Knowledge (XXG)

Soft matter

Source 📝

651: 942: 38: 664: 1416:(AFM) are often used to characterize forms of soft matter due to their applicability to mapping systems at the nanoscale. These imaging techniques are not universally appropriate to all classes of soft matter and some systems may be more suited to one kind of analysis than another. For example, there are limited applications in imaging hydrogels with TEM due to the processes required for imaging. However, 1105: 1121: 4149: 1242:
Colloids are non-soluble particles suspended in a medium, such as proteins in an aqueous solution. Research into colloids is primarily focused on understanding the organization of matter, with the large structures of colloids, relative to individual molecules, large enough that they can be readily
1386:
methods are often employed to model and understand soft matter systems, as they have the ability to strictly control the composition and environment of the structures being investigated, as well as span from microscopic to macroscopic length scales. Computational methods are limited, however, by
1307:
Due to the importance of mesoscale structures in the overarching properties of soft matter, experimental work is primarily focused on the bulk properties of the materials. Rheology is often used to investigate the physical changes of the material under stress. Biological systems, such as protein
986:), and yet are much smaller than the macroscopic (overall) scale of the material. The properties and interactions of these mesoscopic structures may determine the macroscopic behavior of the material. The large number of constituents forming these mesoscopic structures, and the large 1032:
Self-assembly is an inherent characteristic of soft matter systems. The characteristic complex behavior and hierarchical structures arise spontaneously as a system evolves towards equilibrium. Self-assembly can be classified as static when the resulting structure is due to a
961:
into mesoscopic physical structures. The assembly of the mesoscale structures that form the macroscale material is governed by low energies, and these low energy associations allow for the thermal and mechanical deformation of the material. By way of contrast, in hard
1440:
Soft materials are important in a wide range of technological applications, and each soft material can often be associated with multiple disciplines. Liquid crystals, for example, were originally discovered in the biological sciences when the botanist and chemist
1143:
Polymers are large molecules composed of repeating subunits whose characteristics are governed by their environment and composition. Polymers encompass synthetic plastics, natural fibers and rubbers, and biological proteins. Polymer research finds applications in
1009:
are mesoscopic because they individually consist of a vast number of molecules, and yet the foam itself consists of a great number of these bubbles, and the overall mechanical stiffness of the foam emerges from the combined interactions of the bubbles.
970:
with no changes in the pattern at any mesoscopic scale. Unlike hard materials, where only small distortions occur from thermal or mechanical agitation, soft matter can undergo local rearrangements of the microscopic building blocks.
1004:
are much smaller than the overall quantity of liquid and yet much larger than its individual molecules, and the emergence of these vortices controls the overall flowing behavior of the material. Also, the bubbles that compose a
890:. Together, they postulated that the chemical stability, ease of deformation, and permeability of certain polymer networks in aqueous environments would have a significant impact on medicine, and were the inventors of the soft 1220:, that have a high solvent/content ratio. Research into functionalizing gels that are sensitive to mechanical and thermal stress, as well as solvent choice, has given rise to diverse structures with characteristics such as 1128:
Soft matter consists of a diverse range of interrelated systems and can be broadly categorized into certain classes. These classes are by no means distinct, as often there are overlaps between two or more groups.
1257:
Liquid crystals can consist of proteins, small molecules, or polymers, that can be manipulated to form cohesive order in a specific direction. They exhibit liquid-like behavior in that they can
1500:. Polymers also encompass biological molecules such as proteins, where research insights from soft matter research have been applied to better understand topics like protein crystallization. 1542:
to the concepts of soft matter physics. Applications of soft matter characteristics are used to understand biologically relevant topics such as membrane mobility, as well as the rheology of
1534:
Historically the problems considered in the early days of soft matter science were those pertaining to the biological sciences. As such, an important application of soft matter research is
1037:
minimum, or dynamic when the system is caught in a metastable state. Dynamic self-assembly can be utilized in the functional design of soft materials with these metastable states through
852:
in 1889. The experimental setup that Lehmann used to investigate the two melting points of cholesteryl benzoate are still used in the research of liquid crystals as of about 2019.
1511:. The physical properties available to foams have resulted in applications which can be based on their viscosity, with more rigid and self-supporting forms of foams being used as 3737:
Wu, H.,  Friedrich, H.,  Patterson, J. P.,  Sommerdijk, N. A. J. M.,  de, N. (2020), "Liquid-Phase Electron Microscopy for Soft Matter Science and Biology".
1013:
Typical bond energies in soft matter structures are of similar scale to thermal energies. Therefore the structures are constantly affected by thermal fluctuations and undergo
695: 990:
this causes, results in a general disorder between the large-scale structures. This disorder leads to the loss of long-range order that is characteristic of hard matter.
1116:
molecule; a common scaffold used in the formation of gels. The atoms are colored such that red represents oxygen, cyan represents carbon, and white represents hydrogen.
4173:- a blog run by graduate students and postdocs that makes soft matter more accessible through bite-sized posts that summarize current and classic soft matter research 1480:
found in tires. Polymers encompass a large range of soft matter, with applications in material science. An example of this is hydrogel. With the ability to undergo
4461: 2616: 2163: 4231: 1038: 1391:
in the prediction of soft matter properties is also a growing field in computer science thanks to the large amount of data available for soft matter systems.
871:
was unheard of at the time, with the scientific consensus being that the recorded high molecular weights of compounds like natural rubber were instead due to
4550: 2805:
Lin, Qianming; Li, Longyu; Tang, Miao; Uenuma, Shuntaro; Samanta, Jayanta; Li, Shangda; Jiang, Xuanfeng; Zou, Lingyi; Ito, Kohzo; Ke, Chenfeng (2021).
789:
aspects are generally unimportant. When soft materials interact favorably with surfaces, they become squashed without an external compressive force.
1365:
of the constituents in the system. There are limitations in the application of scattering techniques to some systems, as they can be more suited to
1317: 4429: 688: 650: 4089: 3999: 2592: 2403: 2139: 2041: 1901: 1679: 2115:
American Chemical Society International Historic Chemical Landmarks. Foundations of Polymer Science: Hermann Staudinger and Macromolecules.
1029:
states. This characteristic can allow for recovery of initial state through an external stimulus, which is often exploited in research.
4204: 2116: 1089: 4576: 4224: 4111: 2442: 681: 668: 3660:"General procedure for evaluating amorphous scattering and crystallinity from X-ray diffraction scans of semicrystalline polymers" 1810:"Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen" 1488:. Due to their stimuli responsive behavior, 3D printing of hydrogels has found applications in a diverse range of fields, such as 1409: 902: 1812:[On the Movement of Small Particles Suspended in Stationary Liquids Required by the Molecular-Kinetic Theory of Heat]. 987: 949:
Interesting behaviors arise from soft matter in ways that cannot be predicted, or are difficult to predict, directly from its
4377: 443: 1387:
their suitability to the system and must be regularly validated against experimental results to ensure accuracy. The use of
1454: 1262: 98: 4217: 1353:
can also be used for materials when probing for the average properties of the constituents. These methods can determine
1342: 1179: 803:
in simple systems can be generalized to the more complex cases found in soft matter, in particular, to the behaviors of
618: 4136:"Soft Matter and Biomaterials on the Nanoscale: The WSPC Reference on Functional Nanomaterials — Part I (In 4 Volumes)" 4514: 1338: 4345: 4318: 4023: 2167: 1581: 1458: 1421: 1354: 623: 248: 957:
constituents. Materials termed soft matter exhibit this property due to a shared propensity of these materials to
3689:
Peerless, James S.; Milliken, Nina J. B.; Oweida, Thomas J.; Manning, Matthew D.; Yingling, Yaroslava G. (2019).
1093: 1034: 945:
The self-assembly of individual phospholipids into colloids (Liposome and Micelle) or a membrane (bilayer sheet).
513: 188: 1225: 941: 4451: 1350: 1292: 963: 860: 849: 727: 508: 503: 29: 966:
it is often possible to predict the overall behavior of a material because the molecules are organized into a
719:
that can be deformed or structurally altered by thermal or mechanical stress which is of similar magnitude to
593: 3763:"Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications" 2528: 2065: 1417: 1413: 1383: 1313: 1157: 898: 792: 603: 198: 4153: 3197:"Exploring Macrocycles in Functional Supramolecular Gels: From Stimuli Responsiveness to Systems Chemistry" 1465:
are another example of soft materials, where the constituent elements in liquid crystals can self-propel.
4535: 4397: 3482: 1450: 1266: 828: 796: 588: 528: 498: 448: 168: 58: 4540: 4509: 4372: 4293: 1309: 1061: 1022: 844:
The crystalline optical properties of liquid crystals and their ability to flow were first described by
628: 243: 228: 20: 766:. These materials share an important common feature in that predominant physical behaviors occur at an 978:
of physical structures. The structures are much larger than the microscopic scale (the arrangement of
4571: 4499: 4323: 4283: 3888: 3606: 2867: 2752: 2687: 2540: 2484: 2343: 2301: 2194: 1973: 1821: 1754: 1556: 1497: 1477: 1261:, yet they can obtain close-to-crystal alignment. One feature of liquid crystals is their ability to 1221: 1045: 1018: 926: 872: 720: 218: 108: 4474: 4333: 4328: 4313: 4288: 4265: 4241: 2635:"Dynamic Macromolecular Material Design-The Versatility of Cyclodextrin-Based Host-Guest Chemistry" 2117:
http://www.acs.org/content/acs/en/education/whatischemistry/landmarks/staudingerpolymerscience.html
2064:
Hermann Staudinger – Biographical. NobelPrize.org. Nobel Prize Outreach AB 2023. Mon. 13 Feb 2023.
