Knowledge (XXG)

Single-molecule real-time sequencing

Source 📝

185:
each patterned with 150,000 ZMW holes that were read in two sets of 75,000. In April 2013, the company released a new version of the sequencer called the "PacBio RS II" that uses all 150,000 ZMW holes concurrently, doubling the throughput per experiment. The highest throughput mode in November 2013 used P5 binding, C3 chemistry, BluePippin size selection, and a PacBio RS II officially yielded 350 million bases per SMRT Cell though a human
62:. Each of the four DNA bases is attached to one of four different fluorescent dyes. When a nucleotide is incorporated by the DNA polymerase, the fluorescent tag is cleaved off and diffuses out of the observation area of the ZMW where its fluorescence is no longer observable. A detector detects the fluorescent signal of the nucleotide incorporation, and the base call is made according to the corresponding fluorescence of the dye. 269: 294: 158: 489:. Scientists demonstrated the use of single-molecule real-time sequencing for detecting methylation and other base modifications. In 2012 a team of scientists used SMRT sequencing to generate the full methylomes of six bacteria. In November 2012, scientists published a report on genome-wide methylation of an outbreak strain of E. coli. 363:
and 67.4 GB yield per cell with templates in higher weight molecules. System performance is now reported in either high-molecular-weight continuous long reads or in pre-corrected HiFi (also known as Circular Consensus Sequence (CCS)) reads. For high-molecular-weight reads roughly half of all reads are longer than 50 kb in length.
478:
automated finishing of bacterial genomes, including one paper that updated the Celera Assembler with a pipeline for genome finishing using long SMRT sequencing reads. In 2013, scientists estimated that long-read sequencing could be used to fully assemble and finish the majority of bacterial and archaeal genomes.
70:
The DNA sequencing is done on a chip that contains many ZMWs. Inside each ZMW, a single active DNA polymerase with a single molecule of single stranded DNA template is immobilized to the bottom through which light can penetrate and create a visualization chamber that allows monitoring of the activity
362:
In April 2019 the company released a new SMRT Cell with eight million ZMWs, increasing the expected throughput per SMRT Cell by a factor of eight. Early access customers in March 2019 reported throughput over 58 customer run cells of 250 GB of raw yield per cell with templates about 15 kb in length,
481:
The same DNA molecule can be resequenced independently by creating the circular DNA template and utilizing a strand displacing enzyme that separates the newly synthesized DNA strand from the template. In August 2012, scientists from the Broad Institute published an evaluation of SMRT sequencing for
180:
On October 15, 2014, PacBio announced the release of new chemistry P6-C4 for the RS II system, which represents the company's 6th generation of polymerase and 4th generation chemistry--further extending the average read length to 10,000 - 15,000 bases, with the longest reads exceeding 40,000 bases.
184:
Throughput per experiment for the technology is both influenced by the read length of DNA molecules sequenced as well as total multiplex of a SMRT Cell. The prototype of the SMRT Cell contained about 3000 ZMW holes that allowed parallelized DNA sequencing. At commercialization, the SMRT Cells were
176:
On October 3, 2013, PacBio released new reagent combination for PacBio RS II, the P5 DNA polymerase with C3 chemistry (P5-C3). Together, they extend sequencing read lengths to an average of approximately 8,500 bases, with the longest reads exceeding 30,000 bases. Throughput per SMRT cell is around
172:
On August 21, 2013, PacBio released a new DNA polymerase Binding Kit P4. This P4 enzyme has average read lengths of more than 4,300 bases when paired with the C2 sequencing chemistry and more than 5,000 bases when paired with the XL chemistry. The enzyme’s accuracy is similar to C2, reaching QV50
137:
released the Sequel 6.0 chemistry, synchronizing the chemistry version with the software version. Performance is contrasted for large-insert libraries with high molecular weight DNA versus shorter-insert libraries below ~15,000 bases in length. For larger templates average read lengths are up to
495:
SMRT sequencing has several applications in reproductive medical genetics research when investigating families with suspected parental gonadal mosaicism. Long reads enable haplotype phasing in patients to investigate parent-of-origin of mutations. Deep sequencing enables determination of allele
173:
between 30X and 40X coverage. The resulting P4 attributes provided higher-quality assemblies using fewer SMRT Cells and with improved variant calling. When coupled with input DNA size selection (using an electrophoresis instrument such as BluePippin) yields average read length over 7 kilobases.
477:
genome sequencing and easier genome assemblies. Scientists are also using single-molecule real-time sequencing in hybrid assemblies for de novo genomes to combine short-read sequence data with long-read sequence data. In 2012, several peer-reviewed publications were released demonstrating the
301:
On 19 September 2018, the company announced the Sequel 6.0 chemistry with average read lengths increased to 100,000 bases for shorter-insert libraries and 30,000 for longer-insert libraries. SMRT Cell yield increased up to 50 billion bases for shorter-insert libraries.
189:
data set released with the chemistry averaging 500 million bases per SMRT Cell. Throughput varies based on the type of sample being sequenced. With the introduction of P6-C4 chemistry typical throughput per SMRT Cell increased to 500 million bases to 1 billion bases.
285:
On March 8, 2018, the 2.1 chemistry was released. It increased average read length to 20,000 bases and half of all reads above 30,000 bases in length. Yield per SMRT Cell increased to 10 or 20 billion bases, for either large-insert libraries or shorter-insert (e.g.
125:
Sequencing performance can be measured in read length, accuracy, and total throughput per experiment. PacBio sequencing systems using ZMWs have the advantage of long read lengths, although error rates are on the order of 5-15% and sample throughput is lower than
165:
At commercialization, read length had a normal distribution with a mean of about 1100 bases. A new chemistry kit released in early 2012 increased the sequencer's read length; an early customer of the chemistry cited mean read lengths of 2500 to 2900 bases.
