Knowledge (XXG)

Coulomb blockade

Source đź“ť

33: 496: 484: 90: 508: 944:
Ionic Coulomb blockade (ICB) is the special case of CB, appearing in the electro-diffusive transport of charged ions through sub-nanometer artificial nanopores or biological ion channels. ICB is widely similar to its electronic counterpart in quantum dots, but presents some specific features defined
556:
When a positive voltage is applied to the gate electrode the energy levels of the island electrode are lowered. The electron (green 1.) can tunnel onto the island (2.), occupying a previously vacant energy level. From there it can tunnel onto the drain electrode (3.) where it inelastically scatters
421:
In order for the Coulomb blockade to be observable, the temperature has to be low enough so that the characteristic charging energy (the energy that is required to charge the junction with one elementary charge) is larger than the thermal energy of the charge carriers. In the past, for capacitances
1567:
Prati, E.; De Michielis, M.; Belli, M.; Cocco, S.; Fanciulli, M.; Kotekar-Patil, D.; Ruoff, M.; Kern, D. P.; Wharam, D. A.; Verduijn, J.; Tettamanzi, G. C.; Rogge, S.; Roche, B.; Wacquez, R.; Jehl, X.; Vinet, M.; Sanquer, M. (2012). "Few electron limit of n-type metal oxide semiconductor single
891:
A typical Coulomb blockade thermometer (CBT) is made from an array of metallic islands, connected to each other through a thin insulating layer. A tunnel junction forms between the islands, and as voltage is applied, electrons may tunnel across this junction. The tunneling rates and hence the
408:
is the capacitance of the junction. If the capacitance is very small, the voltage build up can be large enough to prevent another electron from tunnelling. The electric current is then suppressed at low bias voltages and the resistance of the device is no longer constant. The increase of the
469:. The integration of quantum dot fabrication with standard industrial technology has been achieved for silicon. CMOS process for obtaining massive production of single electron quantum dot transistors with channel size down to 20 nm x 20 nm has been implemented. 311:
is applied, this means that there will be a current, and, neglecting additional effects, the tunnelling current will be proportional to the bias voltage. In electrical terms, the tunnel junction behaves as a
350:) through the tunnel barrier (we neglect cotunneling, in which two electrons tunnel simultaneously). The tunnel junction capacitor is charged with one elementary charge by the tunnelling electron, causing a 1506:
Shin, S. J.; Lee, J. J.; Kang, H. J.; Choi, J. B.; Yang, S. -R. E.; Takahashi, Y.; Hasko, D. G. (2011). "Room-Temperature Charge Stability Modulated by Quantum Effects in a Nanoscale Silicon Island".
553:
In the blocking state no accessible energy levels are within tunneling range of an electron (in red) on the source contact. All energy levels on the island electrode with lower energies are occupied.
804: 1033: 706: 655: 1107: 876: 1235: 1165: 744: 1200: 839: 438:
refrigerators. Thanks to small sized quantum dots of only few nanometers, Coulomb blockade has been observed next above liquid helium temperature, up to room temperature.
1264: 584: 973: 1133: 136:. Because of the CB, the conductance of a device may not be constant at low bias voltages, but disappear for biases under a certain threshold, i.e. no current flows. 1056: 386: 235: 274: 604: 406: 1836:
Kaufman, Igor Kh.; Fedorenko, Olena A.; Luchinsky, Dmitri G.; Gibby, William A.T.; Roberts, Stephen K.; McClintock, Peter V.E.; Eisenberg, Robert S. (2017).
949:
of charge carriers (permeating ions vs electrons) and by the different origin of transport engine (classical electrodiffusion vs quantum tunnelling).
453:, one has to create electrodes with dimensions of approximately 100 by 100 nanometers. This range of dimensions is routinely reached for example by 1305:
Averin, D. V.; Likharev, K. K. (1986-02-01). "Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions".
284:
The following section is for the case of tunnel junctions with an insulating barrier between two normal conducting electrodes (NIN junctions).
