Knowledge (XXG)

Soft matter

Source 📝

662: 953: 49: 675: 1427:(AFM) are often used to characterize forms of soft matter due to their applicability to mapping systems at the nanoscale. These imaging techniques are not universally appropriate to all classes of soft matter and some systems may be more suited to one kind of analysis than another. For example, there are limited applications in imaging hydrogels with TEM due to the processes required for imaging. However, 1116: 1132: 4160: 1253:
Colloids are non-soluble particles suspended in a medium, such as proteins in an aqueous solution. Research into colloids is primarily focused on understanding the organization of matter, with the large structures of colloids, relative to individual molecules, large enough that they can be readily
1397:
methods are often employed to model and understand soft matter systems, as they have the ability to strictly control the composition and environment of the structures being investigated, as well as span from microscopic to macroscopic length scales. Computational methods are limited, however, by
1318:
Due to the importance of mesoscale structures in the overarching properties of soft matter, experimental work is primarily focused on the bulk properties of the materials. Rheology is often used to investigate the physical changes of the material under stress. Biological systems, such as protein
997:), and yet are much smaller than the macroscopic (overall) scale of the material. The properties and interactions of these mesoscopic structures may determine the macroscopic behavior of the material. The large number of constituents forming these mesoscopic structures, and the large 1043:
Self-assembly is an inherent characteristic of soft matter systems. The characteristic complex behavior and hierarchical structures arise spontaneously as a system evolves towards equilibrium. Self-assembly can be classified as static when the resulting structure is due to a
972:
into mesoscopic physical structures. The assembly of the mesoscale structures that form the macroscale material is governed by low energies, and these low energy associations allow for the thermal and mechanical deformation of the material. By way of contrast, in hard
1451:
Soft materials are important in a wide range of technological applications, and each soft material can often be associated with multiple disciplines. Liquid crystals, for example, were originally discovered in the biological sciences when the botanist and chemist
1154:
Polymers are large molecules composed of repeating subunits whose characteristics are governed by their environment and composition. Polymers encompass synthetic plastics, natural fibers and rubbers, and biological proteins. Polymer research finds applications in
1020:
are mesoscopic because they individually consist of a vast number of molecules, and yet the foam itself consists of a great number of these bubbles, and the overall mechanical stiffness of the foam emerges from the combined interactions of the bubbles.
981:
with no changes in the pattern at any mesoscopic scale. Unlike hard materials, where only small distortions occur from thermal or mechanical agitation, soft matter can undergo local rearrangements of the microscopic building blocks.
1015:
are much smaller than the overall quantity of liquid and yet much larger than its individual molecules, and the emergence of these vortices controls the overall flowing behavior of the material. Also, the bubbles that compose a
901:. Together, they postulated that the chemical stability, ease of deformation, and permeability of certain polymer networks in aqueous environments would have a significant impact on medicine, and were the inventors of the soft 1231:, that have a high solvent/content ratio. Research into functionalizing gels that are sensitive to mechanical and thermal stress, as well as solvent choice, has given rise to diverse structures with characteristics such as 1139:
Soft matter consists of a diverse range of interrelated systems and can be broadly categorized into certain classes. These classes are by no means distinct, as often there are overlaps between two or more groups.
1268:
Liquid crystals can consist of proteins, small molecules, or polymers, that can be manipulated to form cohesive order in a specific direction. They exhibit liquid-like behavior in that they can
1511:. Polymers also encompass biological molecules such as proteins, where research insights from soft matter research have been applied to better understand topics like protein crystallization. 1553:
to the concepts of soft matter physics. Applications of soft matter characteristics are used to understand biologically relevant topics such as membrane mobility, as well as the rheology of
1545:
Historically the problems considered in the early days of soft matter science were those pertaining to the biological sciences. As such, an important application of soft matter research is
1048:
minimum, or dynamic when the system is caught in a metastable state. Dynamic self-assembly can be utilized in the functional design of soft materials with these metastable states through
863:
in 1889. The experimental setup that Lehmann used to investigate the two melting points of cholesteryl benzoate are still used in the research of liquid crystals as of about 2019.
1522:. The physical properties available to foams have resulted in applications which can be based on their viscosity, with more rigid and self-supporting forms of foams being used as 3748:
Wu, H.,  Friedrich, H.,  Patterson, J. P.,  Sommerdijk, N. A. J. M.,  de, N. (2020), "Liquid-Phase Electron Microscopy for Soft Matter Science and Biology".
1024:
Typical bond energies in soft matter structures are of similar scale to thermal energies. Therefore the structures are constantly affected by thermal fluctuations and undergo
706: 1001:
this causes, results in a general disorder between the large-scale structures. This disorder leads to the loss of long-range order that is characteristic of hard matter.
1127:
molecule; a common scaffold used in the formation of gels. The atoms are colored such that red represents oxygen, cyan represents carbon, and white represents hydrogen.
4184:- a blog run by graduate students and postdocs that makes soft matter more accessible through bite-sized posts that summarize current and classic soft matter research 1491:
found in tires. Polymers encompass a large range of soft matter, with applications in material science. An example of this is hydrogel. With the ability to undergo
4472: 2627: 2174: 4242: 1049: 1402:
in the prediction of soft matter properties is also a growing field in computer science thanks to the large amount of data available for soft matter systems.
882:
was unheard of at the time, with the scientific consensus being that the recorded high molecular weights of compounds like natural rubber were instead due to
4561: 2816:
Lin, Qianming; Li, Longyu; Tang, Miao; Uenuma, Shuntaro; Samanta, Jayanta; Li, Shangda; Jiang, Xuanfeng; Zou, Lingyi; Ito, Kohzo; Ke, Chenfeng (2021).
800:
aspects are generally unimportant. When soft materials interact favorably with surfaces, they become squashed without an external compressive force.
1376:
of the constituents in the system. There are limitations in the application of scattering techniques to some systems, as they can be more suited to
1328: 4440: 699: 661: 4100: 4010: 2603: 2414: 2150: 2052: 1912: 1690: 2126:
American Chemical Society International Historic Chemical Landmarks. Foundations of Polymer Science: Hermann Staudinger and Macromolecules.
1040:
states. This characteristic can allow for recovery of initial state through an external stimulus, which is often exploited in research.
4215: 2127: 1100: 4587: 4235: 4122: 2453: 692: 679: 3671:"General procedure for evaluating amorphous scattering and crystallinity from X-ray diffraction scans of semicrystalline polymers" 1821:"Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen" 1499:. Due to their stimuli responsive behavior, 3D printing of hydrogels has found applications in a diverse range of fields, such as 1420: 913: 1823:[On the Movement of Small Particles Suspended in Stationary Liquids Required by the Molecular-Kinetic Theory of Heat]. 998: 960:
Interesting behaviors arise from soft matter in ways that cannot be predicted, or are difficult to predict, directly from its
4388: 454: 1398:
their suitability to the system and must be regularly validated against experimental results to ensure accuracy. The use of
1465: 1273: 109: 4228: 1364:
can also be used for materials when probing for the average properties of the constituents. These methods can determine
1353: 1190: 814:
in simple systems can be generalized to the more complex cases found in soft matter, in particular, to the behaviors of
629: 4147:"Soft Matter and Biomaterials on the Nanoscale: The WSPC Reference on Functional Nanomaterials — Part I (In 4 Volumes)" 4525: 1349: 4356: 4329: 4034: 2178: 1592: 1469: 1432: 1365: 634: 259: 968:
constituents. Materials termed soft matter exhibit this property due to a shared propensity of these materials to
3700:
Peerless, James S.; Milliken, Nina J. B.; Oweida, Thomas J.; Manning, Matthew D.; Yingling, Yaroslava G. (2019).
1104: 1045: 956:
The self-assembly of individual phospholipids into colloids (Liposome and Micelle) or a membrane (bilayer sheet).
524: 199: 1236: 952: 4462: 1361: 1303: 974: 871: 860: 738: 519: 514: 40: 977:
it is often possible to predict the overall behavior of a material because the molecules are organized into a
730:
that can be deformed or structurally altered by thermal or mechanical stress which is of similar magnitude to
604: 3774:"Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications" 2539: 2076: 1428: 1424: 1394: 1324: 1168: 909: 803: 614: 209: 4164: 3208:"Exploring Macrocycles in Functional Supramolecular Gels: From Stimuli Responsiveness to Systems Chemistry" 1476:
are another example of soft materials, where the constituent elements in liquid crystals can self-propel.
4546: 4408: 3493: 1461: 1277: 839: 807: 599: 539: 509: 459: 179: 69: 4551: 4520: 4383: 4304: 1320: 1072: 1033: 855:
The crystalline optical properties of liquid crystals and their ability to flow were first described by
639: 254: 239: 31: 777:. These materials share an important common feature in that predominant physical behaviors occur at an 989:
of physical structures. The structures are much larger than the microscopic scale (the arrangement of
4582: 4510: 4334: 4294: 3899: 3617: 2878: 2763: 2698: 2551: 2495: 2354: 2312: 2205: 1984: 1832: 1765: 1567: 1508: 1488: 1272:, yet they can obtain close-to-crystal alignment. One feature of liquid crystals is their ability to 1232: 1056: 1029: 937: 883: 731: 229: 119: 4485: 4344: 4339: 4324: 4299: 4276: 4252: 2646:"Dynamic Macromolecular Material Design-The Versatility of Cyclodextrin-Based Host-Guest Chemistry" 2128:
http://www.acs.org/content/acs/en/education/whatischemistry/landmarks/staudingerpolymerscience.html
2075:
Hermann Staudinger – Biographical. NobelPrize.org. Nobel Prize Outreach AB 2023. Mon. 13 Feb 2023.
