: 989: 986:(1): 74–105. 985: 981: 974: 971: 966: 962: 957: 952: 948: 944: 940: 936: 932: 925: 922: 917: 913: 909: 905: 901: 897: 893: 889: 882: 879: 874: 870: 866: 862: 858: 854: 850: 846: 839: 836: 831: 827: 823: 819: 815: 811: 804: 802: 798: 793: 786: 784: 782: 780: 778: 774: 769: 762: 760: 756: 751: 747: 742: 737: 733: 729: 725: 721: 717: 710: 708: 706: 702: 697: 693: 688: 683: 679: 675: 671: 664: 661: 656: 649: 647: 645: 643: 641: 639: 635: 630: 626: 621: 616: 612: 608: 604: 600: 596: 589: 586: 581: 577: 573: 569: 565: 561: 554: 551: 545: 540: 537: 535: 532: 530: 527: 525: 522: 520: 517: 515: 512: 510: 507: 505: 502: 500: 497: 495: 492: 490: 487: 485: 484:Brain implant 482: 480: 477: 476: 471: 469: 466: 461: 457: 453: 446: 444: 441: 437: 428: 426: 419: 417: 414: 409: 404: 399: 390: 388: 385: 381: 376: 372: 364: 362: 355: 353: 351: 347: 343: 338: 335: 330: 326: 322: 314: 312: 308: 306: 302: 298: 290: 288: 282: 277: 273: 269: 266: 262: 258: 255: 252: 248: 245: 241: 237: 234: 231: 227: 223: 220: 216: 213: 209: 206: 202: 199: 195: 191: 188: 184: 181: 177: 173: 170: 166: 162: 159: 155: 152: 151:Luigi Galvani 148: 147: 146: 143: 135: 133: 130: 124: 121: 117: 112: 106: 104: 100: 96: 88: 86: 84: 80: 76: 71: 69: 65: 64:cell membrane 61: 57: 53: 49: 45: 41: 37: 33: 19: 2315:Neuroimaging 2234: 2231:Nat Neurosci 2230: 2193: 2189: 2164: 2160: 2127: 2123: 2090: 2086: 2051: 2047: 2010: 2006: 1954: 1950: 1940: 1897: 1893: 1883: 1850: 1846: 1839: 1806: 1802: 1789: 1732: 1728: 1718: 1684:(10): 1158. 1681: 1677: 1667: 1650: 1646: 1640: 1593: 1589: 1579: 1546: 1542: 1536: 1503: 1499: 1493: 1460: 1456: 1450: 1417: 1413: 1407: 1367:(2): 191–4. 1364: 1360: 1354: 1321: 1317: 1311: 1286: 1282: 1276: 1235: 1231: 1225: 1182: 1178: 1168: 1135: 1131: 1125: 1090: 1086: 1076: 1041: 1037: 1027: 1010: 1006: 1000: 983: 979: 973: 938: 934: 924: 891: 887: 881: 848: 844: 838: 813: 809: 791: 767: 723: 719: 677: 673: 663: 654: 602: 598: 588: 563: 559: 553: 450: 432: 423: 420:Applications 394: 368: 359: 342:oscilloscope 339: 318: 309: 294: 286: 165:Edgar Adrian 139: 125: 107: 92: 72: 35: 32:neuroscience 29: 2013:(1): 5–17. 1543:NeuroReport 1463:(1): 1–15. 566:: 275–309. 534:Patch clamp 212:John Eccles 180:hippocampus 120:polarizable 101:(MEG), and 2304:Categories 2048:Perception 1999:References 1735:(3): 480. 321:amplifiers 2295:BrainGate 1751:2072-666X 1369:CiteSeerX 489:BrainGate 465:BrainGate 460:paralysis 375:diffusive 276:Neuralink 272:Elon Musk 129:epileptic 60:impedance 42:using a 2261:21270781 2218:18323877 2181:10221571 2152:20139805 2115:26878763 2078:17487970 2035:12846443 2027:10638811 1989:21436513 1924:11201755 1875:23389986 1867:11960681 1831:11414381 1769:35334770 1710:34683209 1632:31642810 1485:24981753 1477:10223510 1442:11214935 1346:37539476 1260:17753062 1209:13590200 1160:13076162 1117:12991237 1068:13085304 1019:14789543 965:13115699 916:11273256 908:17027775 873:23394494 830:51641398 750:20981100 696:31353822 629:18837458 580:18429704 472:See also 413:Tungsten 403:Platinum 239:surgery. 89:Overview 2252:3410539 2210:4631839 2144:9237542 2107:3957372 2070:4377168 1980:3715131 1959:Bibcode 1932:4386663 1902:Bibcode 1823:5431636 1760:8955818 1701:8539313 1623:6914248 1598:bioRxiv 1571:5681602 1563:9665587 1528:6694261 1520:7851915 1434:1510294 1391:7202614 1303:4167928 1240:Bibcode 1232:Science 1217:4256169 1187:Bibcode 1140:Bibcode 1132:Science 1108:1392413 1059:1366060 956:2093300 865:9347609 741:3010923 620:7442142 408:Silicon 297:cations 205:Iridium 178:in the 136:History 132:limb). 