122: 346:
Due to the discreteness of electrical charge, current through a tunnel junction is a series of events in which exactly one electron passes (
54: 978: 76: 1838:"Ionic Coulomb blockade and anomalous mole fraction effect in the NaChBac bacterial ion channel and its charge-varied mutants" 749: 466: 462: 1962: 671: 1967: 114: 47: 41: 527: 511: 500: 488: 478: 612: 331:
An arrangement of two conductors with an insulating layer in between not only has a resistance, but also a finite
454: 292: 187: 1453:
Couto, ODD; Puebla, J (2011). "Charge control in InP/(Ga,In)P single quantum dots embedded in Schottky diodes".
291:
is, in its simplest form, a thin insulating barrier between two conducting electrodes. According to the laws of
58: 1957: 1894:
Fulton, T.A.; Dolan, G.J. (1987). "Observation of single-electron charging effects in small tunnel junctions".
892:
conductance vary according to the charging energy of the islands as well as the thermal energy of the system.
1065: 1280: 1275: 939: 844: 1373: 879: 410: 1400:
Crippa A; et al. (2015). "Valley blockade and multielectron spin-valley Kondo effect in silicon".
1208: 1903: 1800: 1742: 1726: 1678: 1587: 1525: 1472: 1419: 1314: 321: 1205:
In biological ion channels ICB typically manifests itself in such valence selectivity phenomena as
714: 175: 163: 1138: 812: 1725:
Feng, Jiandong; Liu, Ke; Graf, Michael; Dumcenco, Dumitru; Kis, Andras; Di Ventra, Massimiliano;
1668: 1611: 1577: 1549: 1515: 1488: 1462: 1435: 1409: 1338: 1240: 1173: 927: 304: 102: 922:, the full width at half minimum of the measured differential conductance dip over an array of 563: 1919: 1859: 1818: 1766: 1758: 1704: 1603: 1541: 1330: 1285: 955: 665: 296: 242: 209: 194: 167: 159: 1112: 526:
The simplest device in which the effect of Coulomb blockade can be observed is the so-called
324:
on the barrier thickness. Typically, the barrier thickness is on the order of one to several
1911: 1849: 1808: 1750: 1694: 1686: 1595: 1533: 1480: 1427: 1361: 1322: 495: 458: 205: 148: 118: 357: 17: 1386: 1038: 288: 133: 1599: 546:. The electrical potential of the island can be tuned by a third electrode, known as the 214: 1907: 1813: 1804: 1788: 1746: 1690: 1682: 1630: 1591: 1529: 1476: 1423: 1318: 256: 1699: 1656: 899:
based on electric conductance characteristics of tunnel junction arrays. The parameter
589: 391: 183: 171: 1951: 1615: 1492: 1439: 1342: 711:
The thermal energy in the source contact plus the thermal energy in the island, i.e.
246: 179: 1553: 446: 445:
geometry with a capacitance of 1 femtofarad, using an oxide layer of electric
308: 126: 94: 317: 152: 1937: 1789:"Coulomb blockade model of permeation and selectivity in biological ion channels" 560:
The energy levels of the island electrode are evenly spaced with a separation of
155:
and the current-voltage relation of the Coulomb blockade looks like a staircase.
896: 539: 332: 300: 201: 140: 130: 1915: 1484: 1431: 423: 336: 295:, no current can flow through an insulating barrier. According to the laws of 1863: 1854: 1837: 1822: 1762: 1334: 975:
is defined by dielectric self-energy of incoming ion inside the pore/channel
1357: 806:
or else the electron will be able to pass the QD via thermal excitation; and
519: 450: 442: 340: 325: 197: 1923: 1770: 1730: 1708: 1607: 1545: 483: 151:
preventing other electrons to flow. Thus, the device will no longer follow
1890:, eds. B.L. Altshuler, P.A. Lee, and R.A. Webb (Elsevier, Amsterdam, 1991) 89: 435: 313: 250: 144: 538:, connected through tunnel junctions to one common electrode with a low 503:
for the blocking state (upper part) and transmitting state (lower part).