138:
30,000 bases. For shorter-insert libraries, average read length are up to 100,000 bases while reading the same molecule in a circle several times. The latter shorter-insert libraries then yield up to 50 billion bases from a single SMRT Cell.
91:. The fluorescent dye molecule is attached to the phosphate chain of the nucleotide. When the nucleotide is incorporated by the DNA polymerase, the fluorescent dye is cleaved off with the phosphate chain as a part of a natural 71:
of the DNA polymerase at a single molecule level. The signal from a phospho-linked nucleotide incorporated by the DNA polymerase is detected as the DNA synthesis proceeds which results in the DNA sequencing in real time.
181:
The throughput with the new chemistry was estimated between 500 million to 1 billion bases per SMRT Cell, depending on the sample being sequenced. This was the final version of chemistry released for the RS instrument.
53:
enzyme is affixed at the bottom of a ZMW with a single molecule of DNA as a template. The ZMW is a structure that creates an illuminated observation volume that is small enough to observe only a single
114:
The ZMW holes are ~70 nm in diameter and ~100 nm in depth. Due to the behavior of light when it travels through a small aperture, the optical field decays exponentially inside the chamber.
117:
The observation volume within an illuminated ZMW is ~20 zeptoliters (20 X 10 liters). Within this volume, the activity of DNA polymerase incorporating a single nucleotide can be readily detected.
87:
For each of the nucleotide bases, there is a corresponding fluorescent dye molecule that enables the detector to identify the base being incorporated by the DNA polymerase as it performs the
402:
The HiFi performance includes corrected bases with quality above Phred score Q20, using repeated amplicon passes for correction. These take amplicons up to 20kb in length.
99:
is created to elongate the DNA chain. The cleaved fluorescent dye molecule then diffuses out of the detection volume so that the fluorescent signal is no longer detected.
1415: 1177: 492:
Long reads make it possible to sequence full gene isoforms, including the 5' and 3' ends. This type of sequencing is useful to capture isoforms and splice variants.
2315: 684: 2422:"A Novel Approach Using Long-Read Sequencing and ddPCR to Investigate Gonadal Mosaicism and Estimate Recurrence Risk in Two Families With Developmental Disorders" 1310: 469:
genome sequencing, read lengths from the single-molecule real-time sequencing are comparable to or greater than that from the Sanger sequencing method based on
1440: 1342: 1041: 999: 978: 276:
In September 2015, the company announced the launch of a new sequencing instrument, the Sequel System, that increased capacity to 1 million ZMW holes.
1020: 1242: 828:"Zero-mode waveguides can be made better: fluorescence enhancement with rectangular aluminum nanoapertures from the visible to the deep ultraviolet" 1456: 1213: 1178:"Pacific Biosciences Releases New DNA Sequencing Chemistry to Enhance Read Length and Accuracy for the Study of Human and Other Complex Genomes" 630: 1361: 957: 2476: 680:"Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures" 1379: 1082: 657: 512:
Levene MJ, Korlach J, Turner SW, et al. (2003). "Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations".
279:
With the Sequel instrument initial read lengths were comparable to the RS, then later chemistry releases increased read length.
2496: 1535: 1485: 739:
Foquet M, Samiee KT, Kong X, et al. (2008). "Improved fabrication of zero-mode waveguides for single-molecule detection".
2211:"Genome-wide Mapping of Methylated Adenine Residues in Pathogenic Escherichia Coli Using Single-Molecule Real-Time Sequencing" 1419: 111:
confinement structure that consists of a circular hole in an aluminum cladding film deposited on a clear silica substrate.
282:
On January 23, 2017, the V2 chemistry was released. It increased average read lengths to between 10,000 and 18,000 bases.
826:
Baibakov, Mikhail; Barulin, Aleksandr; Roy, Prithu; Claude, Jean-Benoît; Patra, Satyajit; Wenger, Jérôme (1999-02-22).
1318: 1580: 741: 149:(PacBio) commercialized SMRT sequencing in 2011, after releasing a beta version of its RS instrument in late 2010. 1603: 1397: 2372:"Single Molecule Real-Time (SMRT) Sequencing Comes of Age: Applications and Utilities for Medical Diagnostics" 1100: 2491: 1063: 1273: 2376: 2165: 2012: 496:
frequencies in sperm cells, of relevance for estimation of recurrence risk for future affected offspring.
2008:"Characterization of DNA Methyltransferase Specificities Using Single-Molecule, Real-Time DNA Sequencing" 1250: 568:
Eid J, Fehr A, Gray J, et al. (2009). "Real-Time DNA Sequencing from Single Polymerase Molecules".
1042:"PacBio Users Report Progress in Long Reads for Plant Genome Assembly, Tricky Regions of Human Genome" 2324: 2265: 2215: 1859: 1798: 1730: 1680: 1221: 1133: 1000:"After a Year of Testing, Two Early PacBio Customers Expect More Routine Use of RS Sequencer in 2012" 979:"PacBio Reveals Beta System Specs for RS; Says Commercial Release is on Track for First Half of 2011" 888: 749: 693: 579: 523: 877:"The Madness of Microbiome: Attempting To Find Consensus "Best Practice" for 16S Microbiome Studies" 79:
To prepare the library, DNA fragments are put into a circular form using hairpin adapter ligations.
17: 783:
Zhu, Paul; Craighead, Harold G. (2012-06-09). "Zero-Mode Waveguides for Single-Molecule Analysis".