1453: 1389: 1289: 856: 469: 279: 129: 4541: 4418: 4413: 4366: 4028: 3923: 3811: 3731: 3581: 3555: 3543: 3469: 3373: 3274: 3254: 2910: 2868: 2837: 2817: 2795: 2621: 2394: 2281: 2229: 2168: 2058: 2012: 1965: 1806:
The Nobel Prize in Physics 1991. NobelPrize.org. Nobel Prize Outreach AB 2023. Mon. 13 Feb 2023.
1735: 1523: 1504: 1416: 1357: 1202: 1194: 1084: 1064: 925: 867: 609: 584: 332: 323: 4171: 3829:
Miller, Daniel S.; Carlton, Rebecca J.; Mushenheim, Peter C.; Abbott, Nicholas L. (2013-03-12).
3670: 2300: 1538:
or makeup. Foams have also found biomedical applications in tissue engineering as scaffolds and
2395:"Fracture in soft elastic materials: Continuum description, molecular aspects and applications" 2089: 852:). This work built on established research into systems that would now be considered colloids. 4556: 4505: 4450: 4430: 4316: 4118: 4096: 4016: 4006: 3982: 3964: 3915: 3868: 3850: 3803: 3795: 3723: 3651: 3633: 3573: 3521: 3513: 3461: 3420: 3412: 3365: 3357: 3316: 3235: 3227: 3185: 3136: 3118: 3074: 3056: 3012: 2973: 2955: 2929: 2902: 2894: 2787: 2779: 2732: 2714: 2667: 2609: 2599: 2567: 2513: 2459: 2449: 2410: 2372: 2273: 2221: 2156: 2146: 2109: 2048: 2004: 1957: 1918: 1908: 1883: 1789: 1781: 1727: 1686: 1647: 1632: 1602: 1531: 1519: 1160: 1076: 969: 762: 579: 424: 314: 234: 3701: 3296: 2992: 2563: 4495: 4435: 4361: 3972: 3954: 3907: 3858: 3842: 3785: 3756: 3713: 3682: 3641: 3625: 3565: 3505: 3451: 3404: 3347: 3308: 3266: 3219: 3175: 3167: 3126: 3108: 3064: 3046: 3004: 2963: 2945: 2886: 2829: 2771: 2722: 2706: 2657: 2559: 2538:
Chen, Daniel T.N.; Wen, Qi; Janmey, Paul A.; Crocker, John C.; Yodh, Arjun G. (2010-08-10).
2503: 2402: 2362: 2320: 2263: 2213: 2101: 2040: 1996: 1949: 1873: 1840: 1773: 1719: 1678: 1627: 1135:
Cartoon representation of the molecular order of crystal, liquid crystal, and liquid states.
1068: 1028:. The ease of deformation and influence of low energy interactions regularly result in slow 986: 929: 894: 811: 782: 284: 249: 244: 204: 174: 144: 104: 64: 4142:
R.G. Larson, "The Structure and Rheology of Complex Fluids," Oxford University Press (1999)
912:. The work of de Gennes across different forms of soft matter was key to understanding its 4515: 4425: 4371: 4271: 3509: 3033:
Maimouni, Ilham; Cejas, Cesare M.; Cossy, Janine; Tabeling, Patrick; Russo, Maria (2020).
1807: 1025: 835: 831: 594: 544: 414: 169: 81: 4197: 3903: 3621: 2882: 2767: 2702: 2555: 2499: 2358: 2316: 2209: 1836: 1769: 4445: 4400: 4378: 4266: 4067: 3977: 3942: 3863: 3830: 3646: 3605: 3392: 3180: 3155: 3131: 3096: 3069: 3034: 2968: 2933: 2727: 2686: 1612: 1582: 1492: 1480: 1440: 1269: 1263: 1156: 1067:
induced flow or phase transitions. However, excessive external stimuli often result in
898: 815: 785: 766: 666: 644: 624: 619: 574: 494: 429: 327: 214: 59: 48: 2751: 1205:. Foams are also used in automotive for water and dust sealing and noise reduction. 4576: 3927: 3887: 3815: 3735: 3686: 3473: 3278: 2914: 2841: 2324: 2285: 2062: 1706:
Carroll, Gregory T.; Jongejan, Mahthild G. M.; Pijper, Dirk; Feringa, Ben L. (2010).
1642: 1617: 1500: 1369: 1299: 1224: 1164: 1088: 1037: 908:
These seemingly separate fields were dramatically influenced and brought together by
879: 875: 549: 355: 336: 318: 219: 139: 3585: 2799: 2034: 2016: 1969: 1739: 1331:
can be used in understanding the average structure and lipid mobility of membranes.
4480: 3569: 3377: 2818:"Kinetic trapping of 3D-printable cyclodextrin-based poly(pseudo)rotaxane networks" 2233: 1572: 1550: 1484: 1473: 1295: 1124: 902: 569: 559: 529: 489: 484: 464: 309: 289: 149: 3831:"Introduction to Optical Methods for Characterizing Liquid Crystals at Interfaces" 3456: 3439: 2044: 1201:, and are undergoing active research in the biomedical field of drug delivery and 2833: 2508: 2483: 1276:. Liquid crystals have found significant applications in optical devices such as 4200:- a wiki dedicated to simple liquids, complex fluids, and soft condensed matter. 3408: 2406: 1637: 1496: 1457: 1436: 1399: 1115: 941: 848: 789: 774: 589: 564: 534: 479: 474: 3911: 3629: 3171: 2710: 1079:, which differs significantly from the general fracture mechanics formulation. 4500: 4490: 3270: 2613: 2160: 1937: 1922: 1878: 1861: 1546: 1419:
can be used in the study of colloidal systems, but more advanced methods like
1411: 1345: 1340: 1228: 1220: 1108: 1005: 928:
structures the underlying chemistry creates. He extended the understanding of
499: 341: 134: 17: 4020: 3968: 3919: 3854: 3799: 3727: 3637: 3517: 3465: 3416: 3361: 3255:"Naturally biomimicked smart shape memory hydrogels for biomedical functions" 3231: 3207: 3122: 3060: 2959: 2898: 2783: 2718: 2571: 2517: 2376: 2277: 2225: 2113: 2105: 2008: 1961: 1887: 1845: 1820: 1785: 1731: 4351: 4220: 4093:
Nanostructured Soft Matter - Experiment, Theory, Simulation and Perspectives
3352: 3335: 2775: 2463: 2367: 2342: 1539: 1515: 1435:
to determine the ordering of the material under various conditions, such as
1373: 1131: 1060: 940:
of polymer systems, and successfully mapped polymer behavior to that of the
933: 921: 917: 554: 504: 377: 224: 124: 4212:- A group dedicated to Soft Matter Engineering at the University of Florida 3986: 3872: 3807: 3760: 3718: 3655: 3577: 3525: 3424: 3369: 3320: 3312: 3239: 3189: 3140: 3078: 3016: 3008: 2977: 2906: 2791: 2736: 2671: 2662: 2645: 2593: 2301:"Exponents for the excluded volume problem as derived by the Wilson method" 2268: 2251: 2193: 2140: 2000: 1902: 1793: 1708:"Spontaneous generation and patterning of chiral polymeric surface toroids" 1672: 1099: 4159: 4000: 3606:"Pathways and challenges towards a complete characterization of microgels" 3113: 1549:, with a major goal of the discipline being the reduction of the field of 3959: 2950: 2687:"A comparative review of artificial muscles for microsystem applications" 2443: 2077:
https://www.nobelprize.org/prizes/chemistry/1953/staudinger/biographical/
1622: 1377: 1307: 1120: 1080: 994: 965: 890: 806:, who has been called the "founding father of soft matter," received the 114: 3035:"Microfluidics Mediated Production of Foams for Biomedical Applications" 1032:
of the mesoscopic structures which allows some systems to remain out of
4203: 3790: 3773: 3051: 2890: 2856: 2644:
Schmidt, Bernhard V. K. J.; Barner-Kowollik, Christopher (2017-07-10).
1953: 1723: 1707: 1577: 1535: 1527: 1248: 1198: 1149: 978: 819: 797: 793: 750: 746: 434: 419: 382: 373: 368: 4117:, Springer Tracts in Modern Physics, v. 161. Springer, Berlin (2000). 3941:
Zhan, Shuai; Guo, Amy X. Y.; Cao, Shan Cecilia; Liu, Na (2022-03-30).