1442: 1378: 1278: 845: 458: 268: 118: 4530: 4407: 4402: 4355: 4017: 3912: 3800: 3720: 3570: 3544: 3532: 3458: 3362: 3263: 3243: 2899: 2857: 2826: 2806: 2784: 2610: 2383: 2270: 2218: 2157: 2047: 2001: 1954: 1795:
The Nobel Prize in Physics 1991. NobelPrize.org. Nobel Prize Outreach AB 2023. Mon. 13 Feb 2023.
1724: 1512: 1493: 1405: 1346: 1191: 1183: 1073: 1053: 914: 856: 598: 573: 321: 312: 4160: 3818:
Miller, Daniel S.; Carlton, Rebecca J.; Mushenheim, Peter C.; Abbott, Nicholas L. (2013-03-12).
3659: 2289: 1527:
or makeup. Foams have also found biomedical applications in tissue engineering as scaffolds and
2384:"Fracture in soft elastic materials: Continuum description, molecular aspects and applications" 2078: 841:). This work built on established research into systems that would now be considered colloids. 4545: 4494: 4439: 4419: 4305: 4107: 4085: 4005: 3995: 3971: 3953: 3904: 3857: 3839: 3792: 3784: 3712: 3640: 3622: 3562: 3510: 3502: 3450: 3409: 3401: 3354: 3346: 3305: 3224: 3216: 3174: 3125: 3107: 3063: 3045: 3001: 2962: 2944: 2918: 2891: 2883: 2776: 2768: 2721: 2703: 2656: 2598: 2588: 2556: 2502: 2448: 2438: 2399: 2361: 2262: 2210: 2145: 2135: 2098: 2037: 1993: 1946: 1907: 1897: 1872: 1778: 1770: 1716: 1675: 1636: 1621: 1591: 1520: 1508: 1149: 1065: 958: 751: 568: 413: 303: 223: 3690: 3285: 2981: 2552: 4484: 4424: 4350: 3961: 3943: 3896: 3847: 3831: 3774: 3745: 3702: 3671: 3630: 3614: 3554: 3494: 3440: 3393: 3336: 3297: 3255: 3208: 3164: 3156: 3115: 3097: 3053: 3035: 2993: 2952: 2934: 2875: 2818: 2760: 2711: 2695: 2646: 2548: 2527:
Chen, Daniel T.N.; Wen, Qi; Janmey, Paul A.; Crocker, John C.; Yodh, Arjun G. (2010-08-10).
2492: 2391: 2351: 2309: 2252: 2202: 2090: 2029: 1985: 1938: 1862: 1829: 1762: 1708: 1667: 1616: 1124:
Cartoon representation of the molecular order of crystal, liquid crystal, and liquid states.
1057: 1017:. The ease of deformation and influence of low energy interactions regularly result in slow 975: 918: 883: 800: 771: 273: 238: 233: 193: 163: 133: 93: 53: 4131:
R.G. Larson, "The Structure and Rheology of Complex Fluids," Oxford University Press (1999)
901:. The work of de Gennes across different forms of soft matter was key to understanding its 4504: 4414: 4360: 4260: 3498: 3022:
Maimouni, Ilham; Cejas, Cesare M.; Cossy, Janine; Tabeling, Patrick; Russo, Maria (2020).
1796: 1014: 824: 820: 583: 533: 403: 158: 70: 4186: 3892: 3610: 2871: 2756: 2691: 2544: 2488: 2347: 2305: 2198: 1825: 1758: 4434: 4389: 4367: 4255: 4056: 3966: 3931: 3852: 3819: 3635: 3594: 3381: 3169: 3144: 3120: 3085: 3058: 3023: 2957: 2922: 2716: 2675: 1601: 1571: 1481: 1469: 1429: 1258: 1252: 1145: 1056:
induced flow or phase transitions. However, excessive external stimuli often result in
887: 804: 774: 755: 655: 633: 613: 608: 563: 483: 418: 316: 203: 48: 37: 2740: 1194:. Foams are also used in automotive for water and dust sealing and noise reduction. 4565: 3916: 3876: 3804: 3724: 3675: 3462: 3267: 2903: 2830: 2313: 2274: 2051: 1695:
Carroll, Gregory T.; Jongejan, Mahthild G. M.; Pijper, Dirk; Feringa, Ben L. (2010).
1631: 1606: 1489: 1358: 1288: 1213: 1153: 1077: 1026: 897:
These seemingly separate fields were dramatically influenced and brought together by
868: 864: 538: 344: 325: 307: 208: 128: 3574: 2788: 2023: 2005: 1958: 1728: 1320:
can be used in understanding the average structure and lipid mobility of membranes.
4469: 3558: 3366: 2807:"Kinetic trapping of 3D-printable cyclodextrin-based poly(pseudo)rotaxane networks" 2222: 1561: 1539: 1473: 1462: 1284: 1113: 891: 558: 548: 518: 478: 473: 453: 298: 278: 138: 3820:"Introduction to Optical Methods for Characterizing Liquid Crystals at Interfaces" 3445: 3428: 2033: 1190:, and are undergoing active research in the biomedical field of drug delivery and 2822: 2497: 2472: 1265:. Liquid crystals have found significant applications in optical devices such as 4189:- a wiki dedicated to simple liquids, complex fluids, and soft condensed matter. 3397: 2395: 1626: 1485: 1446: 1425: 1388: 1104: 930: 837: 778: 763: 578: 553: 523: 468: 463: 3900: 3618: 3160: 2699: 1068:, which differs significantly from the general fracture mechanics formulation. 4489: 4479: 3259: 2602: 2149: 1926: 1911: 1867: 1850: 1535: 1408:
can be used in the study of colloidal systems, but more advanced methods like
1400: 1334: 1329: 1217: 1209: 1097: 994: 917:
structures the underlying chemistry creates. He extended the understanding of
488: 330: 123: 4009: 3957: 3908: 3843: 3788: 3716: 3626: 3506: 3454: 3405: 3350: 3244:"Naturally biomimicked smart shape memory hydrogels for biomedical functions" 3220: 3196: 3111: 3049: 2948: 2887: 2772: 2707: 2560: 2506: 2365: 2266: 2214: 2102: 2094: 1997: 1950: 1876: 1834: 1809: 1774: 1720: 4340: 4209: 4082:
Nanostructured Soft Matter - Experiment, Theory, Simulation and Perspectives
3341: 3324: 2764: 2452: 2356: 2331: 1528: 1504: 1424:
to determine the ordering of the material under various conditions, such as
1362: 1120: 1049: 929:
of polymer systems, and successfully mapped polymer behavior to that of the
922: 910: 906: 543: 493: 366: 213: 113: 4201:- A group dedicated to Soft Matter Engineering at the University of Florida 3975: 3861: 3796: 3749: 3707: 3644: 3566: 3514: 3413: 3358: 3309: 3301: 3228: 3178: 3129: 3067: 3005: 2997: 2966: 2895: 2780: 2725: 2660: 2651: 2634: 2582: 2290:"Exponents for the excluded volume problem as derived by the Wilson method" 2257: 2240: 2182: 2129: 1989: 1891: 1782: 1697:"Spontaneous generation and patterning of chiral polymeric surface toroids" 1661: 1088: 4148: 3989: 3595:"Pathways and challenges towards a complete characterization of microgels" 3102: 1538:, with a major goal of the discipline being the reduction of the field of 3948: 2939: 2676:"A comparative review of artificial muscles for microsystem applications" 2432: 2066:
https://www.nobelprize.org/prizes/chemistry/1953/staudinger/biographical/
1611: 1366: 1296: 1109: 1069: 983: 954: 879: 795:, who has been called the "founding father of soft matter," received the 103: 3024:"Microfluidics Mediated Production of Foams for Biomedical Applications" 1021:
of the mesoscopic structures which allows some systems to remain out of
4192: 3779: 3762: 3040: 2879: 2845: 2633:
Schmidt, Bernhard V. K. J.; Barner-Kowollik, Christopher (2017-07-10).
1942: 1712: 1696: 1566: 1524: 1516: 1237: 1187: 1138: 967: 808: 786: 782: 739: 735: 423: 408: 371: 362: 357: 4106:, Springer Tracts in Modern Physics, v. 161. Springer, Berlin (2000). 3930:
Zhan, Shuai; Guo, Amy X. Y.; Cao, Shan Cecilia; Liu, Na (2022-03-30).