146: 134: 96: 46: 169:
The XL chemistry kit released in late 2012 increased average read length to more than 4300 bases.
1788: 1021:"PacBio's XL Chemistry Increases Read Lengths and Throughput; CSHL Tests the Tech on Rice Genome" 765: 603: 547: 470: 1905:"Pacific Biosciences Sequencing Technology for Genotyping and Variation Discovery in Human Data" 1101:"New Chemistry for PacBio RS II Provides Average 8.5 kb Read Lengths for Complex Genome Studies" 1292: 1195: 462:
Single-molecule real-time sequencing may be applicable for a broad range of genomics research.
2501: 2451: 2402: 2352: 2291: 2241: 2191: 2141: 2089: 2038: 1988: 1937: 1885: 1846:"Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia" 1826: 1756: 1706: 1656: 1561: 1511: 1434: 1159: 916: 857: 808: 800: 721: 636: 626: 595: 570: 539: 514: 2441: 2433: 2392: 2384: 2342: 2332: 2281: 2273: 2231: 2223: 2181: 2173: 2131: 2121: 2113: 2079: 2071: 2028: 2020: 1978: 1970: 1927: 1917: 1875: 1867: 1850: 1816: 1806: 1746: 1738: 1696: 1688: 1646: 1638: 1551: 1543: 1501: 1493: 1149: 1141: 1124: 906: 896: 847: 839: 792: 757: 711: 701: 587: 531: 1630: 796: 2471: 2328: 1863: 1802: 1137: 937: 892: 753: 697: 583: 527: 2446: 2421: 2397: 2371: 2347: 2310: 2286: 2260: 2236: 2210: 2186: 2160: 2136: 2108: 2084: 2062: 2057: 2033: 2007: 1983: 1961: 1956: 1932: 1904: 1880: 1845: 1821: 1780: 1775: 1751: 1725: 1701: 1675: 1651: 1625: 1556: 1530: 1506: 1476: 1362:"New Chemistry and Software for Sequel System Improve Read Length, Lower Project Costs" 1154: 1119: 911: 876: 852: 827: 716: 679: 127: 59: 50: 42: 2485: 92: 88: 769: 607: 1909: 1776:"Reducing assembly complexity of microbial genomes with single-molecule sequencing" 551: 1957:"Direct detection of DNA methylation during single-molecule, real-time sequencing" 1726:"Hybrid error correction and de novo assembly of single-molecule sequencing reads" 1457:"PacBio Shares Early-Access Customer Experiences, New Applications for Sequel II" 1343:"PacBio Launches Higher-Throughput, Lower-Cost Single-Molecule Sequencing System" 1064:"New DNA Polymerase P4 Delivers Higher-Quality Assemblies Using Fewer SMRT Cells" 875:
Pollock, Jolinda; Glendinning, Laura; Wisedchanwet, Trong; Watson, Mick (2018).
1380:"New Software, Polymerase for Sequel System Boost Throughput and Affordability" 1120:"Resolving the complexity of the human genome using single-molecule sequencing" 2058:"Sensitive and Specific Single-Molecule Sequencing of 5-hydroxymethylcytosine" 1811: 486: 177:
500 million bases demonstrated by sequencing results from the CHM1 cell line.
55: 1922: 804: 640: 2337: 1196:"New Chemistry Boosts Average Read Length to 10 kb – 15 kb for PacBio RS II" 706: 591: 535: 268: 108: 2455: 2406: 2356: 2295: 2245: 2195: 2145: 2126: 2093: 2042: 1992: 1941: 1889: 1830: 1760: 1710: 1660: 1565: 1515: 1214:"SMRT Cells, sequencing reagent kits, and accessories for the PacBio RS II" 1163: 920: 861: 812: 725: 599: 543: 2024: 1642: 1547: 1497: 2388: 2177: 901: 287: 1871: 1145: 293: 2075: 1974: 843: 658:"Pacific Biosciences Develops Transformative DNA Sequencing Technology" 157: 2311:"Characterization of the human ESC transcriptome by hybrid sequencing" 958:"PacBio Ships First Two Commercial Systems; Order Backlog Grows to 44" 761: 2277: 2227: 1742: 1692: 2437: 1676:"A hybrid approach for the automated finishing of bacterial genomes" 1481:
Strain Causing an Outbreak of Hemolytic–Uremic Syndrome in Germany"
1793: 292: 267: 156: 2261:"A Single-Molecule Long-Read Survey of the Human Transcriptome" 1118:
Chaisson MJ, Huddleston J, Dennis MY, et al. (2014).
485:
The dynamics of polymerase can indicate whether a base is
2420:
Wilbe M, Gudmundsson S, Johansson J, et al. (2017).
45:
method. Single-molecule real-time sequencing utilizes a
1626:"Finished bacterial genomes from shotgun sequence data" 2109:"Direct Detection and Sequencing of Damaged DNA Bases" 1083:"Longing for the longest reads: PacBio and BluePippin" 2107:
Clark TA, Spittle KE, Turner SW, et al. (2011).
1955:
Flusberg BA, Webster DR, Lee JH, et al. (2010).
1624:
Ribeiro FJ, Przybylski D, Yin S, et al. (2012).
2370:
Ardui S, Ameur A, Vermeesch JR, et al. (2018).
2309:
Au KF, Sebastiano V, Afshar PT, et al. (2013).
2259:
Sharon D, Tilgner H, Grubert F, et al. (2013).
2159:
Murray IA, Clark TA, Morgan RD, et al. (2012).
2006:
Clark TA, Murray IA, Morgan RD, et al. (2012).
1674:
Bashir A, Klammer A, Robins WP, et al. (2012).