303:
for an electron on one side of the barrier to reach the other side (see
1326: 515: 507: 351: 139:
Coulomb blockade can be observed by making a device very small, like a
1537: 1365: 1942: 1881:
Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures
1754: 431: 237:) carry the current. In the case that the electrodes are metallic or 1414: 1266:) and concentration-dependent divalent blockade of sodium current. 1883:, eds. H. Grabert and M. H. Devoret (Plenum Press, New York, 1992) 1673: 1582: 1520: 1467: 506: 494: 482: 430:), this implied that the temperature has to be below about 1  427: 170:. However, when few electrons are involved and an external static 88: 1356:
Wang, Xufeng; Muralidharan, Bhaskaran; Klimeck, Gerhard (2006).
660:
To achieve the Coulomb blockade, three criteria have to be met:
158:
Even though the Coulomb blockade can be used to demonstrate the
1787:
Kaufman, I. Kh; McClintock, P. V. E.; Eisenberg, R. S. (2015).
1170:
ICB has been recently experimentally observed in sub-nanometer
499:
Left to right: energy levels of source, island and drain in a
26: 434:. This temperature range is routinely reached for example by 1631:"2.5 Minimum Tunnel Resistance for Single Electron Charging" 1188: 129:
of a small electronic device comprising at least one low-
174:
is applied, Coulomb blockade provides the ground for a
1358:"nanoHUB.org - Resources: Coulomb Blockade Simulation" 1068: 1041: 299:, however, there is a nonvanishing (larger than zero) 1243: 1211: 1176: 1141: 1115: 981: 958: 847: 815: 752: 717: 674: 615: 592: 566: 394: 360: 259: 217: 1731:"Observation of ionic Coulomb blockade in nanopores" 799:{\displaystyle k_{\rm {B}}T<{\frac {e^{2}}{2C}},} 1655:Krems, Matt; Di Ventra, Massimiliano (2013-01-10). 182:, which include quantum mechanical effects due to 1258: 1229: 1194: 1159: 1127: 1101: 1050: 1027: 967: 870: 833: 798: 738: 700: 649: 598: 578: 557:and reaches the drain electrode Fermi level (4.). 400: 380: 339:in this context, the tunnel junction behaves as a 268: 229: 1028:{\displaystyle \Delta E={\frac {z^{2}e^{2}}{2C}}} 701:{\displaystyle V_{\text{bias}}<{\frac {e}{C}}} 413:around zero bias is called the Coulomb blockade. 166:effect and its main description does not require 550:, which is capacitively coupled to the island. 668:divided by the self-capacitance of the island: 1109:, even at the room temperature, for ions with 530:. It consists of two electrodes known as the 316:with a constant resistance, also known as an 97:) of an electron tunnelling through a barrier 8: 650:{\displaystyle C={\frac {e^{2}}{\Delta E}}.