3835: 3212: 4444: 4181: 3145:"Hydrogel: Preparation, characterization, and applications: A review" 2206: 1766: 1742: 1596: 1178:
has been dispersed to form cavities. This structure imparts a large
1001: 997: 767: 731: 716: 376: 352: 83: 4195:- organizes, reviews, and summarizes academic papers on soft matter. 835:
must have a similar thermal energy to the fluid itself (of order of
4193:
Harvard School of Engineering and Applied Sciences Soft Matter Wiki
3549: 2862: 1671: 863:, was the first person to suggest that polymers are formed through 4165: 1543: 1119: 1103: 1087: 940: 832: 759: 381: 78: 4176: 4068:
Sensitive Matter: Foams, Gels, Liquid Crystals and Other Miracles
1896:(1st ed.). Oxford, United Kingdom: Oxford University Press. 1299:
allows for the elastic deformation of the large-scale structure.
4198: 4135: 4126:
Statistical thermodynamics of surfaces, interfaces and membranes
3382:"Liquid Crystals: Versatile Self-Organized Smart Soft Materials" 1586: 1576: 1449:. Now, however, liquid crystals have also found applications as 1169: 1006: 979: 950: 743: 4213: 2083:
Berichte der Deutschen Chemischen Gesellschaft (A and B Series)
1519:, and foams that exhibit the ability to flow being used in the 1420:
can be readily applied. Liquid crystals are often probed using
1295:. The localized, low energy associated with the forming of the 4166:
American Physical Society Topical Group on Soft Matter (GSOFT)
2382:
Spagnoli, A.; Brighenti, R.; Cosma, M.P.; Terzano, M. (2022),
1203: 1175: 747: 88: 3084:
Jin, Fan-Long; Zhao, Miao; Park, Mira; Park, Soo-Jin (2019).
3875:
Zhang, Rui; Mozaffari, Ali; de Pablo, Juan J. (2021-02-25).
2844:
Cipelletti, Luca; Martens, Kirsten; Ramos, Laurence (2020).
2134:. Vijay Kumar Thakur, Manju Kumari Thakur. Singapore. 2018. 799:
in 1991 for discovering that methods developed for studying
4170: 3877:"Autonomous materials systems from active liquid crystals" 3691:"Soft Matter Informatics: Current Progress and Challenges" 3086:"Recent Trends of Foaming in Polymer Processing: A Review" 785:
is considered the dominant factor. At these temperatures,
3429:"Mirror symmetry breaking in liquids and liquid crystals" 3242:
Korde, Jay M.; Kandasubramanian, Balasubramanian (2020).
2739:
Whitesides, George M.; Grzybowski, Bartosz (2002-03-29).
1797:
https://www.nobelprize.org/prizes/physics/1991/summary/
2241:"Pierre-Gilles de Gennes. 24 October 1932—18 May 2007" 3994:. Paulo Netti. Cambridge: Woodhead Publishing. 2014. 3932:"3D Printing Soft Matters and Applications: A Review" 3533:"Soft matter perspective on protein crystal assembly" 1660:
Kleman, Maurice; Lavrentovich, Oleg D., eds. (2003).
3991:
Biomedical foams for tissue engineering applications
2245:
Biographical Memoirs of Fellows of the Royal Society
867:
that link smaller molecules together. The idea of a
4523: 4460: 4388: 4304: 4276: 4248: 3284:Hamley, Ian W.; Castelletto, Valeria (2007-06-11). 1484:, hydrogels are well suited for the development of 1468:Polymers have found diverse applications, from the 1174:Foams consist of a liquid or solid through which a 819:The current understanding of soft matter grew from 4051:Structured Fluids: Polymers, Colloids, Surfactants 3325:"Colloidal matter: Packing, geometry, and entropy" 3195:Qi, Zhenhui; Schalley, Christoph A. (2014-07-15). 2846:"Microscopic precursors of failure in soft matter" 905:, where material properties are not based on the 882:in the biomedical field was pioneered in 1960 by 1308:crystallization, are often investigated through 1182:on the system. Foams have found applications in 974:A defining characteristic of soft matter is the 2239:Joanny, Jean-François; Cates, Michael (2019). 4225: 3380:Bisoyi, Hari Krishna; Li, Quan (2022-03-09). 689: 8: 2390:, vol. 55, Elsevier, pp. 255–307, 726:The science of soft matter is a subfield of 4039:(2nd edition), J. Wiley, Chichester (2000). 3936:International Journal of Molecular Sciences 3531:Fusco, Diana; Charbonneau, Patrick (2016). 3483:"Soft Matter in Lipid–Protein Interactions" 2927:International Journal of Molecular Sciences 2674:Shi, Mayue; Yeatman, Eric M. (2021-11-23). 1283:Biological membranes consist of individual 921:in liquid crystals, introduced the idea of 4232: 4218: 4210: 2615:: CS1 maint: location missing publisher ( 2162:: CS1 maint: location missing publisher ( 1507:, or be created intentionally, such as by 1287:molecules that have self-assembled into a 1108:Host-guest complex of polyethylene glycol 696: 682: 36: 25: 4046:, Oxford University Press, Oxford (2002). 3965: 3947: 3851: 3778: 3706: 3634: 3548: 3444: 3340: 3168: 3119: 3101: 3057: 3039: 2956: 2938: 2861: 2715: 2650: 2533:Annual Review of Condensed Matter Physics 2496: 2355: 2332:"Grand Challenges in Soft Matter Physics" 2256: 1931:Monatshefte für Chemie - Chemical Monthly 1927:"Beiträge zur Kenntniss des Cholesterins" 1866: 1833: 2553:10.1146/annurev-conmatphys-070909-104120 4104:Pattern Formation in Granular Materials 3290:Angewandte Chemie International Edition 2986:Angewandte Chemie International Edition 2639:Angewandte Chemie International Edition 1649: 1503:Foams can naturally occur, such as the 1318:nuclear magnetic resonance spectroscopy 28: 4430:Atomic, molecular, and optical physics 4161:Pierre-Gilles de Gennes' Nobel Lecture 4015: 3588: 3586: 3584: 3537:Colloids and Surfaces B: Biointerfaces 3526: 3524: 3476: 3474: 3472: 3279: 3277: 3190: 3188: 3079: 3077: 3017: 3015: 2800: 2798: 2608: 2576: 2574: 2572: 2570: 2155: 2017: 2015: 1893:Soft Matter: a Very Short Introduction 1228:molecules selectively and reversibly. 1060:responses. Soft matter becomes highly 1052:responses to external stimuli such as 1000:that naturally occur within a flowing 848:in 1888, and further characterized by 3499:10.1146/annurev-biophys-070816-033843 3323:Manoharan, Vinothan N. (2015-08-28). 2628: 2626: 2522: 2520: 2518: 2516: 2466: 2464: 2462: 2426: 2424: 2422: 2420: 2377: 2375: 2325: 2323: 2234: 2232: 2183:"Hydrophilic Gels for Biological Use" 7: 4061:Soft Matter Physics: An Introduction 2982:"Nanotechnology with Soft Materials" 2917:Mashaghi, Samaneh; Jadidi, Tayebeh; 2330:van der Gucht, Jasper (2018-08-22). 1978:Zeitschrift für Physikalische Chemie 1663:Soft Matter Physics: An Introduction 1655: 1653: 16:Subfield of condensed matter physics 4138:, World Scientific Publisher (2020) 4095:M. Daoud, C.E. Williams (editors), 2437:. Oxford: Oxford University Press. 