1529:
Chin CS, Sorenson J, Harris JB, et al. (2011).
678:
Korlach J, Marks PJ, Cicero RL, et al. (2008).
2209:Fang G, Munera D, Friedman DI, et al. (2012). 1724:Koren S, Schatz MC, Walenz BP, et al. (2012). 1531:"The Origin of the Haitian Cholera Outbreak Strain" 1475:Rasko DA, Webster DR, Sahl JW, et al. (2011). 1903:Carneiro MO, Russ C, Ross MG, et al. (2012). 1774:Koren S, Harhay GP, Smith TP, et al. (2013). 1455: 1341: 1272: 1040: 1019: 998: 977: 956: 932: 930: 473:chain termination. The longer read length allows 1844:Smith CC, Wang Q, Chin CS, et al. (2012). 1579:Gao H, Green SJ, Jafari N, et al. (2012). 2056:Song CX, Clark TA, Lu XY, et al. (2011). 563: 561: 8: 1585:Genetic Engineering & Biotechnology News 367:Sequel II High-Molecular-Weight Performance 1311:"PacBio Announces Sequel Sequencing System" 665:Pacific Biosciences Technology Backgrounder 406:Sequel II HiFi Corrected Read Performance 404: 365: 304: 192: 2445: 2396: 2346: 2336: 2285: 2235: 2185: 2135: 2125: 2083: 2032: 1982: 1931: 1921: 1879: 1820: 1810: 1792: 1750: 1700: 1650: 1555: 1505: 1274:"New Products: PacBio's RS II; Cufflinks" 1153: 910: 900: 851: 715: 705: 1243:"PacBio Launches PacBio RS II Sequencer" 1581:"Tech Tips: Next-Generation Sequencing" 504: 441:Corrected reads per SMRT Cell (>Q20) 1439:: CS1 maint: archived copy as title ( 1432: 881:Applied and Environmental Microbiology 1058: 1056: 797:10.1146/annurev-biophys-050511-102338 161:SMRT Cell for a RS or RS II Sequencer 7: 652: 650: 18:Single Molecule Real Time Sequencing 107:The zero-mode waveguide (ZMW) is a 1398:"PacBio Launches Sequel II System" 41:is a parallelized single molecule 25: 2161:"The Methylomes of Six Bacteria" 272:SMRT Cell for a Sequel Sequencer 2472:Report from the BioIT World.com 791:(1). Annual Reviews: 269–293. 625:(in Dutch). Oxford: Academic. 297:Pipette tip in an 8M SMRT Cell 1: 1317:. 30 Sep 2015. Archived from 1249:. 11 Apr 2013. Archived from 1184:(Press Release). 15 Oct 2014. 1081:lexnederbragt (19 Jun 2013). 58:of DNA being incorporated by 621:Friedmann, Theodore (2012). 785:Annual Review of Biophysics 2518: 2477:Report from New York Times 1604:"SMRT-assembly approaches" 290:) libraries respectively. 1812:10.1186/gb-2013-14-9-r101 325:Average read length bases 219:Average read length bases 31:Single-molecule real-time 27:Method for sequencing DNA 1923:10.1186/1471-2164-13-375 1087:In between lines of code 386:Throughput per SMRT Cell 341:Throughput per SMRT Cell 241:Throughput per SMRT Cell 83:Phospholinked nucleotide 2338:10.1073/pnas.1320101110 1613:(PacBio Users Meeting). 1602:Schatz M (7 Sep 2011). 1018:Heger M (13 Nov 2012). 997:Karow J (10 Jan 2012). 707:10.1073/pnas.0710982105 592:10.1126/science.1162986 536:10.1126/science.1079700 425:Raw reads per SMRT Cell 95:process during which a 2497:DNA sequencing methods 2127:10.1186/2041-9414-2-10 1454:Heger M (7 Mar 2019). 1340:Heger M (1 Oct 2015). 1293:"Duke Sequencing Post" 1220:. 2020. Archived from 1039:Heger M (5 Mar 2013). 976:Karow J (7 Dec 2010). 955:Karow J (3 May 2011). 748:(3): 034301–034301–9. 298: 273: 162: 130:sequencing platforms. 121:Sequencing Performance 1643:10.1101/gr.141515.112 1548:10.1056/NEJMoa1012928 1498:10.1056/NEJMoa1106920 296: 271: 160: 902:10.1128/AEM.02627-17 623:Advances in genetics 75:Template preparation 2329:2013PNAS..110E4821A 2025:10.1093/nar/gkr1146 1872:10.1038/nature11016 1864:2012Natur.485..260S 1803:2013arXiv1304.3752K 1253:on 19 December 2019 1218:Pacific Biosciences 1182:Pacific Biosciences 1146:10.1038/nature13907 1138:2015Natur.517..608C 893:2018ApEnM..84E2627P 754:2008JAP...103c4301F 698:2008PNAS..105.1176K 584:2009Sci...323..133E 528:2003Sci...299..682L 