} 193:The devices can comprise either metallic or 1635:About Single-Electron Devices and Circuits 895:Coulomb blockade thermometer is a primary 1853: 1812: 1698: 1672: 1581: 1519: 1466: 1413: 1249: 1248: 1242: 1218: 1213: 1210: 1187: 1182: 1177: 1175: 1147: 1142: 1140: 1114: 1086: 1085: 1067: 1040: 1008: 998: 991: 980: 957: 857: 848: 846: 821: 820: 814: 777: 771: 758: 757: 751: 723: 722: 716: 688: 679: 673: 628: 622: 614: 591: 565: 393: 370: 359: 258: 216: 200:. If the electrodes are superconducting, 77:Learn how and when to remove this message 1637:(Ph.D.). Vienna University of Technology 664:The bias voltage must be lower than the 40:This article includes a list of general 1297: 1102:{\textstyle (\Delta E\gg k_{\rm {B}}T)} 147:inside the device will create a strong 1382: 1371: 586:This gives rise to a self-capacitance 1938:Computational Single-Electronics book 1782: 1780: 1657:"Ionic Coulomb blockade in nanopores" 93:Schematic representation (similar to 7: 1720: 1718: 1661:Journal of Physics: Condensed Matter 190:respectively between the electrons. 878:which is derived from Heisenberg's 871:{\displaystyle {\frac {h}{e^{2}}},} 746:must be below the charging energy: 160:quantization of the electric charge 143:. When the device is small enough, 1307:Journal of Low Temperature Physics 1250: 1237:conduction bands (vs fixed charge 1087: 1072: 1042: 982: 959: 930:provide the absolute temperature. 822: 759: 724: 635: 567: 46:it lacks sufficient corresponding 25: 1886:D.V. Averin and K.K Likharev, in 1842:EPJ Nonlinear Biomedical Physics 1230:{\displaystyle {\text{Ca}}^{2+}} 952:In the case of ICB, Coulomb gap 31: 1943:Coulomb blockade online lecture 335:. The insulator is also called 178:(like Pauli spin blockade) and 1888:Mesoscopic Phenomena in Solids 1600:10.1088/0957-4484/23/21/215204 1096: 1069: 945:by possibly different valence 1: 1814:10.1088/1367-2630/17/8/083021 1691:10.1088/0953-8984/25/6/065101 1629:Wasshuber, Christoph (1997). 1160:{\displaystyle {\ce {Ca^2+}}} 739:{\displaystyle k_{\rm {B}}T,} 441:To make a tunnel junction in 1195:{\displaystyle {\ce {MoS2}}} 926:junctions together with the 887:Coulomb blockade thermometer 834:{\displaystyle R_{\rm {t}},} 467:shadow evaporation technique 1259:{\displaystyle Q_{\rm {f}}} 115:Charles-Augustin de Coulomb 18:Single electron transistors 1984: 1916:10.1103/PhysRevLett.59.109 1485:10.1103/PhysRevB.84.125301 1432:10.1103/PhysRevB.92.035424 937: 809:The tunneling resistance, 606:of the island, defined as 528:single-electron transistor 512:Single-electron transistor 501:single-electron transistor 489:single-electron transistor 479:Single-electron transistor 476: 473:Single-electron transistor 579:{\displaystyle \Delta E.} 455:electron beam lithography 320:. The resistance depends 293:classical electrodynamics 968:{\displaystyle \Delta E} 463:Niemeyer–Dolan technique 1568:electron transistors". 1128:{\displaystyle z>=2} 1058:depends on ion valence 841:should be greater than 461:technologies, like the 411:differential resistance 61:more precise citations. 