3846: 3223: 4455: 4192: 3156:"Hydrogel: Preparation, characterization, and applications: A review" 2217: 1777: 1753: 1607: 1189:
has been dispersed to form cavities. This structure imparts a large
1012: 1008: 778: 742: 727: 387: 363: 94: 4206:- organizes, reviews, and summarizes academic papers on soft matter. 846:
must have a similar thermal energy to the fluid itself (of order of
4204:
Harvard School of Engineering and Applied Sciences Soft Matter Wiki
3560: 2873: 1682: 874:, was the first person to suggest that polymers are formed through 4176: 1554: 1130: 1114: 1098: 951: 843: 770: 392: 89: 4187: 4079:
Sensitive Matter: Foams, Gels, Liquid Crystals and Other Miracles
1907:(1st ed.). Oxford, United Kingdom: Oxford University Press. 1310:
allows for the elastic deformation of the large-scale structure.
4209: 4146: 4137:
Statistical thermodynamics of surfaces, interfaces and membranes
3393:"Liquid Crystals: Versatile Self-Organized Smart Soft Materials" 1597: 1587: 1460:. Now, however, liquid crystals have also found applications as 1180: 1017: 990: 961: 754: 4224: 2094:
Berichte der Deutschen Chemischen Gesellschaft (A and B Series)
1530:, and foams that exhibit the ability to flow being used in the 1431:
can be readily applied. Liquid crystals are often probed using
1306:. The localized, low energy associated with the forming of the 4177:
American Physical Society Topical Group on Soft Matter (GSOFT)
2393:
Spagnoli, A.; Brighenti, R.; Cosma, M.P.; Terzano, M. (2022),
1214: 1186: 758: 99: 3095:
Jin, Fan-Long; Zhao, Miao; Park, Mira; Park, Soo-Jin (2019).
3886:
Zhang, Rui; Mozaffari, Ali; de Pablo, Juan J. (2021-02-25).
2855:
Cipelletti, Luca; Martens, Kirsten; Ramos, Laurence (2020).
2145:. Vijay Kumar Thakur, Manju Kumari Thakur. Singapore. 2018. 810:
in 1991 for discovering that methods developed for studying
4181: 3888:"Autonomous materials systems from active liquid crystals" 3702:"Soft Matter Informatics: Current Progress and Challenges" 3097:"Recent Trends of Foaming in Polymer Processing: A Review" 796:
is considered the dominant factor. At these temperatures,
3440:"Mirror symmetry breaking in liquids and liquid crystals" 3253:
Korde, Jay M.; Kandasubramanian, Balasubramanian (2020).
2750:
Whitesides, George M.; Grzybowski, Bartosz (2002-03-29).
1808:
https://www.nobelprize.org/prizes/physics/1991/summary/
2252:"Pierre-Gilles de Gennes. 24 October 1932—18 May 2007" 4005:. Paulo Netti. Cambridge: Woodhead Publishing. 2014. 3943:"3D Printing Soft Matters and Applications: A Review" 3544:"Soft matter perspective on protein crystal assembly" 1671:
Kleman, Maurice; Lavrentovich, Oleg D., eds. (2003).
4002:
Biomedical foams for tissue engineering applications
2256:
Biographical Memoirs of Fellows of the Royal Society
878:
that link smaller molecules together. The idea of a
4534: 4471: 4399: 4315: 4287: 4259: 3295:Hamley, Ian W.; Castelletto, Valeria (2007-06-11). 1495:, hydrogels are well suited for the development of 1479:Polymers have found diverse applications, from the 1185:Foams consist of a liquid or solid through which a 830:The current understanding of soft matter grew from 4062:Structured Fluids: Polymers, Colloids, Surfactants 3336:"Colloidal matter: Packing, geometry, and entropy" 3206:Qi, Zhenhui; Schalley, Christoph A. (2014-07-15). 2857:"Microscopic precursors of failure in soft matter" 916:, where material properties are not based on the 893:in the biomedical field was pioneered in 1960 by 1319:crystallization, are often investigated through 1193:on the system. Foams have found applications in 985:A defining characteristic of soft matter is the 2250:Joanny, Jean-François; Cates, Michael (2019). 4236: 3391:Bisoyi, Hari Krishna; Li, Quan (2022-03-09). 700: 8: 2401:, vol. 55, Elsevier, pp. 255–307, 737:The science of soft matter is a subfield of 4050:(2nd edition), J. Wiley, Chichester (2000). 3947:International Journal of Molecular Sciences 3542:Fusco, Diana; Charbonneau, Patrick (2016). 3494:"Soft Matter in Lipid–Protein Interactions" 2938:International Journal of Molecular Sciences 2685:Shi, Mayue; Yeatman, Eric M. (2021-11-23). 1294:Biological membranes consist of individual 932:in liquid crystals, introduced the idea of 4243: 4229: 4221: 2626:: CS1 maint: location missing publisher ( 2173:: CS1 maint: location missing publisher ( 1518:, or be created intentionally, such as by 1298:molecules that have self-assembled into a 1119:Host-guest complex of polyethylene glycol 707: 693: 47: 36: 4057:, Oxford University Press, Oxford (2002). 3976: 3958: 3862: 3789: 3717: 3645: 3559: 3455: 3351: 3179: 3130: 3112: 3068: 3050: 2967: 2949: 2872: 2726: 2661: 2544:Annual Review of Condensed Matter Physics 2507: 2366: 2343:"Grand Challenges in Soft Matter Physics" 2267: 1942:Monatshefte für Chemie - Chemical Monthly 1938:"Beiträge zur Kenntniss des Cholesterins" 1877: 1844: 2564:10.1146/annurev-conmatphys-070909-104120 4115:Pattern Formation in Granular Materials 3301:Angewandte Chemie International Edition 2997:Angewandte Chemie International Edition 2650:Angewandte Chemie International Edition 1660: 1514:Foams can naturally occur, such as the 1329:nuclear magnetic resonance spectroscopy 39: 4441:Atomic, molecular, and optical physics 4172:Pierre-Gilles de Gennes' Nobel Lecture 4026: 3599: 3597: 3595: 3548:Colloids and Surfaces B: Biointerfaces 3537: 3535: 3487: 3485: 3483: 3290: 3288: 3201: 3199: 3090: 3088: 3028: 3026: 2811: 2809: 2619: 2587: 2585: 2583: 2581: 2166: 2028: 2026: 1904:Soft Matter: a Very Short Introduction 1239:molecules selectively and reversibly. 1071:responses. Soft matter becomes highly 1063:responses to external stimuli such as 1011:that naturally occur within a flowing 859:in 1888, and further characterized by 3510:10.1146/annurev-biophys-070816-033843 3334:Manoharan, Vinothan N. (2015-08-28). 2639: 2637: 2533: 2531: 2529: 2527: 2477: 2475: 2473: 2437: 2435: 2433: 2431: 2388: 2386: 2336: 2334: 2245: 2243: 2194:"Hydrophilic Gels for Biological Use" 7: 4072:Soft Matter Physics: An Introduction 2993:"Nanotechnology with Soft Materials" 2928:Mashaghi, Samaneh; Jadidi, Tayebeh; 2341:van der Gucht, Jasper (2018-08-22). 1989:Zeitschrift für Physikalische Chemie 1674:Soft Matter Physics: An Introduction 1666: 1664: 27:Subfield of condensed matter physics 4149:, World Scientific Publisher (2020) 4106:M. Daoud, C.E. Williams (editors), 2448:. Oxford: Oxford University Press. 