407: 368: 307: 306:Sequel Performance 195: 147:Pacific Biosciences 135:Pacific Biosciences 103:Zero-Mode Waveguide 97:phosphodiester bond 47:zero-mode waveguide 2426:Prenatal Diagnosis 2389:10.1093/nar/gky066 2377:Nucleic Acids Res. 2178:10.1093/nar/gks891 2166:Nucleic Acids Res. 2076:10.1038/nmeth.1779 2013:Nucleic Acids Res. 1975:10.1038/nmeth.1459 1611:schatzlab.cshl.edu 844:10.1039/D0NA00366B 832:Nanoscale Advances 405: 366: 305: 299: 274: 193: 163: 762:10.1063/1.2831366 632:978-0-12-394395-8 471:dideoxynucleotide 455: 454: 400: 399: 355: 354: 335:30,000 - 100,000 261: 260: 16:(Redirected from 2509: 2460: 2459: 2449: 2417: 2411: 2410: 2400: 2367: 2361: 2360: 2350: 2340: 2323:(50): E4821–30. 2306: 2300: 2299: 2289: 2278:10.1038/nbt.2705 2266:Nat. Biotechnol. 2256: 2250: 2249: 2239: 2228:10.1038/nbt.2432 2216:Nat. Biotechnol. 2206: 2200: 2199: 2189: 2172:(22): 11450–62. 2156: 2150: 2149: 2139: 2129: 2104: 2098: 2097: 2087: 2053: 2047: 2046: 2036: 2003: 1997: 1996: 1986: 1952: 1946: 1945: 1935: 1925: 1900: 1894: 1893: 1883: 1841: 1835: 1834: 1824: 1814: 1796: 1771: 1765: 1764: 1754: 1743:10.1038/nbt.2280 1731:Nat. Biotechnol. 1721: 1715: 1714: 1704: 1693:10.1038/nbt.2288 1681:Nat. Biotechnol. 1671: 1665: 1664: 1654: 1621: 1615: 1614: 1608: 1599: 1593: 1592: 1576: 1570: 1569: 1559: 1536:N. Engl. J. Med. 1526: 1520: 1519: 1509: 1486:N. Engl. J. Med. 1477:"Origins of the 1472: 1466: 1465: 1459: 1451: 1445: 1444: 1438: 1430: 1428: 1427: 1418:. Archived from 1412: 1406: 1405: 1394: 1388: 1387: 1376: 1370: 1369: 1358: 1352: 1351: 1345: 1337: 1331: 1330: 1328: 1326: 1307: 1301: 1300: 1289: 1283: 1282: 1276: 1269: 1263: 1262: 1260: 1258: 1239: 1233: 1232: 1230: 1229: 1210: 1204: 1203: 1192: 1186: 1185: 1174: 1168: 1167: 1157: 1132:(7536): 608–11. 1115: 1109: 1108: 1097: 1091: 1090: 1078: 1072: 1071: 1060: 1051: 1050: 1044: 1036: 1030: 1029: 1023: 1015: 1009: 1008: 1002: 994: 988: 987: 981: 973: 967: 966: 960: 952: 946: 945: 934: 925: 924: 914: 904: 887:(7): e02627-17. 872: 866: 865: 855: 838:(9): 4153–4160. 823: 817: 816: 780: 774: 773: 736: 730: 729: 719: 709: 675: 669: 668: 662: 654: 645: 644: 618: 612: 611: 565: 556: 555: 509: 408: 369: 332:20,000 - 30,000 329:10,000 - 18,000 308: 235:10,000 - 15,000 196: 133:On 19 Sep 2018, 49:(ZMW). A single 21: 2517: 2516: 2512: 2511: 2510: 2508: 2507: 2506: 2482: 2481: 2468: 2463: 2438:10.1002/pd.5156 2432:(11): 1146–54. 2419: 2418: 2414: 2369: 2368: 2364: 2308: 2307: 2303: 2272:(11): 1009–14. 2258: 2257: 2253: 2208: 2207: 2203: 2158: 2157: 2153: 2106: 2105: 2101: 2055: 2054: 2050: 2005: 2004: 2000: 1954: 1953: 1949: 1902: 1901: 1897: 1858:(7397): 260–3. 1843: 1842: 1838: 1773: 1772: 1768: 1723: 1722: 1718: 1673: 1672: 1668: 1623: 1622: 1618: 1606: 1601: 1600: 1596: 1578: 1577: 1573: 1528: 1527: 1523: 1474: 1473: 1469: 1453: 1452: 1448: 1431: 1425: 1423: 1416:"Archived copy" 1414: 1413: 1409: 1396: 1395: 1391: 1378: 1377: 1373: 1360: 1359: 1355: 1339: 1338: 1334: 1324: 1322: 1321:on 29 July 2020 1309: 1308: 1304: 1291: 1290: 1286: 1271: 1270: 1266: 1256: 1254: 1241: 1240: 1236: 1227: 1225: 1212: 1211: 1207: 1194: 1193: 1189: 1176: 1175: 1171: 1117: 1116: 1112: 1099: 1098: 1094: 1080: 1079: 1075: 1062: 1061: 1054: 1038: 1037: 1033: 1017: 1016: 1012: 996: 995: 991: 975: 974: 970: 954: 953: 949: 936: 935: 928: 874: 873: 869: 825: 824: 820: 782: 781: 777: 738: 737: 733: 677: 676: 672: 660: 656: 655: 648: 633: 620: 619: 615: 578:(5910): 133–8. 567: 566: 559: 522:(5607): 682–6. 511: 510: 506: 502: 460: 360: 266: 194:RS Performance 155: 144: 123: 105: 85: 77: 68: 28: 23: 22: 15: 12: 11: 5: 2515: 2513: 2505: 2504: 2499: 2494: 2492:Bioinformatics 2484: 2483: 2480: 2479: 2474: 2467: 2466:External links 2464: 2462: 2461: 2412: 2383:(5): 2159–68. 