1666:. New York, NY: Springer New York. 1076:, is often used to investigate the 4205:Google Scholar page on soft matter 4070:, Harvard University Press (2012). 4049:T. A. Witten (with P. A. Pincus), 3427:Tschierske, Carsten (2018-12-08). 2921:; Mashaghi, Alireza (2013-02-21). 2680:Microsystems & Nanoengineering 2473:"Experimental soft-matter science" 2025:An Introduction to Liquid Crystals 1044:Soft materials often exhibit both 14: 4121:, Nobel Lecture, December 9, 1991 4099:, Springer Verlag, Berlin (1999). 4075:Intermolecular and Surface Forces 1851:"Grand Challenges in Soft Matter" 1849:Mezzenga, Raffaele (2021-12-22). 1072:, the study of deformation under 4147: 3658:Murthy, N.S.; Minor, H. (1990). 3481:Brown, Michael F. (2017-05-22). 2131:Hydrogels : recent advances 1410:transmission electron microscopy 1212:3D polymer scaffolds, which are 827:, understanding that a particle 663: 662: 649: 4551:Timeline of physics discoveries 3695:Advanced Theory and Simulations 3593:Scheffold, Frank (2020-09-04). 2471:Nagel, Sidney R. (2017-04-12). 2181:Wichterle, O.; Lím, D. (1960). 3761:Garcia, Ricardo (2020-08-17). 3559:10.1016/j.colsurfb.2015.07.023 1743:"Soft matter: more than words" 1455:liquid crystal tunable filters 1: 4084:, Springer/Dordrecht (2007), 4080:A. V. Zvelindovsky (editor), 3446:10.1080/02678292.2018.1501822 3201:Accounts of Chemical Research 2741:"Self-Assembly at All Scales" 2584:Foams: Structure and Dynamics 2431:Jones, Richard A. L. (2002). 2388:Advances in Applied Mechanics 2077:Staudinger, H. (1920-06-12). 1925:Reinitzer, Friedrich (1888). 1303:Experimental characterization 4037:Introduction to Soft Matter 3676:10.1016/0032-3861(90)90243-R 3248:Chemical Engineering Journal 3149:Journal of Advanced Research 2823:10.1016/j.chempr.2021.06.004 2529:"Rheology of Soft Materials" 2498:10.1103/RevModPhys.89.025002 2314:10.1016/0375-9601(72)90149-1 1343:small-angle X-ray scattering 1263:spontaneously break symmetry 1208:Gels consist of non-solvent- 1180:surface-area-to-volume ratio 4515:Quantum information science 3487:Annual Review of Biophysics 3398:10.1021/acs.chemrev.1c00761 3286:"Biological Soft Materials" 2396:10.1016/bs.aams.2021.07.001 2034:10.1088/2053-2571/ab2a6fch1 1974:"Über fliessende Krystalle" 1459:liquid crystal thermometers 1339:wide-angle X-ray scattering 4593: 4346:Classical electromagnetism 4117:de Gennes, Pierre-Gilles, 3901:10.1038/s41578-020-00272-x 3619:10.1038/s41467-020-17774-5 3161:10.1016/j.jare.2013.07.006 2700:10.1038/s41378-021-00323-5 2119:(accessed Feb 13th, 2023). 2022:DiLisi, Gregory A (2019). 1972:Lehmann, O. (1889-07-01). 1582:Fracture of soft materials 1422:polarized light microscopy 1398: 1376: 1355:particle-size distribution 1327: 1276: 1250: 1235: 1201: 1167: 1136: 249:Spin gapless semiconductor 18: 3260:10.1016/j.cej.2019.122430 2581:Cantat, Isabelle (2013). 2477:Reviews of Modern Physics 1868:10.3389/frsfm.2021.811842 1808:Einstein, Albert (1905). 1293:non-covalent interactions 1224:, or the ability to bind 730:. Soft materials include 189:Electronic band structure 4577:Condensed matter physics 4452:Condensed matter physics 4077:, Academic Press (2010). 4059:and O. D. Lavrentovich, 3881:Nature Reviews Materials 3767:Chemical Society Reviews 2587:(1st ed.). Oxford. 2288:de Gennes, P.G. (1972). 2095:10.1002/cber.19200530627 1855:Frontiers in Soft Matter 1835:10.1002/andp.19053220806 1351:dynamic light scattering 964:condensed matter physics 861:Nobel Prize in Chemistry 859:, recipient of the 1953 728:condensed matter physics 99:Bose–Einstein condensate 30:Condensed matter physics 4199:Soft Matter Engineering 4182:Softmatterresources.com 4128:, Westview Press (2003) 3342:10.1126/science.1253751 3143:Ahmed, Enas M. (2015). 2980:Hamley, Ian W. (2003). 2765:10.1126/science.1070821 2357:10.3389/fphy.2018.00087 1451:liquid-crystal displays 1418:fluorescence microscopy 1414:atomic force microscopy 1314:neutron crystallography 1267:liquid-crystal displays 1158:protein crystallization 899:Pierre-Gilles de Gennes 793:Pierre-Gilles de Gennes 4536:Nobel Prize in Physics 4398:Relativistic mechanics 4022:: CS1 maint: others ( 3750:10.1002/adma.202001582 3708:10.1002/adts.201800129 3302:10.1002/anie.200603922 2998:10.1002/anie.200200546 2923:"Lipid Nanotechnology" 2652:10.1002/anie.201612150 2258:10.1098/rsbm.2018.0033 1990:10.1515/zpch-1889-0434 1463:Active liquid crystals 1125: 1117: 1101: 1084:Classes of soft matter 946: 797:Nobel Prize in Physics 770:scale comparable with 4541:Philosophy of physics 4156:at Wikimedia Commons 4073:J. N. Israelachvili, 4044:Soft Condensed Matter 3599:Nature Communications 3103:10.3390/polym11060953 2434:Soft condensed matter 2166:) CS1 maint: others ( 2079:"Über Polymerisation" 1890:McLeish, Tom (2020). 1123: 1107: 1091: 944: 713:soft condensed matter 244:Topological insulator 21:Soft Matter (journal) 19:For the journal, see 4500:Mathematical physics 3949:10.3390/ijms23073790 3439:(13–15): 2221–2252. 2940:10.3390/ijms14024242 2336:Frontiers in Physics 1557:Biological membranes 1498:flexible electronics 1369:and dilute samples. 1337:techniques, such as 1273:Biological membranes 873:particle aggregation 721:thermal fluctuations 262:Electronic phenomena 109:Fermionic condensate 4475:Atmospheric physics 4314:Classical mechanics 4242:branches of physics 4177:Softmatterworld.org 4097:Soft Matter Physics 3893:2021NatRM...6..437Z 3611:2020NatCo..11.4315S 2872:2020SMat...16...82C 2757:2002Sci...295.2418W 2751:(5564): 2418–2421. 2692:2021MicNa...7...95S 2545:2010ARCMP...1..301C 2489:2017RvMP...89b5002N 2348:2018FrP.....6...87V 2306:1972PhLA...38..339D 2199:1960Natur.185..117W 1826:1905AnP...322..549E 1759:2005SMat....1...16. 1443:Friedrich Reinitzer 1379:Computer simulation 1279:Biological membrane 968:crystalline lattice 937:Distinctive physics 846:Friedrich Reinitzer 269:Quantum Hall effect 4531:History of physics 4102:Gerald H. Ristow, 4063:, Springer (2003). 3780:10.1039/D0CS00318B 3041:10.3390/mi11010083 2919:Koenderink, Gijsje 2880:10.1039/C9SM01730E 2028:. IOP Publishing. 