1855:10.1051/epjnbp/2017003 1793:New Journal of Physics 1381:Cite journal requires 1281:Quantisation of charge 1276:Ionic Coulomb blockade 1260: 1231: 1196: 1161: 1129: 1103: 1052: 1029: 969: 940:Ionic Coulomb blockade 934:Ionic Coulomb blockade 872: 835: 800: 740: 702: 651: 600: 580: 523: 504: 492: 402: 382: 270: 231: 123:electrical conductance 98: 1727:Radenovic, Aleksandra 1261: 1232: 1197: 1162: 1130: 1104: 1062:. ICB appears strong 1053: 1051:{\textstyle \Delta E} 1030: 970: 880:uncertainty principle 873: 836: 801: 741: 703: 652: 601: 581: 510: 498: 486: 449:10 and thickness one 403: 383: 381:{\displaystyle U=e/C} 276:) carry the current. 271: 232: 121:, is the decrease in 92: 1241: 1209: 1174: 1139: 1113: 1066: 1039: 979: 956: 845: 813: 750: 715: 672: 613: 590: 564: 392: 358: 280:In a tunnel junction 257: 215: 188:orbital interactions 1963:Quantum electronics 1908:1987PhRvL..59..109F 1805:2015NJPh...17h3021K 1747:2016NatMa..15..850F 1683:2013JPCM...25f5101K 1592:2012Nanot..23u5204P 1530:2011NanoL..11.1591S 1477:2011PhRvB..84l5301C 1424:2015PhRvB..92c5424C 1319:1986JLTP...62..345A 1190: 230:{\displaystyle -2e} 1968:Mesoscopic physics 1327:10.1007/BF00683469 1256: 1227: 1192: 1178: 1157: 1125: 1099: 1048: 1025: 965: 928:physical constants 868: 831: 796: 736: 698: 647: 596: 576: 524: 505: 493: 398: 378: 305:quantum tunnelling 269:{\displaystyle -e} 266: 253:(with a charge of 227: 210:elementary charges 103:mesoscopic physics 99: 1538:10.1021/nl1044692 1455:Physical Review B 1402:Physical Review B 1366:10.4231/d3c24qp1w 1286:Elementary charge 1216: 1181: 1146: 1023: 863: 791: 696: 682: 666:elementary charge 642: 599:{\displaystyle C} 401:{\displaystyle C} 297:quantum mechanics 239:normal-conducting 168:quantum mechanics 149:Coulomb repulsion 87: 86: 79: 16:(Redirected from 1975: 1927: 1868: 1867: 1857: 1833: 1827: 1826: 1816: 1784: 1775: 1774: 1755:10.1038/nmat4607 1735:Nature Materials 1722: 1713: 1712: 1702: 1676: 1652: 1646: 1645: 1643: 1642: 1626: 1620: 1619: 1585: 1564: 1558: 1557: 1523: 1514:(4): 1591–1597. 1503: 1497: 1496: 1470: 1450: 1444: 1443: 1417: 1397: 1391: 1390: 1384: 1379: 1377: 1369: 1353: 1347: 1346: 1313:(3–4): 345–373. 1302: 1265: 1263: 1262: 1257: 1255: 1254: 1253: 1236: 1234: 1233: 1228: 1226: 1225: 1217: 1214: 1201: 1199: 1198: 1193: 1191: 1189: 1186: 1179: 1166: 1164: 1163: 1158: 1156: 1155: 1154: 1144: 1134: 1132: 1131: 1126: 1108: 1106: 1105: 1100: 1092: 1091: 1090: 1057: 1055: 1054: 1049: 1034: 1032: 1031: 1026: 1024: 1022: 1014: 1013: 1012: 1003: 1002: 992: 974: 972: 971: 966: 921: 877: 875: 874: 869: 864: 862: 861: 849: 840: 838: 837: 832: 827: 826: 825: 805: 803: 802: 797: 792: 790: 782: 781: 772: 764: 763: 762: 745: 743: 742: 737: 729: 728: 727: 707: 705: 704: 699: 697: 689: 684: 683: 680: 656: 654: 653: 648: 643: 641: 633: 632: 623: 605: 603: 602: 597: 585: 583: 582: 577: 