2362: 2301: 2251: 2222:(12): 1232–9. 2201: 2151: 2114:Genome Integr. 2099: 2048: 1998: 1947: 1895: 1836: 1766: 1737:(7): 693–700. 1716: 1666: 1637:(11): 2270–7. 1616: 1594: 1571: 1521: 1467: 1446: 1407: 1404:. 26 Apr 2019. 1389: 1371: 1353: 1332: 1302: 1299:. 30 Aug 2013. 1284: 1281:. 16 Apr 2013. 1264: 1234: 1205: 1202:. 15 Oct 2014. 1187: 1169: 1110: 1092: 1073: 1070:. 21 Aug 2013. 1052: 1031: 1010: 989: 968: 947: 944:. 19 Sep 2018. 926: 867: 818: 775: 742:J. Appl. Phys. 731: 692:(4): 1176–81. 670: 646: 631: 613: 557: 503: 501: 498: 459: 456: 453: 452: 449: 446: 443: 437: 436: 433: 430: 427: 421: 420: 417: 414: 411: 398: 397: 394: 391: 388: 382: 381: 378: 375: 372: 359: 356: 353: 352: 349: 346: 343: 337: 336: 333: 330: 327: 321: 320: 317: 314: 311: 265: 262: 259: 258: 255: 252: 249: 246: 243: 237: 236: 233: 230: 227: 224: 221: 215: 214: 211: 208: 205: 202: 199: 154: 151: 143: 140: 122: 119: 104: 101: 84: 81: 76: 73: 67: 64: 60:DNA polymerase 51:DNA polymerase 43:DNA sequencing 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2514: 2503: 2500: 2498: 2495: 2493: 2490: 2489: 2487: 2478: 2475: 2473: 2470: 2469: 2465: 2457: 2453: 2448: 2443: 2439: 2435: 2431: 2427: 2423: 2416: 2413: 2408: 2404: 2399: 2394: 2390: 2386: 2382: 2379: 2378: 2373: 2366: 2363: 2358: 2354: 2349: 2344: 2339: 2334: 2330: 2326: 2322: 2318: 2317: 2312: 2305: 2302: 2297: 2293: 2288: 2283: 2279: 2275: 2271: 2268: 2267: 2262: 2255: 2252: 2247: 2243: 2238: 2233: 2229: 2225: 2221: 2218: 2217: 2212: 2205: 2202: 2197: 2193: 2188: 2183: 2179: 2175: 2171: 2168: 2167: 2162: 2155: 2152: 2147: 2143: 2138: 2133: 2128: 2123: 2119: 2116: 2115: 2110: 2103: 2100: 2095: 2091: 2086: 2081: 2077: 2073: 2069: 2065: 2064: 2059: 2052: 2049: 2044: 2040: 2035: 2030: 2026: 2022: 2018: 2015: 2014: 2009: 2002: 1999: 1994: 1990: 1985: 1980: 1976: 1972: 1968: 1964: 1963: 1958: 1951: 1948: 1943: 1939: 1934: 1929: 1924: 1919: 1915: 1912: 1911: 1906: 1899: 1896: 1891: 1887: 1882: 1877: 1873: 1869: 1865: 1861: 1857: 1853: 1852: 1847: 1840: 1837: 1832: 1828: 1823: 1818: 1813: 1808: 1804: 1800: 1795: 1790: 1786: 1783: 1782: 1777: 1770: 1767: 1762: 1758: 1753: 1748: 1744: 1740: 1736: 1733: 1732: 1727: 1720: 1717: 1712: 1708: 1703: 1698: 1694: 1690: 1686: 1683: 1682: 1677: 1670: 1667: 1662: 1658: 1653: 1648: 1644: 1640: 1636: 1633: 1632: 1627: 1620: 1617: 1612: 1605: 1598: 1595: 1590: 1586: 1582: 1575: 1572: 1567: 1563: 1558: 1553: 1549: 1545: 1541: 1538: 1537: 1532: 1525: 1522: 1517: 1513: 1508: 1503: 1499: 1495: 1492:(8): 709–17. 1491: 1488: 1487: 1482: 1480: 1471: 1468: 1463: 1458: 1450: 1447: 1442: 1436: 1422:on 2018-09-24 1421: 1417: 1411: 1408: 1403: 1399: 1393: 1390: 1386:. 7 Mar 2018. 1385: 1381: 1375: 1372: 1368:. 9 Jan 2017. 1367: 1363: 1357: 1354: 1349: 1344: 1336: 1333: 1320: 1316: 1312: 1306: 1303: 1298: 1294: 1288: 1285: 1280: 1275: 1268: 1265: 1252: 1248: 1247:Next Gen Seek 1244: 1238: 1235: 1224:on 2013-04-21 1223: 1219: 1215: 1209: 1206: 1201: 1197: 1191: 1188: 1183: 1179: 1173: 1170: 1165: 1161: 1156: 1151: 1147: 1143: 1139: 1135: 1131: 1127: 1126: 1121: 1114: 1111: 1107:. 3 Oct 2013. 1106: 1102: 1096: 1093: 1088: 1084: 1077: 1074: 1069: 1065: 1059: 1057: 1053: 1048: 1043: 1035: 1032: 1027: 1022: 1014: 1011: 1006: 1001: 993: 990: 985: 980: 972: 969: 964: 959: 951: 948: 943: 939: 938:"PacBio Post" 933: 931: 927: 922: 918: 913: 908: 903: 898: 894: 890: 886: 882: 878: 871: 868: 863: 859: 854: 849: 845: 841: 837: 833: 829: 822: 819: 814: 810: 806: 802: 798: 794: 790: 786: 779: 776: 771: 767: 763: 759: 755: 751: 747: 744: 743: 735: 732: 727: 723: 718: 713: 708: 703: 699: 695: 691: 687: 686: 681: 674: 671: 666: 659: 653: 651: 647: 642: 638: 634: 628: 624: 617: 614: 609: 605: 601: 597: 593: 589: 585: 581: 577: 573: 572: 564: 562: 558: 553: 549: 545: 541: 537: 533: 529: 525: 521: 517: 516: 508: 505: 499: 497: 493: 490: 488: 483: 482:SNP calling. 