1943:10.1007/BF01516710 1814:Annalen der Physik 1713:10.1039/c0sc00159g 1592:Granular materials 1509:fire extinguishers 1494:tissue engineering 1445:was investigating 1406:Optical microscopy 1347:neutron scattering 1192:tissue engineering 1126: 1118: 1102: 1096:, an example of a 988:degrees of freedom 947: 909:of the underlying 857:Hermann Staudinger 762:, and a number of 752:granular materials 656:Physics portal 4559: 4558: 4546:Physics education 4495:Materials science 4462:Interdisciplinary 4420:Quantum mechanics 4152:Media related to 4090:978-1-4020-6329-9 4001:978-1-306-47861-8 3836:10.1021/la304679f 3830:(10): 3154–3169. 3773:(16): 5850–5884. 3335:(6251): 1253751. 3296:(24): 4442–4455. 3213:10.1021/ar500193z 2992:(15): 1692–1712. 2645:(29): 8350–8369. 2594:978-0-19-966289-0 2405:978-0-12-824617-7 2294:Physics Letters A 2193:(4706): 117–118. 2141:978-981-10-6077-9 2043:978-1-64327-684-7 1903:978-0-19-880713-1 1681:978-0-387-95267-3 1622:Protein structure 1521:cosmetic industry 1478:vulcanized rubber 1291:structure due to 1150:materials science 1092:A portion of the 1066:crack propagation 993:For example, the 913:, more so on the 821:Albert Einstein's 706: 705: 414:Granular material 182:Electronic phases 4584: 4485:Chemical physics 4425:Particle physics 4351:Classical optics 4234: 4227: 4220: 4211: 4151: 4053:, Oxford (2004). 4042:R. A. L. Jones, 4028: 4027: 4021: 4013: 3986: 3980: 3979: 3969: 3951: 3927: 3921: 3920: 3872: 3866: 3865: 3855: 3815: 3809: 3808: 3782: 3758: 3752: 3735: 3729: 3728: 3710: 3686: 3680: 3679: 3655: 3649: 3648: 3638: 3590: 3579: 3578: 3552: 3528: 3519: 3518: 3478: 3467: 3466: 3448: 3424: 3418: 3417: 3392:(5): 4887–4926. 3386:Chemical Reviews 3377: 3371: 3370: 3344: 3320: 3314: 3313: 3281: 3272: 3271: 3239: 3233: 3232: 3207:(7): 2222–2233. 3192: 3183: 3182: 3172: 3140: 3134: 3133: 3123: 3105: 3081: 3072: 3071: 3061: 3043: 3019: 3010: 3009: 2977: 2971: 2970: 2960: 2942: 2933:(2): 4242–4282. 2914: 2908: 2907: 2865: 2841: 2835: 2834: 2817:(9): 2442–2459. 2802: 2793: 2792: 2736: 2730: 2729: 2719: 2671: 2665: 2664: 2654: 2630: 2621: 2620: 2614: 2606: 2578: 2565: 2564: 2524: 2511: 2510: 2500: 2468: 2457: 2456: 2428: 2415: 2414: 2413: 2412: 2379: 2370: 2369: 2359: 2327: 2318: 2317: 2285: 2279: 2278: 2260: 2236: 2227: 2226: 2207:10.1038/185117a0 2178: 2172: 2171: 2161: 2153: 2126: 2120: 2113: 2107: 2106: 2089:(6): 1073–1085. 2074: 2068: 2062: 2056: 2055: 2019: 2010: 2009: 1969: 1963: 1962: 1922: 1916: 1915: 1887: 1881: 1880: 1870: 1846: 1840: 1839: 1837: 1805: 1799: 1793: 1787: 1786: 1767:10.1039/b419223k 1739: 1733: 1732: 1701:Chemical Science 1692: 1686: 1685: 1657: 1617:Protein dynamics 1112:bound within an 1094:DNA double helix 1080:of soft matter. 1039:kinetic trapping 976:mesoscopic scale 772:room temperature 698: 691: 684: 671: 666: 665: 658: 654: 653: 274:Spin Hall effect 164:Phase transition 134:Luttinger liquid 71:States of matter 54:Phase transition 40: 26: 4592: 4591: 4587: 4586: 4585: 4583: 4582: 4581: 4562: 4561: 4560: 4555: 4519: 4505:Medical physics 4456: 4415:Nuclear physics 4384: 4378:Non-equilibrium 4300: 4272: 4244: 4238: 4145: 4032: 4031: 4014: 4002: 3988: 3987: 3983: 3929: 3928: 3924: 3874: 3873: 3869: 3817: 3816: 3812: 3760: 3759: 3755: 3736: 3732: 3688: 3687: 3683: 3670:(6): 996–1002. 3657: 3656: 3652: 3592: 3591: 3582: 3530: 3529: 3522: 3480: 3479: 3470: 3433:Liquid Crystals 3426: 3425: 3421: 3379: 3378: 3374: 3322: 3321: 3317: 3283: 3282: 3275: 3241: 3240: 3236: 3194: 3193: 3186: 3142: 3141: 3137: 3083: 3082: 3075: 3021: 3020: 3013: 2979: 2978: 2974: 2916: 2915: 2911: 2843: 2842: 2838: 2804: 2803: 2796: 2738: 2737: 2733: 2673: 2672: 2668: 2632: 2631: 2624: 2607: 2595: 2580: 2579: 2568: 2526: 2525: 2514: 2470: 2469: 2460: 2445: 2430: 2429: 2418: 2410: 2408: 2406: 2381: 2380: 2373: 2329: 2328: 2321: 2287: 2286: 2282: 2238: 2237: 2230: 2180: 2179: 2175: 2154: 2142: 2128: 2127: 2123: 2114: 2110: 2076: 2075: 2071: 2063: 2059: 2044: 2021: 2020: 2013: 1971: 1970: 1966: 1924: 1923: 1919: 1904: 1889: 1888: 1884: 1848: 1847: 1843: 1807: 1806: 1802: 1794: 1790: 1753:(1): 16. 2005. 1741: 1740: 1736: 1694: 1693: 1689: 1682: 1659: 1658: 1651: 1646: 1641: 1602:Liquid crystals 1552: 1438: 1403: 1397: 1381: 1375: 1332: 1326: 1305: 1281: 1275: 1255: 1249: 1247:Liquid crystals 1240: 1234: 1206: 1200: 1172: 1166: 1141: 1135: 1086: 1078:bulk properties 1015:Brownian motion 939: 825:Brownian motion 817: 805:liquid crystals 801:order phenomena 756:liquid crystals 702: 661: 648: 647: 640: 639: 638: 438: 430: 429: 428: 404:Amorphous solid 398: 388: 387: 386: 365: 347: 337: 336: 335: 324: 322:Antiferromagnet 315: 313:Superparamagnet 306: 293: 292:Magnetic phases 285: 284: 283: 263: 255: 254: 253: 183: 175: 174: 173: 159:Order parameter 153: 152:Phase phenomena 145: 144: 143: 73: 63: 24: 17: 12: 11: 5: 4590: 4588: 4580: 4579: 4574: 4564: 4563: 4557: 4556: 4554: 4553: 4548: 4543: 4538: 4533: 4527: 4525: 4521: 4520: 4518: 4517: 4512: 4507: 4502: 4497: 4492: 4487: 4482: 4477: 4472: 4466: 4464: 4458: 4457: 4455: 4454: 4449: 4448: 4447: 4442: 4437: 4427: 4422: 4417: 4412: 4411: 4410: 4405: 4394: 4392: 4386: 4385: 4383: 4382: 4381: 4380: 4375: 4368:Thermodynamics 4365: 4364: 4363: 4358: 4348: 4343: 4338: 4337: 4336: 4331: 4326: 4321: 4310: 4308: 4302: 4301: 4299: 4298: 4297: 4296: 4286: 4280: 4278: 4274: 4273: 4271: 4270: 4269: 4268: 4258: 4252: 4250: 4246: 4245: 4239: 4237: 4236: 4229: 4222: 4214: 4208: 4207: 4202: 4196: 4190: 4184: 4179: 4174: 4168: 4163: 4144: 4143:External links 4141: 4140: 4139: 4132: 4129: 4122: 4115: 4100: 4093: 4078: 4071: 4064: 4054: 4047: 4040: 4030: 4029: 4000: 3981: 3922: 3887:(5): 437–453. 3867: 3810: 3753: 3730: 3701:(1): 1800129. 3681: 3650: 3580: 3520: 3493:(1): 379–410. 3468: 3419: 3372: 3315: 3273: 3234: 3184: 3155:(2): 105–121. 3135: 3073: 3011: 2972: 2909: 2836: 2794: 2731: 2666: 2622: 2593: 2566: 2539:(1): 301–322. 2512: 2458: 2443: 2416: 2404: 2371: 2319: 2300:(5): 339–340. 2280: 2228: 2173: 2140: 2121: 2108: 2069: 2057: 2042: 2011: 1984:(1): 462–472. 1964: 1937:(1): 421–441. 1917: 1902: 1882: 1841: 1820:(8): 549–560. 