1677:. New York, NY: Springer New York. 1087:, is often used to investigate the 4216:Google Scholar page on soft matter 4081:, Harvard University Press (2012). 4060:T. A. Witten (with P. A. Pincus), 3438:Tschierske, Carsten (2018-12-08). 2932:; Mashaghi, Alireza (2013-02-21). 2691:Microsystems & Nanoengineering 2484:"Experimental soft-matter science" 2036:An Introduction to Liquid Crystals 1055:Soft materials often exhibit both 25: 4132:, Nobel Lecture, December 9, 1991 4110:, Springer Verlag, Berlin (1999). 4086:Intermolecular and Surface Forces 1862:"Grand Challenges in Soft Matter" 1860:Mezzenga, Raffaele (2021-12-22). 1083:, the study of deformation under 4158: 3669:Murthy, N.S.; Minor, H. (1990). 3492:Brown, Michael F. (2017-05-22). 2142:Hydrogels : recent advances 1421:transmission electron microscopy 1223:3D polymer scaffolds, which are 838:, understanding that a particle 674: 673: 660: 4562:Timeline of physics discoveries 3706:Advanced Theory and Simulations 3604:Scheffold, Frank (2020-09-04). 2482:Nagel, Sidney R. (2017-04-12). 2192:Wichterle, O.; Lím, D. (1960). 3772:Garcia, Ricardo (2020-08-17). 3570:10.1016/j.colsurfb.2015.07.023 1754:"Soft matter: more than words" 1466:liquid crystal tunable filters 1: 4095:, Springer/Dordrecht (2007), 4091:A. V. Zvelindovsky (editor), 3457:10.1080/02678292.2018.1501822 3212:Accounts of Chemical Research 2752:"Self-Assembly at All Scales" 2595:Foams: Structure and Dynamics 2442:Jones, Richard A. L. (2002). 2399:Advances in Applied Mechanics 2088:Staudinger, H. (1920-06-12). 1936:Reinitzer, Friedrich (1888). 1314:Experimental characterization 4048:Introduction to Soft Matter 3687:10.1016/0032-3861(90)90243-R 3259:Chemical Engineering Journal 3160:Journal of Advanced Research 2834:10.1016/j.chempr.2021.06.004 2540:"Rheology of Soft Materials" 2509:10.1103/RevModPhys.89.025002 2325:10.1016/0375-9601(72)90149-1 1354:small-angle X-ray scattering 1274:spontaneously break symmetry 1219:Gels consist of non-solvent- 1191:surface-area-to-volume ratio 4526:Quantum information science 3498:Annual Review of Biophysics 3409:10.1021/acs.chemrev.1c00761 3297:"Biological Soft Materials" 2407:10.1016/bs.aams.2021.07.001 2045:10.1088/2053-2571/ab2a6fch1 1985:"Über fliessende Krystalle" 1470:liquid crystal thermometers 1350:wide-angle X-ray scattering 4604: 4357:Classical electromagnetism 4128:de Gennes, Pierre-Gilles, 3912:10.1038/s41578-020-00272-x 3630:10.1038/s41467-020-17774-5 3172:10.1016/j.jare.2013.07.006 2711:10.1038/s41378-021-00323-5 2130:(accessed Feb 13th, 2023). 2033:DiLisi, Gregory A (2019). 1983:Lehmann, O. (1889-07-01). 1593:Fracture of soft materials 1433:polarized light microscopy 1409: 1387: 1366:particle-size distribution 1338: 1287: 1261: 1246: 1212: 1178: 1147: 260:Spin gapless semiconductor 29: 3271:10.1016/j.cej.2019.122430 2592:Cantat, Isabelle (2013). 2488:Reviews of Modern Physics 1879:10.3389/frsfm.2021.811842 1819:Einstein, Albert (1905). 1304:non-covalent interactions 1235:, or the ability to bind 741:. Soft materials include 200:Electronic band structure 4588:Condensed matter physics 4463:Condensed matter physics 4088:, Academic Press (2010). 4070:and O. D. Lavrentovich, 3892:Nature Reviews Materials 3778:Chemical Society Reviews 2598:(1st ed.). Oxford. 2299:de Gennes, P.G. (1972). 2106:10.1002/cber.19200530627 1866:Frontiers in Soft Matter 1846:10.1002/andp.19053220806 1362:dynamic light scattering 975:condensed matter physics 872:Nobel Prize in Chemistry 870:, recipient of the 1953 739:condensed matter physics 110:Bose–Einstein condensate 41:Condensed matter physics 4210:Soft Matter Engineering 4193:Softmatterresources.com 4139:, Westview Press (2003) 3353:10.1126/science.1253751 3154:Ahmed, Enas M. (2015). 2991:Hamley, Ian W. (2003). 2776:10.1126/science.1070821 2368:10.3389/fphy.2018.00087 1462:liquid-crystal displays 1429:fluorescence microscopy 1425:atomic force microscopy 1325:neutron crystallography 1278:liquid-crystal displays 1169:protein crystallization 910:Pierre-Gilles de Gennes 804:Pierre-Gilles de Gennes 4547:Nobel Prize in Physics 4409:Relativistic mechanics 4033:: CS1 maint: others ( 3761:10.1002/adma.202001582 3719:10.1002/adts.201800129 3313:10.1002/anie.200603922 3009:10.1002/anie.200200546 2934:"Lipid Nanotechnology" 2663:10.1002/anie.201612150 2269:10.1098/rsbm.2018.0033 2001:10.1515/zpch-1889-0434 1474:Active liquid crystals 1136: 1128: 1112: 1095:Classes of soft matter 957: 808:Nobel Prize in Physics 781:scale comparable with 4552:Philosophy of physics 4167:at Wikimedia Commons 4084:J. N. Israelachvili, 4055:Soft Condensed Matter 3610:Nature Communications 3114:10.3390/polym11060953 2445:Soft condensed matter 2177:) CS1 maint: others ( 2090:"Über Polymerisation" 1901:McLeish, Tom (2020). 1134: 1118: 1102: 955: 724:soft condensed matter 255:Topological insulator 32:Soft Matter (journal) 30:For the journal, see 4511:Mathematical physics 3960:10.3390/ijms23073790 3450:(13–15): 2221–2252. 2951:10.3390/ijms14024242 2347:Frontiers in Physics 1568:Biological membranes 1509:flexible electronics 1380:and dilute samples. 1348:techniques, such as 1284:Biological membranes 884:particle aggregation 732:thermal fluctuations 273:Electronic phenomena 120:Fermionic condensate 4486:Atmospheric physics 4325:Classical mechanics 4253:branches of physics 4188:Softmatterworld.org 4108:Soft Matter Physics 3904:2021NatRM...6..437Z 3622:2020NatCo..11.4315S 2883:2020SMat...16...82C 2768:2002Sci...295.2418W 2762:(5564): 2418–2421. 2703:2021MicNa...7...95S 2556:2010ARCMP...1..301C 2500:2017RvMP...89b5002N 2359:2018FrP.....6...87V 2317:1972PhLA...38..339D 2210:1960Natur.185..117W 1837:1905AnP...322..549E 1770:2005SMat....1...16. 1454:Friedrich Reinitzer 1390:Computer simulation 1290:Biological membrane 979:crystalline lattice 948:Distinctive physics 857:Friedrich Reinitzer 280:Quantum Hall effect 4542:History of physics 4113:Gerald H. Ristow, 4074:, Springer (2003). 3791:10.1039/D0CS00318B 3052:10.3390/mi11010083 2930:Koenderink, Gijsje 2891:10.1039/C9SM01730E 2039:. IOP Publishing. 1954:10.1007/BF01516710 1825:Annalen der Physik 1724:10.1039/c0sc00159g 1603:Granular materials 1520:fire extinguishers 1505:tissue engineering 1456:was investigating 1417:Optical microscopy 1358:neutron scattering 1203:tissue engineering 1137: 1129: 1113: 1107:, an example of a 999:degrees of freedom 958: 920:of the underlying 868:Hermann Staudinger 773:, and a number of 763:granular materials 667:Physics portal 4570: 4569: 4557:Physics education 4506:Materials science 4473:Interdisciplinary 4431:Quantum mechanics 4163:Media related to 4101:978-1-4020-6329-9 4012:978-1-306-47861-8 3847:10.1021/la304679f 3841:(10): 3154–3169. 