479: 476: 472: 468: 463: 457: 450: 447: 444: 442: 439: 438: 435:Up to 500 GB 434: 432:Up to 360 GB 431: 428: 426: 423: 422: 418: 415: 413:Early Access 412: 410: 409: 403: 396:Up to 200 GB 395: 393:Up to 160 GB 392: 389: 387: 384: 383: 379: 376: 374:Early Access 373: 371: 370: 364: 357: 350: 347: 344: 342: 339: 338: 334: 331: 328: 326: 323: 322: 318: 315: 312: 310: 309: 303: 295: 291: 289: 283: 280: 277: 270: 263: 256: 253: 250: 247: 244: 242: 239: 238: 234: 231: 228: 225: 222: 220: 217: 216: 212: 209: 206: 203: 200: 198: 197: 191: 188: 182: 178: 174: 170: 167: 159: 152: 150: 148: 141: 139: 136: 131: 129: 120: 118: 115: 112: 110: 102: 100: 98: 94: 93:DNA synthesis 90: 89:DNA synthesis 82: 80: 74: 72: 65: 63: 61: 57: 52: 48: 44: 40: 36: 32: 19: 2429: 2425: 2415: 2380: 2375: 2365: 2320: 2314: 2304: 2269: 2264: 2254: 2219: 2214: 2204: 2169: 2164: 2154: 2117: 2112: 2102: 2067: 2061: 2051: 2016: 2011: 2001: 1969:(6): 461–5. 1966: 1962:Nat. Methods 1960: 1950: 1913: 1908: 1898: 1855: 1849: 1839: 1784: 1781:Genome Biol. 1779: 1769: 1734: 1729: 1719: 1687:(7): 701–7. 1684: 1679: 1669: 1634: 1629: 1619: 1610: 1597: 1588: 1584: 1574: 1542:(1): 33–42. 1539: 1534: 1524: 1489: 1484: 1478: 1470: 1461: 1449: 1424:. Retrieved 1420:the original 1410: 1402:Bio-IT World 1401: 1392: 1383: 1374: 1365: 1356: 1347: 1335: 1323:. Retrieved 1319:the original 1315:Bio-IT World 1314: 1305: 1296: 1287: 1278: 1267: 1255:. Retrieved 1251:the original 1246: 1237: 1226:. Retrieved 1222:the original 1217: 1208: 1199: 1190: 1181: 1172: 1129: 1123: 1113: 1104: 1095: 1086: 1076: 1067: 1046: 1034: 1025: 1013: 1004: 992: 983: 971: 962: 950: 941: 884: 880: 870: 835: 831: 821: 788: 784: 778: 745: 740: 734: 689: 683: 673: 664: 622: 616: 575: 569: 519: 513: 507: 494: 491: 484: 480: 474: 466: 464: 461: 451:Up to 50 GB 448:Up to 36 GB 440: 424: 401: 385: 361: 340: 324: 300: 284: 281: 278: 275: 254:350M - 500M 251:250M - 300M 240: 229:4300 - 5000 226:2500 - 2900 218: 186: 183: 179: 175: 171: 168: 164: 153:RS and RS II 145: 132: 124: 116: 113: 109:nanophotonic 106: 86: 78: 69: 38: 34: 30: 29: 2070:(1): 75–7. 2063:Nat Methods 1787:(9): R101. 1631:Genome Res. 1384:PacBio Blog 1366:PacBio Blog 1325:16 November 1200:PacBio Blog 1105:PacBio Blog 1068:PacBio Blog 458:Application 248:60M - 100M 2486:Categories 2019:(4): e29. 1916:(1): 375. 1910:BMC Genom. 1426:2018-09-24 1228:2012-04-28 500:References 487:methylated 351:20B - 50B 348:10B - 20B 257:500M - 1B 245:30M - 40M 66:Technology 56:nucleotide 39:sequencing 2120:(1): 10. 1794:1304.3752 1462:GenomeWeb 1348:GenomeWeb 1279:GenomeWeb 1047:GenomeWeb 1026:GenomeWeb 1005:GenomeWeb 984:GenomeWeb 963:GenomeWeb 805:1936-122X 641:813987819 390:~67.4 GB 2502:Genomics 2456:28921562 2407:29401301 2357:24282307 2296:24108091 2246:23138224 2196:23034806 2146:22185597 2094:22101853 2043:22156058 1993:20453866 1942:22863213 1890:22504184 1831:24034426 1761:22750884 1711:22750883 1661:22829535 1566:21142692 1516:21793740 1435:cite web 1257:18 April 1164:25383537 921:29427429 862:36132755 813:22577821 770:38892226 726:18216253 608:54488479 600:19023044 544:12560545 429:~250 GB 345:5B - 8B 288:amplicon 128:Illumina 2447:5725701 2398:5861413 2348:3864310 2325:Bibcode 2287:4075632 2237:3879109 2187:3526280 2137:3264494 2085:3646335 2034:3287169 1984:2879396 1933:3443046 1881:3390926 1860:Bibcode 1822:4053942 1799:Bibcode 1752:3707490 1702:3731737 1652:3483556 1557:3030187 1507:3168948 1479:E. coli 1297:Twitter 1155:4317254 1134:Bibcode 942:Twitter 912:5861821 889:Bibcode 853:9417158 750:Bibcode 717:2234111 694:Bibcode 667:. 