1800: 1788: 1734: 1687: 1680: 1672:10.1007/b97416 1648: 1647: 1645: 1642: 1640: 1639: 1634: 1629: 1624: 1619: 1614: 1609: 1607:Microemulsions 1604: 1599: 1594: 1589: 1584: 1579: 1574: 1572:Complex fluids 1569: 1564: 1559: 1553: 1551: 1548: 1505:head on a beer 1482:shear thinning 1470:natural rubber 1437: 1434: 1430:electric field 1399:Main article: 1396: 1393: 1377:Main article: 1374: 1371: 1328:Main article: 1325: 1322: 1304: 1301: 1277:Main article: 1274: 1271: 1253:Liquid crystal 1251:Main article: 1248: 1245: 1236:Main article: 1233: 1230: 1216:or physically 1202:Main article: 1199: 1196: 1168:Main article: 1165: 1162: 1146:nanotechnology 1137:Main article: 1134: 1131: 1114:α-cyclodextrin 1085: 1082: 938: 935: 925:regarding the 888:Otto Wichterle 865:covalent bonds 816: 813: 775:thermal energy 704: 703: 701: 700: 693: 686: 678: 675: 674: 673: 672: 659: 642: 641: 637: 636: 631: 626: 621: 616: 611: 606: 601: 596: 591: 586: 581: 576: 571: 566: 561: 556: 551: 546: 541: 536: 531: 526: 521: 516: 511: 506: 501: 496: 491: 486: 481: 476: 471: 466: 461: 456: 451: 446: 440: 439: 436: 435: 432: 431: 427: 426: 421: 419:Liquid crystal 416: 411: 406: 400: 399: 394: 393: 390: 389: 385: 384: 379: 374: 369: 360: 355: 349: 348: 345:Quasiparticles 343: 342: 339: 338: 334: 333: 328: 319: 310: 304:Superdiamagnet 301: 295: 294: 291: 290: 287: 286: 282: 281: 276: 271: 265: 264: 261: 260: 257: 256: 252: 251: 246: 241: 236: 231: 229:Thermoelectric 226: 224:Superconductor 221: 216: 211: 206: 204:Mott insulator 201: 196: 191: 185: 184: 181: 180: 177: 176: 172: 171: 166: 161: 155: 154: 151: 150: 147: 146: 142: 141: 136: 131: 126: 121: 116: 111: 106: 101: 96: 91: 86: 81: 75: 74: 69: 68: 65: 64: 62: 61: 56: 51: 45: 42: 41: 33: 32: 15: 13: 10: 9: 6: 4: 3: 2: 4589: 4578: 4575: 4573: 4570: 4569: 4567: 4552: 4549: 4547: 4544: 4542: 4539: 4537: 4534: 4532: 4529: 4528: 4526: 4522: 4516: 4513: 4511: 4510:Ocean physics 4508: 4506: 4503: 4501: 4498: 4496: 4493: 4491: 4488: 4486: 4483: 4481: 4478: 4476: 4473: 4471: 4468: 4467: 4465: 4463: 4459: 4453: 4450: 4446: 4445:Modern optics 4443: 4441: 4438: 4436: 4433: 4432: 4431: 4428: 4426: 4423: 4421: 4418: 4416: 4413: 4409: 4406: 4404: 4401: 4400: 4399: 4396: 4395: 4393: 4391: 4387: 4379: 4376: 4374: 4371: 4370: 4369: 4366: 4362: 4359: 4357: 4354: 4353: 4352: 4349: 4347: 4344: 4342: 4339: 4335: 4332: 4330: 4327: 4325: 4322: 4320: 4317: 4316: 4315: 4312: 4311: 4309: 4307: 4303: 4295: 4294:Computational 4292: 4291: 4290: 4287: 4285: 4282: 4281: 4279: 4275: 4267: 4264: 4263: 4262: 4259: 4257: 4254: 4253: 4251: 4247: 4243: 4235: 4230: 4228: 4223: 4221: 4216: 4215: 4212: 4206: 4203: 4200: 4197: 4194: 4191: 4188: 4185: 4183: 4180: 4178: 4175: 4172: 4169: 4167: 4164: 4162: 4159: 4158: 4157: 4155: 4150: 4142: 4137: 4133: 4130: 4127: 4124:S. A. Safran, 4123: 4120: 4116: 4113: 4112:3-540-66701-6 4109: 4105: 4101: 4098: 4094: 4091: 4087: 4083: 4079: 4076: 4072: 4069: 4065: 4062: 4058: 4055: 4052: 4048: 4045: 4041: 4038: 4034: 4033: 4025: 4019: 4011: 4007: 4003: 3997: 3993: 3992: 3985: 3982: 3977: 3973: 3968: 3963: 3959: 3955: 3950: 3945: 3941: 3937: 3933: 3926: 3923: 3918: 3914: 3910: 3906: 3902: 3898: 3894: 3890: 3886: 3882: 3878: 3871: 3868: 3863: 3859: 3854: 3849: 3845: 3841: 3837: 3833: 3829: 3825: 3821: 3814: 3811: 3806: 3802: 3798: 3794: 3790: 3786: 3781: 3776: 3772: 3768: 3764: 3757: 3754: 3751: 3747: 3743: 3740: 3734: 3731: 3726: 3722: 3718: 3714: 3709: 3704: 3700: 3696: 3692: 3685: 3682: 3677: 3673: 3669: 3665: 3661: 3654: 3651: 3646: 3642: 3637: 3632: 3628: 3624: 3620: 3616: 3612: 3608: 3604: 3600: 3596: 3589: 3587: 3585: 3581: 3576: 3572: 3568: 3564: 3560: 3556: 3551: 3546: 3542: 3538: 3534: 3527: 3525: 3521: 3516: 3512: 3508: 3504: 3500: 3496: 3492: 3488: 3484: 3477: 3475: 3473: 3469: 3464: 3460: 3456: 3452: 3447: 3442: 3438: 3434: 3430: 3423: 3420: 3415: 3411: 3407: 3403: 3399: 3395: 3391: 3387: 3383: 3376: 3373: 3368: 3364: 3360: 3356: 3352: 3348: 3343: 3338: 3334: 3330: 3326: 3319: 3316: 3311: 3307: 3303: 3299: 3295: 3291: 3287: 3280: 3278: 3274: 3269: 3265: 3261: 3257: 3253: 3249: 3245: 3238: 3235: 3230: 3226: 3222: 3218: 3214: 3210: 3206: 3202: 3198: 3191: 3189: 3185: 3180: 3176: 3171: 3166: 3162: 3158: 3154: 3150: 3146: 3139: 3136: 3131: 3127: 3122: 3117: 3113: 3109: 3104: 3099: 3095: 3091: 3087: 3080: 3078: 3074: 3069: 3065: 3060: 3055: 3051: 3047: 3042: 3037: 3033: 3029: 3028:Micromachines 3025: 3018: 3016: 3012: 3007: 3003: 2999: 2995: 2991: 2987: 2983: 2976: 2973: 2968: 2964: 2959: 2954: 2950: 2946: 2941: 2936: 2932: 2928: 2924: 2920: 2913: 2910: 2905: 2901: 2897: 2893: 2889: 2885: 2881: 2877: 2873: 2869: 2864: 2859: 2855: 2851: 2847: 2840: 2837: 2832: 2828: 2824: 2820: 2816: 2812: 2808: 2801: 2799: 2795: 2790: 2786: 2782: 2778: 2774: 2770: 2766: 2762: 2758: 2754: 2750: 2746: 2742: 2735: 2732: 2727: 2723: 2718: 2713: 2709: 2705: 2701: 2697: 2693: 2689: 2685: 2681: 2677: 2670: 2667: 2662: 2658: 2653: 2648: 2644: 2640: 2636: 2629: 2627: 2623: 2618: 2612: 2604: 2600: 2596: 2590: 2586: 2585: 2577: 2575: 2573: 2571: 2567: 2562: 2558: 2554: 2550: 2546: 2542: 2538: 2534: 2530: 2523: 2521: 2519: 2517: 2513: 2508: 2504: 2499: 2494: 2490: 2486: 2483:(2): 025002. 2482: 2478: 2474: 2467: 2465: 2463: 2459: 2454: 2450: 2446: 2444:0-19-850590-6 2440: 2436: 2435: 2427: 2425: 2423: 2421: 2417: 2407: 2401: 2397: 2393: 2389: 2385: 2378: 2376: 2372: 2367: 2363: 2358: 2353: 2349: 2345: 2341: 2337: 2333: 2326: 2324: 2320: 2315: 2311: 2307: 2303: 2299: 2295: 2291: 2284: 2281: 2276: 2272: 2268: 2264: 2259: 2254: 2250: 2246: 2242: 2235: 2233: 2229: 2224: 2220: 2216: 2212: 2208: 2204: 2200: 2196: 2192: 2188: 2184: 2177: 2174: 2169: 2165: 2159: 2151: 2147: 2143: 2137: 2133: 2132: 2125: 2122: 2118: 2112: 2109: 2104: 2100: 2096: 2092: 2088: 2084: 2080: 2073: 2070: 2067: 2061: 2058: 2053: 2049: 2045: 2039: 2035: 2031: 2027: 2026: 2018: 2016: 2012: 2007: 2003: 1999: 1995: 1991: 1987: 1983: 1979: 1975: 1968: 1965: 1960: 1956: 1952: 1948: 1944: 1940: 1936: 1933:(in German). 1932: 1928: 1921: 1918: 1913: 1909: 1905: 1899: 1895: 1894: 1886: 1883: 1878: 1874: 1869: 1864: 1860: 1856: 1852: 1845: 1842: 1836: 1831: 1827: 1823: 1819: 1816:(in German). 