3784:(16): 5850–5884. 3346:(6251): 1253751. 3307:(24): 4442–4455. 3224:10.1021/ar500193z 3003:(15): 1692–1712. 2656:(29): 8350–8369. 2605:978-0-19-966289-0 2416:978-0-12-824617-7 2305:Physics Letters A 2204:(4706): 117–118. 2152:978-981-10-6077-9 2054:978-1-64327-684-7 1914:978-0-19-880713-1 1692:978-0-387-95267-3 1633:Protein structure 1532:cosmetic industry 1489:vulcanized rubber 1302:structure due to 1161:materials science 1103:A portion of the 1077:crack propagation 1004:For example, the 924:, more so on the 832:Albert Einstein's 717: 716: 425:Granular material 193:Electronic phases 16:(Redirected from 4595: 4496:Chemical physics 4436:Particle physics 4362:Classical optics 4245: 4238: 4231: 4222: 4162: 4064:, Oxford (2004). 4053:R. A. L. Jones, 4039: 4038: 4032: 4024: 3997: 3991: 3990: 3980: 3962: 3938: 3932: 3931: 3883: 3877: 3876: 3866: 3826: 3820: 3819: 3793: 3769: 3763: 3746: 3740: 3739: 3721: 3697: 3691: 3690: 3666: 3660: 3659: 3649: 3601: 3590: 3589: 3563: 3539: 3530: 3529: 3489: 3478: 3477: 3459: 3435: 3429: 3428: 3403:(5): 4887–4926. 3397:Chemical Reviews 3388: 3382: 3381: 3355: 3331: 3325: 3324: 3292: 3283: 3282: 3250: 3244: 3243: 3218:(7): 2222–2233. 3203: 3194: 3193: 3183: 3151: 3145: 3144: 3134: 3116: 3092: 3083: 3082: 3072: 3054: 3030: 3021: 3020: 2988: 2982: 2981: 2971: 2953: 2944:(2): 4242–4282. 2925: 2919: 2918: 2876: 2852: 2846: 2845: 2828:(9): 2442–2459. 2813: 2804: 2803: 2747: 2741: 2740: 2730: 2682: 2676: 2675: 2665: 2641: 2632: 2631: 2625: 2617: 2589: 2576: 2575: 2535: 2522: 2521: 2511: 2479: 2468: 2467: 2439: 2426: 2425: 2424: 2423: 2390: 2381: 2380: 2370: 2338: 2329: 2328: 2296: 2290: 2289: 2271: 2247: 2238: 2237: 2218:10.1038/185117a0 2189: 2183: 2182: 2172: 2164: 2137: 2131: 2124: 2118: 2117: 2100:(6): 1073–1085. 2085: 2079: 2073: 2067: 2066: 2030: 2021: 2020: 1980: 1974: 1973: 1933: 1927: 1926: 1898: 1892: 1891: 1881: 1857: 1851: 1850: 1848: 1816: 1810: 1804: 1798: 1797: 1778:10.1039/b419223k 1750: 1744: 1743: 1712:Chemical Science 1703: 1697: 1696: 1668: 1628:Protein dynamics 1123:bound within an 1105:DNA double helix 1091:of soft matter. 1050:kinetic trapping 987:mesoscopic scale 783:room temperature 709: 702: 695: 682: 677: 676: 669: 665: 664: 285:Spin Hall effect 175:Phase transition 145:Luttinger liquid 82:States of matter 65:Phase transition 51: 37: 21: 4603: 4602: 4598: 4597: 4596: 4594: 4593: 4592: 4573: 4572: 4571: 4566: 4530: 4516:Medical physics 4467: 4426:Nuclear physics 4395: 4389:Non-equilibrium 4311: 4283: 4255: 4249: 4156: 4043: 4042: 4025: 4013: 3999: 3998: 3994: 3940: 3939: 3935: 3885: 3884: 3880: 3828: 3827: 3823: 3771: 3770: 3766: 3747: 3743: 3699: 3698: 3694: 3681:(6): 996–1002. 3668: 3667: 3663: 3603: 3602: 3593: 3541: 3540: 3533: 3491: 3490: 3481: 3444:Liquid Crystals 3437: 3436: 3432: 3390: 3389: 3385: 3333: 3332: 3328: 3294: 3293: 3286: 3252: 3251: 3247: 3205: 3204: 3197: 3153: 3152: 3148: 3094: 3093: 3086: 3032: 3031: 3024: 2990: 2989: 2985: 2927: 2926: 2922: 2854: 2853: 2849: 2815: 2814: 2807: 2749: 2748: 2744: 2684: 2683: 2679: 2643: 2642: 2635: 2618: 2606: 2591: 2590: 2579: 2537: 2536: 2525: 2481: 2480: 2471: 2456: 2441: 2440: 2429: 2421: 2419: 2417: 2392: 2391: 2384: 2340: 2339: 2332: 2298: 2297: 2293: 2249: 2248: 2241: 2191: 2190: 2186: 2165: 2153: 2139: 2138: 2134: 2125: 2121: 2087: 2086: 2082: 2074: 2070: 2055: 2032: 2031: 2024: 1982: 1981: 1977: 1935: 1934: 1930: 1915: 1900: 1899: 1895: 1859: 1858: 1854: 1818: 1817: 1813: 1805: 1801: 1764:(1): 16. 2005. 1752: 1751: 1747: 1705: 1704: 1700: 1693: 1670: 1669: 1662: 1657: 1652: 1613:Liquid crystals 1563: 1449: 1414: 1408: 1392: 1386: 1343: 1337: 1316: 1292: 1286: 1266: 1260: 1258:Liquid crystals 1251: 1245: 1217: 1211: 1183: 1177: 1152: 1146: 1097: 1089:bulk properties 1026:Brownian motion 950: 836:Brownian motion 828: 816:liquid crystals 812:order phenomena 767:liquid crystals 713: 672: 659: 658: 651: 650: 649: 449: 441: 440: 439: 415:Amorphous solid 409: 399: 398: 397: 376: 358: 348: 347: 346: 335: 333:Antiferromagnet 326: 324:Superparamagnet 317: 304: 303:Magnetic phases 296: 295: 294: 274: 266: 265: 264: 194: 186: 185: 184: 170:Order parameter 164: 163:Phase phenomena 156: 155: 154: 84: 74: 35: 28: 23: 22: 15: 12: 11: 5: 4601: 4599: 4591: 4590: 4585: 4575: 4574: 4568: 4567: 4565: 4564: 4559: 4554: 4549: 4544: 4538: 4536: 4532: 4531: 4529: 4528: 4523: 4518: 4513: 4508: 4503: 4498: 4493: 4488: 4483: 4477: 4475: 4469: 4468: 4466: 4465: 4460: 4459: 4458: 4453: 4448: 4438: 4433: 4428: 4423: 4422: 4421: 4416: 4405: 4403: 4397: 4396: 4394: 4393: 4392: 4391: 4386: 4379:Thermodynamics 4376: 4375: 4374: 4369: 4359: 4354: 4349: 4348: 4347: 4342: 4337: 4332: 4321: 4319: 4313: 4312: 4310: 4309: 4308: 4307: 4297: 4291: 4289: 4285: 4284: 4282: 4281: 4280: 4279: 4269: 4263: 4261: 4257: 4256: 4250: 4248: 4247: 4240: 4233: 4225: 4219: 4218: 4213: 4207: 4201: 4195: 4190: 4185: 4179: 4174: 4155: 4154:External links 4152: 4151: 4150: 4143: 4140: 4133: 4126: 4111: 4104: 4089: 4082: 4075: 4065: 4058: 4051: 4041: 4040: 4011: 3992: 3933: 3898:(5): 437–453. 3878: 3821: 3764: 3741: 3712:(1): 1800129. 3692: 3661: 3591: 3531: 3504:(1): 379–410. 3479: 3430: 3383: 3326: 3284: 3245: 3195: 3166:(2): 105–121. 3146: 3084: 3022: 2983: 2920: 2847: 2805: 2742: 2677: 2633: 2604: 2577: 2550:(1): 301–322. 2523: 2469: 2454: 2427: 2415: 2382: 2330: 2311:(5): 339–340. 2291: 2239: 2184: 2151: 2132: 2119: 2080: 2068: 2053: 2022: 1995:(1): 462–472. 1975: 1948:(1): 421–441. 1928: 1913: 1893: 1852: 1831:(8): 549–560. 