2008. 580:Bibcode 571:Science 552:6060239 524:Bibcode 515:Science 475:de novo 467:de novo 445:~25 GB 358:8M Chip 187:de novo 142:History 2454:  2444:  2405:  2395:  2355:  2345:  2294:  2284:  2244:  2234:  2194:  2184:  2144:  2134:  2092:  2082:  2041:  2031:  1991:  1981:  1940:  1930:  1888:  1878:  1851:Nature 1829:  1819:  1759:  1749:  1709:  1699:  1659:  1649:  1564:  1554:  1514:  1504:  1162:  1152:  1125:Nature 919:  909:  860:  850:  811:  803:  768:  724:  714:  639:  629:  606:  598:  550:  542:  264:Sequel 213:P6-C4 210:P5-C3 207:P4-XL 1789:arXiv 1607:(PDF) 766:S2CID 661:(PDF) 604:S2CID 548:S2CID 232:8500 223:1100 2452:PMID 2403:PMID 2353:PMID 2316:PNAS 2292:PMID 2242:PMID 2192:PMID 2142:PMID 2090:PMID 2039:PMID 1989:PMID 1938:PMID 1886:PMID 1827:PMID 1757:PMID 1707:PMID 1657:PMID 1591:(8). 1562:PMID 1512:PMID 1441:link 1327:2015 1259:2013 1160:PMID 917:PMID 858:PMID 809:PMID 801:ISSN 722:PMID 685:PNAS 637:OCLC 627:ISBN 596:PMID 540:PMID 465:For 419:2.0 416:1.0 380:2.0 377:1.0 319:6.0 316:2.1 35:SMRT 2442:PMC 2434:doi 2393:PMC 2385:doi 2343:PMC 2333:doi 2321:110 2282:PMC 2274:doi 2232:PMC 2224:doi 2182:PMC 2174:doi 2132:PMC 2122:doi 2080:PMC 2072:doi 2029:PMC 2021:doi 1979:PMC 1971:doi 1928:PMC 1918:doi 1876:PMC 1868:doi 1856:485 1817:PMC 1807:doi 1747:PMC 1739:doi 1697:PMC 1689:doi 1647:PMC 1639:doi 1552:PMC 1544:doi 1540:364 1502:PMC 1494:doi 1490:365 1150:PMC 1142:doi 1130:517 907:PMC 897:doi 848:PMC 840:doi 793:doi 758:doi 746:103 712:PMC 702:doi 690:105 588:doi 576:323 532:doi 520:299 313:V2 204:C2 201:C1 2488:: 2450:. 2440:. 2430:37 2428:. 2424:. 2401:. 2391:. 2381:46 2374:. 2351:. 2341:. 2331:. 2319:. 2313:. 2290:. 2280:. 2270:31 2263:. 2240:. 2230:. 2220:30 2213:. 2190:. 2180:. 2170:40 2163:. 2140:. 2130:. 2111:. 2088:. 2078:. 2066:. 2060:. 2037:. 2027:. 2017:40 2010:. 1987:. 1977:. 1965:. 1959:. 1936:. 1926:. 1914:13 1907:. 1884:. 1874:. 1866:. 1854:. 1848:. 1825:. 1815:. 1805:. 1797:. 1785:14 1778:. 1755:. 1745:. 1735:30 1728:. 1705:. 1695:. 1685:30 1678:. 1655:. 1645:. 1635:22 1628:. 1609:. 1589:32 1587:. 1583:. 1560:. 1550:. 1533:. 1510:. 1500:. 1483:. 1460:. 1437:}} 1433:{{ 1400:. 1382:. 1364:. 1346:. 1313:. 1295:. 1277:. 1245:. 1216:. 1198:. 1180:. 1158:. 1148:. 1140:. 1128:. 1122:. 1103:. 1085:. 1066:. 1055:^ 1045:. 1024:. 1003:. 982:. 961:. 940:. 929:^ 915:. 905:. 895:. 885:84 883:. 879:. 856:. 846:. 834:. 830:. 807:. 799:. 789:41 787:. 764:. 756:. 720:. 710:. 700:. 688:. 682:. 663:. 649:^ 635:. 602:. 594:. 586:. 574:. 560:^ 546:. 538:. 530:. 518:. 37:) 2458:. 2436:: 2409:. 2387:: 2359:. 2335:: 2327:: 2298:. 2276:: 2248:. 2226:: 2198:. 2176:: 2148:. 2124:: 2118:2 2096:. 2074:: 2068:9 2045:. 2023:: 1995:. 1973:: 1967:7 1944:. 1920:: 1892:. 1870:: 1862:: 1833:. 1809:: 1801:: 1791:: 1763:. 1741:: 1713:. 1691:: 1663:. 1641:: 1568:. 1546:: 1518:. 1496:: 1464:. 1443:) 1429:. 1350:. 1329:. 1261:. 1231:. 1166:. 1144:: 1136:: 1089:. 1049:. 1028:. 1007:. 986:. 965:. 923:. 899:: 891:: 864:. 842:: 836:2 815:. 795:: 772:. 760:: 752:: 728:. 704:: 696:: 643:. 610:. 590:: 582:: 554:. 534:: 526:: 33:( 20:)

Index

Single Molecule Real Time Sequencing
DNA sequencing
zero-mode waveguide
DNA polymerase
nucleotide
DNA polymerase
DNA synthesis
DNA synthesis
phosphodiester bond
nanophotonic
Illumina
Pacific Biosciences
Pacific Biosciences


amplicon

dideoxynucleotide
methylated
Science
Bibcode
2003Sci...299..682L
doi
10.1126/science.1079700
PMID
12560545
S2CID
6060239

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.