1815: 1811: 1804: 1801: 1798: 1792: 1789: 1784: 1780: 1776: 1772: 1768: 1764: 1760: 1756: 1752: 1748: 1744: 1738: 1735: 1730: 1726: 1722: 1718: 1714: 1710: 1706: 1702: 1698: 1691: 1688: 1683: 1677: 1673: 1669: 1665: 1664: 1656: 1654: 1650: 1643: 1638: 1635: 1633: 1632:Active matter 1630: 1628: 1625: 1623: 1620: 1618: 1615: 1613: 1610: 1608: 1605: 1603: 1600: 1598: 1595: 1593: 1590: 1588: 1585: 1583: 1580: 1578: 1575: 1573: 1570: 1568: 1565: 1563: 1560: 1558: 1555: 1554: 1549: 1547: 1545: 1541: 1537: 1532: 1530: 1526: 1522: 1518: 1514: 1510: 1506: 1501: 1499: 1495: 1491: 1490:soft robotics 1487: 1483: 1479: 1475: 1471: 1466: 1464: 1460: 1456: 1452: 1448: 1444: 1435: 1433: 1431: 1427: 1423: 1419: 1415: 1411: 1407: 1402: 1394: 1392: 1390: 1385: 1384:Computational 1380: 1373:Computational 1372: 1370: 1368: 1364: 1360: 1359:crystallinity 1356: 1352: 1348: 1344: 1340: 1336: 1331: 1323: 1321: 1319: 1315: 1311: 1302: 1300: 1298: 1294: 1290: 1286: 1280: 1272: 1270: 1268: 1264: 1260: 1254: 1246: 1244: 1239: 1231: 1229: 1227: 1223: 1219: 1215: 1211: 1205: 1197: 1195: 1193: 1189: 1185: 1181: 1177: 1171: 1163: 1161: 1159: 1155: 1154:drug delivery 1151: 1147: 1140: 1132: 1130: 1122: 1115: 1111: 1106: 1099: 1095: 1090: 1083: 1081: 1079: 1075: 1071: 1067: 1063: 1059: 1055: 1051: 1047: 1042: 1040: 1036: 1030: 1028: 1024: 1020: 1016: 1011: 1008: 1003: 999: 996: 991: 989: 985: 981: 977: 972: 969: 965: 960: 959:self-organize 956: 952: 943: 936: 934: 932: 928: 924: 920: 919:phase changes 916: 912: 908: 904: 900: 895: 893: 889: 885: 884:Drahoslav Lím 881: 876: 874: 870: 869:macromolecule 866: 862: 858: 853: 851: 847: 842: 840: 839: 834: 830: 826: 822: 814: 812: 810: 806: 802: 798: 794: 790: 788: 784: 780: 777:(of order of 776: 773: 769: 765: 761: 757: 753: 749: 745: 741: 737: 733: 729: 724: 722: 718: 715:is a type of 714: 710: 699: 694: 692: 687: 685: 680: 679: 677: 676: 670: 660: 657: 652: 646: 645: 644: 643: 635: 632: 630: 627: 625: 622: 620: 617: 615: 612: 610: 607: 605: 602: 600: 597: 595: 592: 590: 587: 585: 582: 580: 577: 575: 572: 570: 567: 565: 562: 560: 557: 555: 552: 550: 547: 545: 542: 540: 537: 535: 532: 530: 527: 525: 522: 520: 517: 515: 512: 510: 507: 505: 502: 500: 497: 495: 492: 490: 487: 485: 482: 480: 477: 475: 472: 470: 467: 465: 462: 460: 457: 455: 452: 450: 447: 445: 444:Van der Waals 442: 441: 434: 433: 425: 422: 420: 417: 415: 412: 410: 407: 405: 402: 401: 397: 392: 391: 383: 380: 378: 375: 373: 370: 368: 364: 361: 359: 356: 354: 351: 350: 346: 341: 340: 332: 329: 327: 323: 320: 318: 314: 311: 309: 305: 302: 300: 297: 296: 289: 288: 280: 277: 275: 272: 270: 267: 266: 259: 258: 250: 247: 245: 242: 240: 239:Ferroelectric 237: 235: 234:Piezoelectric 232: 230: 227: 225: 222: 220: 217: 215: 212: 210: 209:Semiconductor 207: 205: 202: 200: 197: 195: 192: 190: 187: 186: 179: 178: 170: 167: 165: 162: 160: 157: 156: 149: 148: 140: 137: 135: 132: 130: 129:Superfluidity 127: 125: 122: 120: 117: 115: 112: 110: 107: 105: 102: 100: 97: 95: 92: 90: 87: 85: 82: 80: 77: 76: 72: 67: 66: 60: 57: 55: 52: 50: 47: 46: 44: 43: 39: 35: 34: 31: 27: 22: 4470:Astrophysics 4284:Experimental 4146: 4134:Gang, Oleg, 4125: 4118: 4103: 4096: 4081: 4074: 4067: 4060: 4050: 4043: 4036: 3990: 3984: 3939: 3935: 3925: 3884: 3880: 3870: 3827: 3823: 3813: 3770: 3766: 3756: 3741: 3738: 3733: 3698: 3694: 3684: 3667: 3663: 3653: 3602: 3598: 3540: 3536: 3490: 3486: 3436: 3432: 3422: 3389: 3385: 3375: 3332: 3328: 3318: 3293: 3289: 3251: 3247: 3237: 3204: 3200: 3152: 3148: 3138: 3093: 3089: 3031: 3027: 2989: 2985: 2975: 2930: 2926: 2912: 2856:(1): 82–93. 2853: 2849: 2839: 2814: 2810: 2748: 2744: 2734: 2683: 2679: 2669: 2642: 2638: 2583: 2536: 2532: 2480: 2476: 2433: 2409:, retrieved 2387: 2339: 2335: 2297: 2293: 2283: 2248: 2244: 2190: 2186: 2176: 2130: 2124: 2111: 2086: 2082: 2072: 2060: 2024: 1981: 1977: 1967: 1934: 1930: 1920: 1892: 1885: 1858: 1854: 1844: 1817: 1813: 1803: 1791: 1750: 1746: 1737: 1704: 1700: 1690: 1662: 1562:Biomaterials 1540:cell biology 1533: 1502: 1474:latex gloves 1467: 1447:cholesterols 1439: 1436:Applications 1404: 1382: 1333: 1306: 1285:phospholipid 1282: 1256: 1241: 1222:shape-memory 1218:cross-linked 1207: 1173: 1142: 1127: 1043: 1031: 1012: 992: 973: 948: 903:universality 896: 892:contact lens 877: 854: 850:Otto Lehmann 843: 836: 818: 791: 781:), and that 764:biomaterials 725: 712: 708: 707: 574:von Klitzing 395: 279:Kondo effect 139:Time crystal 119:Fermi liquid 4572:Soft matter 4373:Statistical 4289:Theoretical 4266:Engineering 4154:Soft matter 4119:Soft Matter 4035:I. Hamley, 3942:(7): 3790. 3739:Adv. Mater. 3605:(1): 4315. 2850:Soft Matter 2251:: 143–158. 1747:Soft Matter 1627:Surfactants 1486:3D printing 1426:temperature 1389:informatics 1035:free energy 1023:equilibrium 931:Ising model 878:The use of 709:Soft matter 396:Soft matter 317:Ferromagnet 4566:Categories 4490:Geophysics 4480:Biophysics 4324:Analytical 4277:Approaches 4066:M. Mitov, 3550:1505.05214 3254:: 122430. 3096:(6): 953. 2863:1909.11961 2603:1011990362 2411:2023-02-13 2150:1050163199 1912:1202271044 1861:: 811842. 1707:(4): 469. 1644:References 1536:biophysics 1529:biosensors 1513:insulation 1412:(TEM) and 1401:Microscopy 1395:Microscopy 1335:Scattering 1330:Scattering 1324:Scattering 1243:observed. 1214:covalently 1184:insulation 1098:biopolymer 1046:elasticity 1027:metastable 927:relaxation 915:mesoscopic 539:Louis Néel 529:Schrieffer 437:Scientists 331:Spin glass 326:Metamagnet 308:Paramagnet 124:Supersolid 4440:Molecular 4341:Acoustics 4334:Continuum 4329:Celestial 4319:Newtonian 4306:Classical 4249:Divisions 4187:SklogWiki 4171:Softbites 4057:M. Kleman 4018:cite book 4010:872654628 3958:1422-0067 3917:232044197 3909:2058-8437 3844:0743-7463 3805:220519766 3789:1460-4744 3744:2001582. 3725:139778116 3717:2513-0390 3627:2041-1723 3543:: 22–31. 3507:1936-122X 3463:125652009 3455:0267-8292 3406:0009-2665 3351:0036-8075 3268:201216064 3221:0001-4842 3112:2073-4360 3050:2072-666X 3034:(1): 83. 2949:1422-0067 2904:202889185 2888:1744-683X 2831:237139764 2773:0036-8075 2708:2055-7434 2686:(1): 95. 2611:cite book 2561:1947-5454 2507:0034-6861 2366:2296-424X 2275:127231807 2267:0080-4606 2215:0028-0836 2158:cite book 2103:0365-9488 2052:239330818 1998:2196-7156 1951:0026-9247 1877:2813-0499 1775:1744-683X 1721:2041-6520 1637:Roughness 1472:found in 1367:isotropic 1363:diffusion 1357:, shape, 1058:nonlinear 995:turbulent 984:molecules 955:molecular 923:reptation 911:structure 907:chemistry 855:In 1920, 829:suspended 619:Abrikosov 534:Josephson 504:Van Vleck 494:Luttinger 367:Polariton 299:Diamagnet 219:Conductor 214:Semimetal 199:Insulator 114:Fermi gas 3976:35409150 3862:23347378 3824:Langmuir 3797:32662499 3645:32887886 3575:13969559 3567:26236019 3515:28532212 3414:34941251 3359:26315444 3310:17516592 3229:24937365 3179:25750745 3130:31159423 3090:Polymers 3068:31940876 3006:12707884 2967:23429269 2896:31720666 2789:40684317 2781:11923529 2726:34858630 2661:28245083 2453:48753186 2006:92908969 1959:97166902 1783:32521835 1729:96957407 1612:Polymers 1567:Colloids 1550:See also 1525:shampoos 1517:cushions 1316:, while 1297:membrane 1232:Colloids 1188:textiles 1133:Polymers 1110:oligomer 1070:Rheology 1062:deformed 1019:dynamics 998:vortices 880:hydrogel 823:work on 809:polymers 740:polymers 736:colloids 669:Category 624:Ginzburg 599:Laughlin 559:Kadanoff 514:Shockley 499:Anderson 454:von Laue 104:Bose gas 4524:Related 4408:General 4403:Special 4261:Applied 3967:8998766 3889:Bibcode 3853:3711186 3664:Polymer 3636:7473851 3607:Bibcode 3367:5727282 3329:Science 3170:4348459 3121:6631771 3059:7019871 2958:3588097 2868:Bibcode 2753:Bibcode 2745:Science 2717:8611050 2688:Bibcode 2541:Bibcode 2485:Bibcode 2344:Bibcode 2302:Bibcode 2223:4211987 2195:Bibcode 1822:Bibcode 1755:Bibcode 1597:Liquids 1476:to the 1289:bilayer 1269:(LCD). 