1811: 1799: 1745: 1698: 1691: 1683:10.1007/b97416 1659: 1658: 1656: 1653: 1651: 1650: 1645: 1640: 1635: 1630: 1625: 1620: 1618:Microemulsions 1615: 1610: 1605: 1600: 1595: 1590: 1585: 1583:Complex fluids 1580: 1575: 1570: 1564: 1562: 1559: 1516:head on a beer 1493:shear thinning 1481:natural rubber 1448: 1445: 1441:electric field 1410:Main article: 1407: 1404: 1388:Main article: 1385: 1382: 1339:Main article: 1336: 1333: 1315: 1312: 1288:Main article: 1285: 1282: 1264:Liquid crystal 1262:Main article: 1259: 1256: 1247:Main article: 1244: 1241: 1227:or physically 1213:Main article: 1210: 1207: 1179:Main article: 1176: 1173: 1157:nanotechnology 1148:Main article: 1145: 1142: 1125:α-cyclodextrin 1096: 1093: 949: 946: 936:regarding the 899:Otto Wichterle 876:covalent bonds 827: 824: 786:thermal energy 715: 714: 712: 711: 704: 697: 689: 686: 685: 684: 683: 670: 653: 652: 648: 647: 642: 637: 632: 627: 622: 617: 612: 607: 602: 597: 592: 587: 582: 577: 572: 567: 562: 557: 552: 547: 542: 537: 532: 527: 522: 517: 512: 507: 502: 497: 492: 487: 482: 477: 472: 467: 462: 457: 451: 450: 447: 446: 443: 442: 438: 437: 432: 430:Liquid crystal 427: 422: 417: 411: 410: 405: 404: 401: 400: 396: 395: 390: 385: 380: 371: 366: 360: 359: 356:Quasiparticles 354: 353: 350: 349: 345: 344: 339: 330: 321: 315:Superdiamagnet 312: 306: 305: 302: 301: 298: 297: 293: 292: 287: 282: 276: 275: 272: 271: 268: 267: 263: 262: 257: 252: 247: 242: 240:Thermoelectric 237: 235:Superconductor 232: 227: 222: 217: 215:Mott insulator 212: 207: 202: 196: 195: 192: 191: 188: 187: 183: 182: 177: 172: 166: 165: 162: 161: 158: 157: 153: 152: 147: 142: 137: 132: 127: 122: 117: 112: 107: 102: 97: 92: 86: 85: 80: 79: 76: 75: 73: 72: 67: 62: 56: 53: 52: 44: 43: 26: 24: 18:Soft interface 14: 13: 10: 9: 6: 4: 3: 2: 4600: 4589: 4586: 4584: 4581: 4580: 4578: 4563: 4560: 4558: 4555: 4553: 4550: 4548: 4545: 4543: 4540: 4539: 4537: 4533: 4527: 4524: 4522: 4521:Ocean physics 4519: 4517: 4514: 4512: 4509: 4507: 4504: 4502: 4499: 4497: 4494: 4492: 4489: 4487: 4484: 4482: 4479: 4478: 4476: 4474: 4470: 4464: 4461: 4457: 4456:Modern optics 4454: 4452: 4449: 4447: 4444: 4443: 4442: 4439: 4437: 4434: 4432: 4429: 4427: 4424: 4420: 4417: 4415: 4412: 4411: 4410: 4407: 4406: 4404: 4402: 4398: 4390: 4387: 4385: 4382: 4381: 4380: 4377: 4373: 4370: 4368: 4365: 4364: 4363: 4360: 4358: 4355: 4353: 4350: 4346: 4343: 4341: 4338: 4336: 4333: 4331: 4328: 4327: 4326: 4323: 4322: 4320: 4318: 4314: 4306: 4305:Computational 4303: 4302: 4301: 4298: 4296: 4293: 4292: 4290: 4286: 4278: 4275: 4274: 4273: 4270: 4268: 4265: 4264: 4262: 4258: 4254: 4246: 4241: 4239: 4234: 4232: 4227: 4226: 4223: 4217: 4214: 4211: 4208: 4205: 4202: 4199: 4196: 4194: 4191: 4189: 4186: 4183: 4180: 4178: 4175: 4173: 4170: 4169: 4168: 4166: 4161: 4153: 4148: 4144: 4141: 4138: 4135:S. A. Safran, 4134: 4131: 4127: 4124: 4123:3-540-66701-6 4120: 4116: 4112: 4109: 4105: 4102: 4098: 4094: 4090: 4087: 4083: 4080: 4076: 4073: 4069: 4066: 4063: 4059: 4056: 4052: 4049: 4045: 4044: 4036: 4030: 4022: 4018: 4014: 4008: 4004: 4003: 3996: 3993: 3988: 3984: 3979: 3974: 3970: 3966: 3961: 3956: 3952: 3948: 3944: 3937: 3934: 3929: 3925: 3921: 3917: 3913: 3909: 3905: 3901: 3897: 3893: 3889: 3882: 3879: 3874: 3870: 3865: 3860: 3856: 3852: 3848: 3844: 3840: 3836: 3832: 3825: 3822: 3817: 3813: 3809: 3805: 3801: 3797: 3792: 3787: 3783: 3779: 3775: 3768: 3765: 3762: 3758: 3754: 3751: 3745: 3742: 3737: 3733: 3729: 3725: 3720: 3715: 3711: 3707: 3703: 3696: 3693: 3688: 3684: 3680: 3676: 3672: 3665: 3662: 3657: 3653: 3648: 3643: 3639: 3635: 3631: 3627: 3623: 3619: 3615: 3611: 3607: 3600: 3598: 3596: 3592: 3587: 3583: 3579: 3575: 3571: 3567: 3562: 3557: 3553: 3549: 3545: 3538: 3536: 3532: 3527: 3523: 3519: 3515: 3511: 3507: 3503: 3499: 3495: 3488: 3486: 3484: 3480: 3475: 3471: 3467: 3463: 3458: 3453: 3449: 3445: 3441: 3434: 3431: 3426: 3422: 3418: 3414: 3410: 3406: 3402: 3398: 3394: 3387: 3384: 3379: 3375: 3371: 3367: 3363: 3359: 3354: 3349: 3345: 3341: 3337: 3330: 3327: 3322: 3318: 3314: 3310: 3306: 3302: 3298: 3291: 3289: 3285: 3280: 3276: 3272: 3268: 3264: 3260: 3256: 3249: 3246: 3241: 3237: 3233: 3229: 3225: 3221: 3217: 3213: 3209: 3202: 3200: 3196: 3191: 3187: 3182: 3177: 3173: 3169: 3165: 3161: 3157: 3150: 3147: 3142: 3138: 3133: 3128: 3124: 3120: 3115: 3110: 3106: 3102: 3098: 3091: 3089: 3085: 3080: 3076: 3071: 3066: 3062: 3058: 3053: 3048: 3044: 3040: 3039:Micromachines 3036: 3029: 3027: 3023: 3018: 3014: 3010: 3006: 3002: 2998: 2994: 2987: 2984: 2979: 2975: 2970: 2965: 2961: 2957: 2952: 2947: 2943: 2939: 2935: 2931: 2924: 2921: 2916: 2912: 2908: 2904: 2900: 2896: 2892: 2888: 2884: 2880: 2875: 2870: 2866: 2862: 2858: 2851: 2848: 2843: 2839: 2835: 2831: 2827: 2823: 2819: 2812: 2810: 2806: 2801: 2797: 2793: 2789: 2785: 2781: 2777: 2773: 2769: 2765: 2761: 2757: 2753: 2746: 2743: 2738: 2734: 2729: 2724: 2720: 2716: 2712: 2708: 2704: 2700: 2696: 2692: 2688: 2681: 2678: 2673: 2669: 2664: 2659: 2655: 2651: 2647: 2640: 2638: 2634: 2629: 2623: 2615: 2611: 2607: 2601: 2597: 2596: 2588: 2586: 2584: 2582: 2578: 2573: 2569: 2565: 2561: 2557: 2553: 2549: 2545: 2541: 2534: 2532: 2530: 2528: 2524: 2519: 2515: 2510: 2505: 2501: 2497: 2494:(2): 025002. 2493: 2489: 2485: 2478: 2476: 2474: 2470: 2465: 2461: 2457: 2455:0-19-850590-6 2451: 2447: 2446: 2438: 2436: 2434: 2432: 2428: 2418: 2412: 2408: 2404: 2400: 2396: 2389: 2387: 2383: 2378: 2374: 2369: 2364: 2360: 2356: 2352: 2348: 2344: 2337: 2335: 2331: 2326: 2322: 2318: 2314: 2310: 2306: 2302: 2295: 2292: 2287: 2283: 2279: 2275: 2270: 2265: 2261: 2257: 2253: 2246: 2244: 2240: 2235: 2231: 2227: 2223: 2219: 2215: 2211: 2207: 2203: 2199: 2195: 2188: 2185: 2180: 2176: 2170: 2162: 2158: 2154: 2148: 2144: 2143: 2136: 2133: 2129: 2123: 2120: 2115: 2111: 2107: 2103: 2099: 2095: 2091: 2084: 2081: 2078: 2072: 2069: 2064: 2060: 2056: 2050: 2046: 2042: 2038: 2037: 2029: 2027: 2023: 2018: 2014: 2010: 2006: 2002: 1998: 1994: 1990: 1986: 1979: 1976: 1971: 1967: 1963: 1959: 1955: 1951: 1947: 1944:(in German). 1943: 1939: 1932: 1929: 1924: 1920: 1916: 1910: 1906: 1905: 1897: 1894: 1889: 1885: 1880: 1875: 1871: 1867: 1863: 1856: 1853: 1847: 1842: 1838: 1834: 1830: 1827:(in German). 1826: 1822: 1815: 1812: 1809: 1803: 1800: 1795: 1791: 1787: 1783: 1779: 1775: 1771: 1767: 1763: 1759: 1755: 1749: 1746: 1741: 1737: 1733: 1729: 1725: 1721: 1717: 1713: 1709: 1702: 1699: 1694: 1688: 1684: 1680: 1676: 1675: 1667: 1665: 1661: 1654: 1649: 1646: 1644: 1643:Active matter 1641: 1639: 1636: 1634: 1631: 1629: 1626: 1624: 1621: 1619: 1616: 1614: 1611: 1609: 1606: 1604: 1601: 1599: 1596: 1594: 1591: 1589: 1586: 1584: 1581: 1579: 1576: 1574: 1571: 1569: 1566: 1565: 1560: 1558: 1556: 1552: 1548: 1543: 1541: 1537: 1533: 1529: 1525: 1521: 1517: 1512: 1510: 1506: 1502: 1501:soft robotics 1498: 1494: 1490: 1486: 1482: 1477: 1475: 1471: 1467: 1463: 1459: 1455: 1446: 1444: 1442: 1438: 1434: 1430: 1426: 1422: 1418: 1413: 1405: 1403: 1401: 1396: 1395:Computational 1391: 1384:Computational 1383: 1381: 1379: 1375: 1371: 1370:crystallinity 1367: 1363: 1359: 1355: 1351: 1347: 1342: 1334: 1332: 1330: 1326: 1322: 1313: 1311: 1309: 1305: 1301: 1297: 1291: 1283: 1281: 1279: 1275: 1271: 1265: 1257: 1255: 1250: 