540:self-capacitance 465:, also known as 459:pattern transfer 457:and appropriate 407: 405: 404: 399: 387: 385: 384: 379: 374: 275: 273: 272: 267: 236: 234: 233: 228: 119:electrical force 107:Coulomb blockade 82: 75: 71: 68: 62: 57:this article by 48:inline citations 35: 34: 27: 21: 1983: 1982: 1978: 1977: 1976: 1974: 1973: 1972: 1958:Nanoelectronics 1948: 1947: 1934: 1896:Phys. Rev. Lett 1893: 1872: 1871: 1835: 1834: 1830: 1786: 1785: 1778: 1724: 1723: 1716: 1654: 1653: 1649: 1640: 1638: 1628: 1627: 1623: 1566: 1565: 1561: 1505: 1504: 1500: 1452: 1451: 1447: 1399: 1398: 1394: 1380: 1370: 1355: 1354: 1350: 1304: 1303: 1299: 1294: 1272: 1244: 1239: 1238: 1212: 1207: 1206: 1172: 1171: 1143: 1137: 1136: 1111: 1110: 1081: 1064: 1063: 1037: 1036: 1015: 1004: 994: 993: 977: 976: 954: 953: 942: 936: 913: 906: 900: 889: 853: 843: 842: 816: 811: 810: 783: 773: 753: 748: 747: 718: 713: 712: 675: 670: 669: 634: 624: 611: 610: 588: 587: 562: 561: 542:, known as the 487:Schematic of a 481: 475: 443:plate condenser 419: 390: 389: 356: 355: 289:tunnel junction 282: 255: 254: 243:superconducting 241:, i.e. neither 213: 212: 195:superconducting 180:valley blockade 162:, it remains a 134:tunnel junction 113:), named after 83: 72: 66: 63: 53:Please help to 52: 36: 32: 23: 22: 15: 12: 11: 5: 1981: 1979: 1971: 1970: 1965: 1960: 1950: 1949: 1946: 1945: 1940: 1933: 1932:External links 1930: 1929: 1928: 1902:(1): 109–112. 1891: 1884: 1877: 1876: 1870: 1869: 1828: 1776: 1741:(8): 850–855. 1714: 1647: 1621: 1576:(21): 215204. 1570:Nanotechnology 1559: 1498: 1461:(12): 125301. 1445: 1392: 1383:|journal= 1348: 1296: 1295: 1293: 1290: 1289: 1288: 1283: 1278: 1271: 1268: 1252: 1247: 1224: 1221: 1185: 1153: 1150: 1124: 1121: 1118: 1098: 1095: 1089: 1084: 1080: 1077: 1074: 1071: 1047: 1044: 1021: 1018: 1011: 1007: 1001: 997: 990: 987: 984: 964: 961: 938:Main article: 935: 932: 911: 904: 888: 885: 884: 883: 867: 860: 856: 852: 830: 824: 819: 807: 795: 789: 786: 780: 776: 770: 767: 761: 756: 735: 732: 726: 721: 709: 695: 692: 687: 678: 658: 657: 646: 640: 637: 631: 627: 621: 618: 595: 575: 572: 569: 477:Main article: 474: 471: 418: 415: 397: 377: 373: 369: 366: 363: 318:ohmic resistor 281: 278: 265: 262: 247:semiconducting 226: 223: 220: 172:magnetic field 85: 84: 39: 37: 30: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1980: 1969: 1966: 1964: 1961: 1959: 1956: 1955: 1953: 1944: 1941: 1939: 1936: 1935: 1931: 1925: 1921: 1917: 1913: 1909: 1905: 1901: 1897: 1892: 1889: 1885: 1882: 1879: 1878: 1874: 1873: 1865: 1861: 1856: 1851: 1847: 1843: 1839: 1832: 1829: 1824: 1820: 1815: 1810: 1806: 1802: 1799:(8): 083021. 1798: 1794: 1790: 1783: 1781: 1777: 1772: 1768: 1764: 1760: 1756: 1752: 1748: 1744: 1740: 1736: 1732: 1728: 1721: 1719: 1715: 1710: 1706: 1701: 1696: 1692: 1688: 1684: 1680: 1675: 1670: 1667:(6): 065101. 