97:(EEG), 2259:  2249:  2216:  2208:  2179:  2150:  2142:  2113:  2105:  2076:  2068:  2033:  2025:  1987:  1977:  1930:  1922:  1894:Nature 1873:  1865:  1829:  1821:  1767:  1757:  1749:  1708:  1698:  1630:  1620:  1600:  1569:  1561:  1526:  1518:  1483:  1475:  1440:  1432:  1397:  1389:  1371:  1344:  1338:101388 1336:  1301:  1268:112759 1266:  1258:  1215:  1207:  1179:Nature 1158:  1115:  1105:  1066:  1056:  1017:  963:  953:  914:  906:  871:  863:  828:  748:  738:  720:Nature 694:  627:  617:  578:  301:anions 270:2016: 217:1958: 210:1957: 203:1953: 156:1888: 40:neuron 2214:S2CID 2148:S2CID 2111:S2CID 2074:S2CID 2031:S2CID 1928:S2CID 1871:S2CID 1827:S2CID 1799:(PDF) 1567:S2CID 1524:S2CID 1481:S2CID 1438:S2CID 1399:61329 1395:S2CID 1342:S2CID 1264:S2CID 1213:S2CID 912:S2CID 869:S2CID 826:S2CID 546:Notes 391:Metal 243:BMIs. 2257:PMID 2206:PMID 2177:PMID 2140:PMID 2103:PMID 2066:PMID 2023:PMID 1985:PMID 1920:PMID 1863:PMID 1819:PMID 1765:PMID 1747:ISSN 1706:PMID 1628:PMID 1559:PMID 1516:PMID 1473:PMID 1430:PMID 1387:PMID 1334:PMID 1299:PMID 1256:PMID 1205:PMID 1156:PMID 1113:PMID 1064:PMID 1015:PMID 961:PMID 904:PMID 861:PMID 746:PMID 692:PMID 625:PMID 576:PMID 329:type 299:and 228:and 56:axon 54:and 52:soma 2247:PMC 2239:doi 2198:doi 2169:doi 2132:doi 2128:760 2095:doi 2056:doi 2015:doi 1975:PMC 1967:doi 1910:doi 1898:409 1855:doi 1811:doi 1755:PMC 1737:doi 1696:PMC 1686:doi 1655:doi 1618:PMC 1608:doi 1551:doi 1508:doi 1465:doi 1422:doi 1379:doi 1326:doi 1291:doi 1248:doi 1236:132 1195:doi 1183:182 1148:doi 1136:118 1103:PMC 1095:doi 1091:117 1054:PMC 1046:doi 1042:121 988:doi 951:PMC 943:doi 896:doi 853:doi 818:doi 736:PMC 728:doi 724:467 682:doi 678:108 615:PMC 607:doi 603:89B 568:doi 438:. 30:In 2306:: 2255:. 2245:. 2235:14 2233:. 2229:. 2212:. 2204:. 2194:35 2192:. 2175:. 2163:. 2146:. 2138:. 2126:. 2109:. 2101:. 2091:33 2089:. 2072:. 2064:. 2050:. 2046:. 2029:. 2021:. 2011:94 2009:. 1983:. 1973:. 1965:. 1953:. 1949:. 1926:. 1918:. 1908:. 1896:. 1892:. 1869:. 1861:. 1851:66 1849:. 1825:. 1817:. 1807:17 1805:. 1801:. 1777:^ 1763:. 1753:. 1745:. 1733:13 1731:. 1727:. 1704:. 1694:. 1682:12 1680:. 1676:. 1651:56 1649:. 1626:. 1616:. 1606:. 1594:21 1592:. 1588:. 1565:. 1557:. 1545:. 1522:. 1514:. 1504:41 1502:. 1479:. 1471:. 1461:82 1459:. 1436:. 1428:. 1418:20 1416:. 1393:. 1385:. 1377:. 1365:41 1363:. 1340:. 1332:. 1322:61 1320:. 1297:. 1287:23 1285:. 1262:. 1254:. 1246:. 1234:. 1211:. 1203:. 1193:. 1181:. 1177:. 1154:. 1146:. 1134:. 1111:. 1101:. 1089:. 1085:. 1062:. 1052:. 1040:. 1036:. 1009:. 982:. 959:. 949:. 937:. 933:. 910:. 902:. 892:70 890:. 867:. 859:. 849:20 847:. 824:. 814:47 812:. 800:^ 776:^ 758:^ 744:. 734:. 722:. 718:. 704:^ 690:. 676:. 672:. 637:^ 623:. 613:. 601:. 597:. 574:. 564:10 562:. 323:, 70:. 34:, 2263:. 2241:: 2220:. 2200:: 2183:. 2171:: 2165:9 2154:. 2134:: 2117:. 2097:: 2080:. 2058:: 2052:1 2037:. 2017:: 1991:. 1969:: 1961:: 1955:8 1934:. 1912:: 1904:: 1877:. 1857:: 1833:. 1813:: 1771:. 1739:: 1712:. 1688:: 1661:. 1657:: 1634:. 1610:: 1573:. 1553:: 1547:9 1530:. 1510:: 1487:. 1467:: 1444:. 1424:: 1401:. 1381:: 1348:. 1328:: 1305:. 1293:: 1270:. 1250:: 1242:: 1219:. 1197:: 1189:: 1162:. 1150:: 1142:: 1119:. 1097:: 1070:. 1048:: 1021:. 1011:1 994:. 990:: 984:3 967:. 945:: 939:1 918:. 898:: 875:. 855:: 832:. 820:: 752:. 730:: 698:. 684:: 631:. 609:: 582:. 570:: 20:)

Index

Single unit recording
neuroscience
neuron
microelectrode
action potential
soma
axon
impedance
cell membrane
extracellularly
cognitive science
cortical mapping
brain–machine interface
electroencephalography
magnetoencephalography
functional magnetic resonance imaging
excitable membrane
resting potential
polarizable
epileptic
nervous system
Luigi Galvani
Santiago RamĂłn y Cajal
Edgar Adrian
Lippmann electrometer
pyramidal cells
hippocampus
cerebral cortex
Hodgkin–Huxley model
squid giant axon

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