1242: 1240: 1238: 1234: 1230: 1226: 1222: 1216: 1208: 1206: 1204: 1200: 1196: 1192: 1188: 1182: 1174: 1172: 1170: 1166: 1165:drug delivery 1162: 1158: 1151: 1143: 1141: 1133: 1126: 1122: 1117: 1110: 1106: 1101: 1094: 1092: 1090: 1086: 1082: 1078: 1074: 1070: 1066: 1062: 1058: 1053: 1051: 1047: 1041: 1039: 1035: 1031: 1027: 1022: 1019: 1014: 1010: 1007: 1002: 1000: 996: 992: 988: 983: 980: 976: 971: 970:self-organize 967: 963: 954: 947: 945: 943: 939: 935: 931: 930:phase changes 927: 923: 919: 915: 911: 906: 904: 900: 896: 895:Drahoslav Lím 892: 887: 885: 881: 880:macromolecule 877: 873: 869: 864: 862: 858: 853: 851: 850: 845: 841: 837: 833: 825: 823: 821: 817: 813: 809: 805: 801: 799: 795: 791: 788:(of order of 787: 784: 780: 776: 772: 768: 764: 760: 756: 752: 748: 744: 740: 735: 733: 729: 726:is a type of 725: 721: 710: 705: 703: 698: 696: 691: 690: 688: 687: 681: 671: 668: 663: 657: 656: 655: 654: 646: 643: 641: 638: 636: 633: 631: 628: 626: 623: 621: 618: 616: 613: 611: 608: 606: 603: 601: 598: 596: 593: 591: 588: 586: 583: 581: 578: 576: 573: 571: 568: 566: 563: 561: 558: 556: 553: 551: 548: 546: 543: 541: 538: 536: 533: 531: 528: 526: 523: 521: 518: 516: 513: 511: 508: 506: 503: 501: 498: 496: 493: 491: 488: 486: 483: 481: 478: 476: 473: 471: 468: 466: 463: 461: 458: 456: 455:Van der Waals 453: 452: 445: 444: 436: 433: 431: 428: 426: 423: 421: 418: 416: 413: 412: 408: 403: 402: 394: 391: 389: 386: 384: 381: 379: 375: 372: 370: 367: 365: 362: 361: 357: 352: 351: 343: 340: 338: 334: 331: 329: 325: 322: 320: 316: 313: 311: 308: 307: 300: 299: 291: 288: 286: 283: 281: 278: 277: 270: 269: 261: 258: 256: 253: 251: 250:Ferroelectric 248: 246: 245:Piezoelectric 243: 241: 238: 236: 233: 231: 228: 226: 223: 221: 220:Semiconductor 218: 216: 213: 211: 208: 206: 203: 201: 198: 197: 190: 189: 181: 178: 176: 173: 171: 168: 167: 160: 159: 151: 148: 146: 143: 141: 140:Superfluidity 138: 136: 133: 131: 128: 126: 123: 121: 118: 116: 113: 111: 108: 106: 103: 101: 98: 96: 93: 91: 88: 87: 83: 78: 77: 71: 68: 66: 63: 61: 58: 57: 55: 54: 50: 46: 45: 42: 38: 33: 19: 4481:Astrophysics 4295:Experimental 4157: 4145:Gang, Oleg, 4136: 4129: 4114: 4107: 4092: 4085: 4078: 4071: 4061: 4054: 4047: 4001: 3995: 3950: 3946: 3936: 3895: 3891: 3881: 3838: 3834: 3824: 3781: 3777: 3767: 3752: 3749: 3744: 3709: 3705: 3695: 3678: 3674: 3664: 3613: 3609: 3551: 3547: 3501: 3497: 3447: 3443: 3433: 3400: 3396: 3386: 3343: 3339: 3329: 3304: 3300: 3262: 3258: 3248: 3215: 3211: 3163: 3159: 3149: 3104: 3100: 3042: 3038: 3000: 2996: 2986: 2941: 2937: 2923: 2867:(1): 82–93. 2864: 2860: 2850: 2825: 2821: 2759: 2755: 2745: 2694: 2690: 2680: 2653: 2649: 2594: 2547: 2543: 2491: 2487: 2444: 2420:, retrieved 2398: 2350: 2346: 2308: 2304: 2294: 2259: 2255: 2201: 2197: 2187: 2141: 2135: 2122: 2097: 2093: 2083: 2071: 2035: 1992: 1988: 1978: 1945: 1941: 1931: 1903: 1896: 1869: 1865: 1855: 1828: 1824: 1814: 1802: 1761: 1757: 1748: 1715: 1711: 1701: 1673: 1573:Biomaterials 1551:cell biology 1544: 1513: 1485:latex gloves 1478: 1458:cholesterols 1450: 1447:Applications 1415: 1393: 1344: 1317: 1296:phospholipid 1293: 1267: 1252: 1233:shape-memory 1229:cross-linked 1218: 1184: 1153: 1138: 1054: 1042: 1023: 1003: 984: 959: 914:universality 907: 903:contact lens 888: 865: 861:Otto Lehmann 854: 847: 829: 802: 792:), and that 775:biomaterials 736: 723: 719: 718: 585:von Klitzing 406: 290:Kondo effect 150:Time crystal 130:Fermi liquid 4583:Soft matter 4384:Statistical 4300:Theoretical 4277:Engineering 4165:Soft matter 4130:Soft Matter 4046:I. Hamley, 3953:(7): 3790. 3750:Adv. Mater. 3616:(1): 4315. 2861:Soft Matter 2262:: 143–158. 1758:Soft Matter 1638:Surfactants 1497:3D printing 1437:temperature 1400:informatics 1046:free energy 1034:equilibrium 942:Ising model 889:The use of 720:Soft matter 407:Soft matter 328:Ferromagnet 4577:Categories 4501:Geophysics 4491:Biophysics 4335:Analytical 4288:Approaches 4077:M. Mitov, 3561:1505.05214 3265:: 122430. 3107:(6): 953. 2874:1909.11961 2614:1011990362 2422:2023-02-13 2161:1050163199 1923:1202271044 1872:: 811842. 1718:(4): 469. 1655:References 1547:biophysics 1540:biosensors 1524:insulation 1423:(TEM) and 1412:Microscopy 1406:Microscopy 1346:Scattering 1341:Scattering 1335:Scattering 1254:observed. 1225:covalently 1195:insulation 1109:biopolymer 1057:elasticity 1038:metastable 938:relaxation 926:mesoscopic 550:Louis Néel 540:Schrieffer 448:Scientists 342:Spin glass 337:Metamagnet 319:Paramagnet 135:Supersolid 4451:Molecular 4352:Acoustics 4345:Continuum 4340:Celestial 4330:Newtonian 4317:Classical 4260:Divisions 4198:SklogWiki 4182:Softbites 4068:M. Kleman 4029:cite book 4021:872654628 3969:1422-0067 3928:232044197 3920:2058-8437 3855:0743-7463 3816:220519766 3800:1460-4744 3755:2001582. 3736:139778116 3728:2513-0390 3638:2041-1723 3554:: 22–31. 3518:1936-122X 3474:125652009 3466:0267-8292 3417:0009-2665 3362:0036-8075 3279:201216064 3232:0001-4842 3123:2073-4360 3061:2072-666X 3045:(1): 83. 2960:1422-0067 2915:202889185 2899:1744-683X 2842:237139764 2784:0036-8075 2719:2055-7434 2697:(1): 95. 2622:cite book 2572:1947-5454 2518:0034-6861 2377:2296-424X 2286:127231807 2278:0080-4606 2226:0028-0836 2169:cite book 2114:0365-9488 2063:239330818 2009:2196-7156 1962:0026-9247 1888:2813-0499 1786:1744-683X 1732:2041-6520 1648:Roughness 1483:found in 1378:isotropic 1374:diffusion 1368:, shape, 1069:nonlinear 1006:turbulent 995:molecules 966:molecular 934:reptation 922:structure 918:chemistry 866:In 1920, 840:suspended 630:Abrikosov 545:Josephson 515:Van Vleck 505:Luttinger 378:Polariton 310:Diamagnet 230:Conductor 225:Semimetal 210:Insulator 125:Fermi gas 3987:35409150 3873:23347378 3835:Langmuir 3808:32662499 3656:32887886 3586:13969559 3578:26236019 3526:28532212 3425:34941251 3370:26315444 3321:17516592 3240:24937365 3190:25750745 3141:31159423 3101:Polymers 3079:31940876 3017:12707884 2978:23429269 2907:31720666 2800:40684317 2792:11923529 2737:34858630 2672:28245083 2464:48753186 2017:92908969 1970:97166902 1794:32521835 1740:96957407 1623:Polymers 1578:Colloids 1561:See also 1536:shampoos 1528:cushions 1327:, while 1308:membrane 1243:Colloids 1199:textiles 1144:Polymers 1121:oligomer 1081:Rheology 1073:deformed 1030:dynamics 1009:vortices 891:hydrogel 834:work on 820:polymers 751:polymers 747:colloids 680:Category 635:Ginzburg 610:Laughlin 570:Kadanoff 525:Shockley 510:Anderson 465:von Laue 115:Bose gas 4535:Related 4419:General 4414:Special 4272:Applied 3978:8998766 3900:Bibcode 3864:3711186 3675:Polymer 3647:7473851 3618:Bibcode 3378:5727282 3340:Science 3181:4348459 3132:6631771 3070:7019871 2969:3588097 2879:Bibcode 2764:Bibcode 2756:Science 2728:8611050 2699:Bibcode 2552:Bibcode 2496:Bibcode 2355:Bibcode 2313:Bibcode 2234:4211987 2206:Bibcode 1833:Bibcode 1766:Bibcode 1608:Liquids 1487:to the 1300:bilayer 1280:(LCD). 