1666: 1662: 1658: 1651: 1648: 1636: 1632: 1625: 1622: 1617: 1613: 1609: 1605: 1601: 1597: 1593: 1589: 1584: 1579: 1575: 1571: 1563: 1560: 1555: 1551: 1547: 1543: 1539: 1535: 1531: 1527: 1522: 1517: 1513: 1509: 1502: 1499: 1494: 1490: 1486: 1482: 1478: 1474: 1469: 1464: 1460: 1456: 1449: 1446: 1441: 1437: 1433: 1429: 1425: 1421: 1416: 1411: 1408:(3): 035424. 1407: 1403: 1396: 1393: 1388: 1375: 1367: 1363: 1359: 1352: 1349: 1344: 1340: 1336: 1332: 1328: 1324: 1320: 1316: 1312: 1308: 1301: 1298: 1291: 1287: 1284: 1282: 1279: 1277: 1274: 1273: 1269: 1267: 1245: 1222: 1219: 1203: 1183: 1168: 1151: 1148: 1122: 1119: 1116: 1093: 1082: 1078: 1075: 1061: 1045: 1019: 1016: 1009: 1005: 999: 995: 988: 985: 962: 950: 948: 941: 933: 931: 929: 925: 920: 916: 910: 903: 898: 893: 886: 881: 865: 858: 854: 850: 828: 817: 808: 793: 787: 784: 778: 774: 768: 765: 754: 733: 730: 719: 710: 693: 690: 685: 676: 667: 663: 662: 661: 644: 638: 629: 625: 619: 616: 609: 608: 607: 593: 573: 570: 558: 554: 551: 549: 545: 541: 537: 533: 529: 521: 517: 513: 509: 502: 497: 490: 485: 480: 472: 470: 468: 464: 460: 456: 452: 448: 444: 439: 437: 433: 429: 425: 422:above 1  416: 414: 412: 395: 375: 371: 367: 364: 361: 353: 349: 344: 342: 338: 334: 329: 327: 323: 322:exponentially 319: 315: 310: 306: 302: 298: 294: 290: 285: 279: 277: 263: 260: 252: 248: 244: 240: 224: 221: 218: 211: 208:of minus two 207: 203: 199: 196: 191: 189: 185: 181: 177: 176:spin blockade 173: 169: 165: 161: 156: 154: 150: 146: 142: 137: 135: 132: 128: 127:bias voltages 124: 120: 116: 112: 108: 104: 96: 91: 81: 78: 70: 60: 56: 50: 49: 43: 38: 29: 28: 19: 1899: 1895: 1887: 1880: 1845: 1841: 1831: 1796: 1792: 1738: 1734: 1664: 1660: 1650: 1639:. Retrieved 1634: 1624: 1573: 1569: 1562: 1511: 1508:Nano Letters 1507: 1501: 1458: 1454: 1448: 1405: 1401: 1395: 1374:cite journal 1351: 1310: 1306: 1300: 1204: 1169: 1059: 951: 946: 943: 923: 918: 914: 908: 901: 894: 890: 659: 559: 555: 552: 547: 543: 535: 531: 525: 447:permittivity 440: 420: 347: 345: 330: 309:bias voltage 286: 283: 238: 202:Cooper pairs 192: 157: 138: 110: 106: 100: 95:band diagram 73: 64: 45: 1360:. nanoHUB. 1135:, e.g. for 897:thermometer 417:Observation 333:capacitance 301:probability 141:quantum dot 131:capacitance 59:introducing 1952:Categories 1641:2012-01-01 1415:1501.02665 1292:References 1035:and hence 518:leads and 424:femtofarad 337:dielectric 326:nanometers 307:). When a 198:electrodes 42:references 1864:2195-0008 1823:1367-2630 1763:1476-4660 1674:1103.2749 1616:206063658 1583:1203.4811 1521:1201.3724 1493:119215237 1468:1107.2522 1440:117310207 1343:120841063 1335:0022-2291 1079:≫ 1073:Δ 1043:Δ 983:Δ 960:Δ 636:Δ 568:Δ 520:aluminium 451:nanometer 426:(10  354:build up 341:capacitor 261:− 251:electrons 219:− 164:classical 153:Ohm's law 145:electrons 125:at small 1924:10035115 1771:27019385 1729:(2016). 