1249:Colloid 1221:soluble 1159:, from 1150:Polymer 1075:before 1061:viscous 826:History 798:quantum 794:entropy 743:liquids 640:Leggett 615:Störmer 600:Bednorz 560:Giaever 530:Bardeen 520:Hubbard 495:Peierls 485:Onsager 435:Polymer 420:Colloid 383:Polaron 374:Plasmon 369:Exciton 4446:Atomic 4401:Modern 4251:Major 4121:  4099:  4019:  4009:  3985:  3975:  3967:  3926:  3918:  3871:  3861:  3853:  3814:  3806:  3798:  3734:  3726:  3654:  3644:  3636:  3584:  3576:  3524:  3516:  3472:  3464:  3423:  3415:  3376:  3368:  3360:  3319:  3277:  3238:  3230:  3188:  3178:  3139:  3129:  3121:  3077:  3067:  3059:  3015:  2976:  2966:  2958:  2913:  2905:  2897:  2840:  2798:  2790:  2782:  2735:  2725:  2717:  2670:  2612:  2602:  2570:  2516:  2462:  2452:  2413:  2375:  2353:: 87. 2284:  2276:  2232:  2224:  2198:Nature 2159:  2149:  2112:  2061:  2051:  2015:  2007:  1968:  1960:  1921:  1911:  1886:  1792:  1784:  1738:  1730:  1689:  1507:, and 1468:, and 1360:, and 1085:stress 1013:liquid 962:atomic 779:energy 728:matter 678:  645:Parisi 605:Müller 595:Rohrer 590:Binnig 580:Wilson 575:Fisher 535:Cooper 500:Landau 388:Magnon 364:Phonon 205:Plasma 105:Plasma 95:Liquid 60:Phases 3924:S2CID 3812:S2CID 3732:S2CID 3582:S2CID 3556:arXiv 3470:S2CID 3374:S2CID 3275:S2CID 2911:S2CID 2869:arXiv 2838:S2CID 2796:S2CID 2282:S2CID 2230:S2CID 2059:S2CID 2013:S2CID 1966:S2CID 1736:S2CID 1588:Foams 1555:blood 1321:X-ray 1237:guest 1175:Foams 1065:shear 991:atoms 844:fluid 842:in a 771:flesh 755:foams 555:Esaki 480:Bloch 475:Debye 470:Bragg 460:Onnes 393:Roton 90:Solid 4372:Wave 4267:Pure 4119:ISBN 4097:ISBN 4035:link 4017:OCLC 4007:ISBN 3983:PMID 3965:ISSN 3916:ISSN 3869:PMID 3851:ISSN 3804:PMID 3796:ISSN 3724:ISSN 3652:PMID 3634:ISSN 3574:PMID 3522:PMID 3514:ISSN 3462:ISSN 3421:PMID 3413:ISSN 3366:PMID 3358:ISSN 3317:PMID 3236:PMID 3228:ISSN 3186:PMID 3137:PMID 3119:ISSN 3075:PMID 3057:ISSN 3013:PMID 2974:PMID 2956:ISSN 2903:PMID 2895:ISSN 2822:Chem 2788:PMID 2780:ISSN 2733:PMID 2715:ISSN 2668:PMID 2628:link 2610:OCLC 2600:ISBN 2568:ISSN 2514:ISSN 2460:OCLC 2450:ISBN 2411:ISBN 2373:ISSN 2274:ISSN 2222:ISSN 2179:link 2175:link 2157:OCLC 2147:ISBN 2110:ISSN 2049:ISBN 2005:ISSN 1958:ISSN 1919:OCLC 1909:ISBN 1884:ISSN 1790:PMID 1782:ISSN 1728:ISSN 1687:ISBN 1598:Gels 1372:and 1323:and 1270:flow 1209:Gels 1197:and 1181:Foam 1163:and 1059:and 1018:foam 993:and 897:and 818:and 759:gels 625:Tsui 620:Yang 565:Kohn 490:Mott 4367:Ray 3973:PMC 3955:doi 3908:doi 3859:PMC 3843:doi 3786:doi 3757:doi 3753:32, 3714:doi 3683:doi 3642:PMC 3626:doi 3566:doi 3552:137 3506:doi 3452:doi 3405:doi 3401:122 3348:doi 3344:349 3309:doi 3267:doi 3263:379 3220:doi 3176:PMC 3168:doi 3127:PMC 3109:doi 3065:PMC 3047:doi 3005:doi 2964:PMC 2946:doi 2887:doi 2830:doi 2772:doi 2760:295 2723:PMC 2707:doi 2658:doi 2560:doi 2504:doi 2403:doi 2363:doi 2321:doi 2264:doi 2214:doi 2202:185 2102:doi 2041:doi 1997:doi 1950:doi 1874:doi 1841:doi 1829:322 1774:doi 1720:doi 1679:doi 1534:as 1526:or 1439:or 1215:Gel 1187:gas 1167:to 1052:. 1036:in 964:or 722:or 180:QCP 100:Gas 70:QCP 4579:: 4031:}} 4027:{{ 4015:. 3981:. 3971:. 3963:. 3951:23 3949:. 3945:. 3922:. 3914:. 3906:. 3894:. 3890:. 3867:. 3857:. 3849:. 3839:29 3837:. 3833:. 3810:. 3802:. 3794:. 3782:49 3780:. 3776:. 3730:. 3722:. 3708:. 3704:. 3679:31 3677:. 3673:. 3650:. 3640:. 3632:. 3624:. 3614:11 3612:. 3608:. 3594:^ 3580:. 3572:. 3564:. 3550:. 3546:. 3534:^ 3520:. 3512:. 3502:46 3500:. 3496:. 3482:^ 3468:. 3460:. 3448:45 3446:. 3442:. 3419:. 3411:. 3399:. 3395:. 3372:. 3364:. 3356:. 3342:. 3338:. 3315:. 3305:46 3303:. 3299:. 3287:^ 3273:. 3261:. 3257:. 3234:. 3226:. 3216:47 3214:. 3210:. 3198:^ 3184:. 3174:. 3162:. 3158:. 3135:. 3125:. 3117:. 3105:11 3103:. 3099:. 3087:^ 3073:. 3063:. 3055:. 3043:11 3041:. 3037:. 3025:^ 3011:. 3001:42 2999:. 2995:. 2972:. 2962:. 2954:. 2942:14 2940:. 2936:. 2909:. 2901:. 2893:. 2885:. 2877:. 2865:16 2863:. 2859:. 2836:. 2824:. 2820:. 2808:^ 2794:. 2786:. 2778:. 2770:. 2758:. 2754:. 2731:. 2721:. 2713:. 2705:. 2693:. 2689:. 2666:. 2654:56 2652:. 2648:. 2636:^ 2624:}} 2620:{{ 2608:. 2580:^ 2566:. 2558:. 2546:. 2542:. 2526:^ 2512:. 2502:. 2492:89 2490:. 2486:. 2472:^ 2458:. 2430:^ 2409:, 2397:, 2385:^ 2371:. 2361:. 2349:. 2345:. 2333:^ 2319:. 2309:38 2307:. 2303:. 2280:. 2272:. 2260:66 2258:. 2254:. 2242:^ 2228:. 2220:. 2212:. 2200:. 2196:. 2171:}} 2167:{{ 2155:. 2108:. 2098:53 2096:. 2092:. 2057:. 2047:. 2025:^ 2011:. 2003:. 1993:4U 1991:. 1987:. 1964:. 1956:. 1940:. 1917:. 1882:. 1868:. 1864:. 1839:. 1788:. 1780:. 1772:. 1760:. 1756:. 1734:. 1726:. 1714:. 1710:. 1685:. 1663:^ 1557:. 1542:. 1503:, 1472:. 1464:, 1443:. 1356:, 1352:, 1171:. 944:. 905:. 886:. 849:kT 822:. 790:kT 769:, 765:, 761:, 757:, 753:, 749:, 745:, 734:. 4244:e 4237:t 4230:v 4125:. 4103:. 4037:) 4023:. 3989:. 3957:: 3930:. 3910:: 3902:: 3896:6 3875:. 3845:: 3818:. 3788:: 3759:: 3738:. 3716:: 3710:2 3689:. 3685:: 3658:. 3628:: 3620:: 3588:. 3568:: 3558:: 3528:. 3508:: 3476:. 3454:: 3427:. 3407:: 3380:. 3350:: 3323:. 3311:: 3281:. 3269:: 3242:. 3222:: 3192:. 3170:: 3164:6 3143:. 3111:: 3081:. 3049:: 3019:. 3007:: 2980:. 2948:: 2917:. 2889:: 2881:: 2871:: 2844:. 2832:: 2826:7 2802:. 2774:: 2766:: 2739:. 2709:: 2701:: 2695:7 2674:. 2660:: 2630:) 2616:. 2574:. 2562:: 2554:: 2548:1 2520:. 2506:: 2498:: 2466:. 2405:: 2379:. 2365:: 2357:: 2351:6 2327:. 2323:: 2315:: 2288:. 2266:: 2236:. 2216:: 2208:: 2181:) 2163:. 2116:. 2104:: 2065:. 2043:: 2019:. 1999:: 1972:. 1952:: 1946:9 1925:. 1890:. 1876:: 1870:1 1849:. 1843:: 1835:: 1796:. 1776:: 1768:: 1762:1 1742:. 1722:: 1716:1 1695:. 1681:: 1111:. 708:e 701:t 694:v 34:. 20:)

Index

Soft interface
Soft Matter (journal)
Condensed matter physics

Phases
Phase transition
QCP
States of matter
Solid
Liquid
Gas
Plasma
Bose–Einstein condensate
Bose gas
Fermionic condensate
Fermi gas
Fermi liquid
Supersolid
Superfluidity
Luttinger liquid
Time crystal
Order parameter
Phase transition
QCP
Electronic band structure
Plasma
Insulator
Mott insulator
Semiconductor
Semimetal

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.