1709:23307655 1608:22552118 1546:21446734 1270:See also 907:= 5.439 534:and the 436:Helium-3 388:, where 314:resistor 204:(with a 67:May 2012 1904:Bibcode 1875:General 1801:Bibcode 1743:Bibcode 1700:4324628 1679:Bibcode 1588:Bibcode 1554:7133807 1526:Bibcode 1473:Bibcode 1420:Bibcode 1315:Bibcode 1202:pores. 708: ; 522:island. 516:niobium 352:voltage 348:tunnels 55:improve 1922:  1862:  1821:  1769:  1761:  1707:  1697:  1614:  1606:  1552:  1544:  1491:  1438:  1341:  1333:  1167:ions. 544:island 536:source 432:kelvin 206:charge 44:, but 1848:: 4. 1669:arXiv 1612:S2CID 1578:arXiv 1550:S2CID 1516:arXiv 1489:S2CID 1463:arXiv 1436:S2CID 1410:arXiv 1339:S2CID 1120:>= 532:drain 514:with 428:farad 1920:PMID 1860:ISSN 1819:ISSN 1767:PMID 1759:ISSN 1705:PMID 1604:PMID 1542:PMID 1387:help 1331:ISSN 769:< 686:< 681:bias 548:gate 287:The 245:nor 186:and 184:spin 105:, a 1912:doi 1850:doi 1809:doi 1751:doi 1695:PMC 1687:doi 1596:doi 1534:doi 1481:doi 1428:doi 1362:doi 1323:doi 1180:MoS 117:'s 101:In 1954:: 1918:. 1910:. 1900:59 1898:. 1858:. 1844:. 1840:. 1817:. 1807:. 1797:17 1795:. 1791:. 1779:^ 1765:. 1757:. 1749:. 1739:15 1737:. 1733:. 1717:^ 1703:. 1693:. 1685:. 1677:. 1665:25 1663:. 1659:. 1633:. 1610:. 1602:. 1594:. 1586:. 1574:23 1572:. 1548:. 1540:. 1532:. 1524:. 1512:11 1510:. 1487:. 1479:. 1471:. 1459:84 1457:. 1434:. 1426:. 1418:. 1406:92 1404:. 1378:: 1376:}} 1372:{{ 1337:. 1329:. 1321:. 1311:62 1309:. 1215:Ca 1145:Ca 909:Nk 343:. 328:. 249:, 111:CB 1926:. 1914:: 1906:: 1866:. 1852:: 1846:5 1825:. 1811:: 1803:: 1773:. 1753:: 1745:: 1711:. 1689:: 1681:: 1671:: 1644:. 1618:. 1598:: 1590:: 1580:: 1556:. 1536:: 1528:: 1518:: 1495:. 1483:: 1475:: 1465:: 1442:. 1430:: 1422:: 1412:: 1389:) 1385:( 1368:. 1364:: 1345:. 1325:: 1317:: 1251:f 1246:Q 1223:+ 1220:2 1184:2 1152:+ 1149:2 1123:2 1117:z 1097:) 1094:T 1088:B 1083:k 1076:E 1070:( 1060:z 1046:E 1020:C 1017:2 1010:2 1006:e 1000:2 996:z 989:= 986:E 963:E 947:z 924:N 919:e 917:/ 915:T 912:B 905:½ 902:V 882:. 866:, 859:2 855:e 851:h 829:, 823:t 818:R 794:, 788:C 785:2 779:2 775:e 766:T 760:B 755:k 734:, 731:T 725:B 720:k 694:C 691:e 677:V 645:. 639:E 630:2 626:e 620:= 617:C 594:C 574:. 571:E 491:. 396:C 376:C 372:/ 368:e 365:= 362:U 264:e 225:e 222:2 109:( 80:) 74:( 69:) 65:( 51:. 20:)

Index

Single electron transistors
references
inline citations
improve
introducing
Learn how and when to remove this message

band diagram
mesoscopic physics
Charles-Augustin de Coulomb
electrical force
electrical conductance
bias voltages
capacitance
tunnel junction
quantum dot
electrons
Coulomb repulsion
Ohm's law
quantization of the electric charge
classical
quantum mechanics
magnetic field
spin blockade
valley blockade
spin
orbital interactions
superconducting
electrodes
Cooper pairs

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