1238:Colloid 1210:soluble 1148:, from 1139:Polymer 1064:before 1050:viscous 815:History 787:quantum 783:entropy 732:liquids 629:Leggett 604:Störmer 589:Bednorz 549:Giaever 519:Bardeen 509:Hubbard 484:Peierls 474:Onsager 424:Polymer 409:Colloid 372:Polaron 363:Plasmon 358:Exciton 4435:Atomic 4390:Modern 4240:Major 4110:  4088:  4008:  3998:  3974:  3964:  3956:  3915:  3907:  3860:  3850:  3842:  3803:  3795:  3787:  3723:  3715:  3643:  3633:  3625:  3573:  3565:  3513:  3505:  3461:  3453:  3412:  3404:  3365:  3357:  3349:  3308:  3266:  3227:  3219:  3177:  3167:  3128:  3118:  3110:  3066:  3056:  3048:  3004:  2965:  2955:  2947:  2902:  2894:  2886:  2829:  2787:  2779:  2771:  2724:  2714:  2706:  2659:  2601:  2591:  2559:  2505:  2451:  2441:  2402:  2364:  2342:: 87. 2273:  2265:  2221:  2213:  2187:Nature 2148:  2138:  2101:  2050:  2040:  2004:  1996:  1957:  1949:  1910:  1900:  1875:  1781:  1773:  1727:  1719:  1678:  1496:, and 1457:, and 1349:, and 1074:stress 1002:liquid 951:atomic 768:energy 717:matter 667:  634:Parisi 594:Müller 584:Rohrer 579:Binnig 569:Wilson 564:Fisher 524:Cooper 489:Landau 377:Magnon 353:Phonon 194:Plasma 94:Plasma 84:Liquid 49:Phases 3913:S2CID 3801:S2CID 3721:S2CID 3571:S2CID 3545:arXiv 3459:S2CID 3363:S2CID 3264:S2CID 2900:S2CID 2858:arXiv 2827:S2CID 2785:S2CID 2271:S2CID 2219:S2CID 2048:S2CID 2002:S2CID 1955:S2CID 1725:S2CID 1577:Foams 1544:blood 1310:X-ray 1226:guest 1164:Foams 1054:shear 980:atoms 833:fluid 831:in a 760:flesh 744:foams 544:Esaki 469:Bloch 464:Debye 459:Bragg 449:Onnes 382:Roton 79:Solid 4361:Wave 4256:Pure 4108:ISBN 4086:ISBN 4024:link 4006:OCLC 3996:ISBN 3972:PMID 3954:ISSN 3905:ISSN 3858:PMID 3840:ISSN 3793:PMID 3785:ISSN 3713:ISSN 3641:PMID 3623:ISSN 3563:PMID 3511:PMID 3503:ISSN 3451:ISSN 3410:PMID 3402:ISSN 3355:PMID 3347:ISSN 3306:PMID 3225:PMID 3217:ISSN 3175:PMID 3126:PMID 3108:ISSN 3064:PMID 3046:ISSN 3002:PMID 2963:PMID 2945:ISSN 2892:PMID 2884:ISSN 2811:Chem 2777:PMID 2769:ISSN 2722:PMID 2704:ISSN 2657:PMID 2617:link 2599:OCLC 2589:ISBN 2557:ISSN 2503:ISSN 2449:OCLC 2439:ISBN 2400:ISBN 2362:ISSN 2263:ISSN 2211:ISSN 2168:link 2164:link 2146:OCLC 2136:ISBN 2099:ISSN 2038:ISBN 1994:ISSN 1947:ISSN 1908:OCLC 1898:ISBN 1873:ISSN 1779:PMID 1771:ISSN 1717:ISSN 1676:ISBN 1587:Gels 1361:and 1312:and 1259:flow 1198:Gels 1186:and 1170:Foam 1152:and 1048:and 1007:foam 982:and 886:and 807:and 748:gels 614:Tsui 609:Yang 554:Kohn 479:Mott 4356:Ray 3962:PMC 3944:doi 3897:doi 3848:PMC 3832:doi 3775:doi 3746:doi 3742:32, 3703:doi 3672:doi 3631:PMC 3615:doi 3555:doi 3541:137 3495:doi 3441:doi 3394:doi 3390:122 3337:doi 3333:349 3298:doi 3256:doi 3252:379 3209:doi 3165:PMC 3157:doi 3116:PMC 3098:doi 3054:PMC 3036:doi 2994:doi 2953:PMC 2935:doi 2876:doi 2819:doi 2761:doi 2749:295 2712:PMC 2696:doi 2647:doi 2549:doi 2493:doi 2392:doi 2352:doi 2310:doi 2253:doi 2203:doi 2191:185 2091:doi 2030:doi 1986:doi 1939:doi 1863:doi 1830:doi 1818:322 1763:doi 1709:doi 1668:doi 1523:as 1515:or 1428:or 1204:Gel 1176:gas 1156:to 1041:. 1025:in 953:or 711:or 169:QCP 89:Gas 59:QCP 4568:: 4020:}} 4016:{{ 4004:. 3970:. 3960:. 3952:. 3940:23 3938:. 3934:. 3911:. 3903:. 3895:. 3883:. 3879:. 3856:. 3846:. 3838:. 3828:29 3826:. 3822:. 3799:. 3791:. 3783:. 3771:49 3769:. 3765:. 3719:. 3711:. 3697:. 3693:. 3668:31 3666:. 3662:. 3639:. 3629:. 3621:. 3613:. 3603:11 3601:. 3597:. 3583:^ 3569:. 3561:. 3553:. 3539:. 3535:. 3523:^ 3509:. 3501:. 3491:46 3489:. 3485:. 3471:^ 3457:. 3449:. 3437:45 3435:. 3431:. 3408:. 3400:. 3388:. 3384:. 3361:. 3353:. 3345:. 3331:. 3327:. 3304:. 3294:46 3292:. 3288:. 3276:^ 3262:. 3250:. 3246:. 3223:. 3215:. 3205:47 3203:. 3199:. 3187:^ 3173:. 3163:. 3151:. 3147:. 3124:. 3114:. 3106:. 3094:11 3092:. 3088:. 3076:^ 3062:. 3052:. 3044:. 3032:11 3030:. 3026:. 3014:^ 3000:. 2990:42 2988:. 2984:. 2961:. 2951:. 2943:. 2931:14 2929:. 2925:. 2898:. 2890:. 2882:. 2874:. 2866:. 2854:16 2852:. 2848:. 2825:. 2813:. 2809:. 2797:^ 2783:. 2775:. 2767:. 2759:. 2747:. 2743:. 2720:. 2710:. 2702:. 2694:. 2682:. 2678:. 2655:. 2643:56 2641:. 2637:. 2625:^ 2613:}} 2609:{{ 2597:. 2569:^ 2555:. 2547:. 2535:. 2531:. 2515:^ 2501:. 2491:. 2481:89 2479:. 2475:. 2461:^ 2447:. 2419:^ 2398:, 2386:, 2374:^ 2360:. 2350:. 2338:. 2334:. 2322:^ 2308:. 2298:38 2296:. 2292:. 2269:. 2261:. 2249:66 2247:. 2243:. 2231:^ 2217:. 2209:. 2201:. 2189:. 2185:. 2160:}} 2156:{{ 2144:. 2097:. 2087:53 2085:. 2081:. 2046:. 2036:. 2014:^ 2000:. 1992:. 1982:4U 1980:. 1976:. 1953:. 1945:. 1929:. 1906:. 1871:. 1857:. 1853:. 1828:. 1777:. 1769:. 1761:. 1749:. 1745:. 1723:. 1715:. 1703:. 1699:. 1674:. 1652:^ 1546:. 1531:. 1492:, 1461:. 1453:, 1432:. 1345:, 1341:, 1160:. 933:. 894:. 875:. 838:kT 811:. 779:kT 758:, 754:, 750:, 746:, 742:, 738:, 734:, 723:. 4233:e 4226:t 4219:v 4114:. 4092:. 4026:) 4012:. 3978:. 3946:: 3919:. 3899:: 3891:: 3885:6 3864:. 3834:: 3807:. 3777:: 3748:: 3727:. 3705:: 3699:2 3678:. 3674:: 3647:. 3617:: 3609:: 3577:. 3557:: 3547:: 3517:. 3497:: 3465:. 3443:: 3416:. 3396:: 3369:. 3339:: 3312:. 3300:: 3270:. 3258:: 3231:. 3211:: 3181:. 3159:: 3153:6 3132:. 3100:: 3070:. 3038:: 3008:. 2996:: 2969:. 2937:: 2906:. 2878:: 2870:: 2860:: 2833:. 2821:: 2815:7 2791:. 2763:: 2755:: 2728:. 2698:: 2690:: 2684:7 2663:. 2649:: 2619:) 2605:. 2563:. 2551:: 2543:: 2537:1 2509:. 2495:: 2487:: 2455:. 2394:: 2368:. 2354:: 2346:: 2340:6 2316:. 2312:: 2304:: 2277:. 2255:: 2225:. 2205:: 2197:: 2170:) 2152:. 2105:. 2093:: 2054:. 2032:: 2008:. 1988:: 1961:. 1941:: 1935:9 1914:. 1879:. 1865:: 1859:1 1838:. 1832:: 1824:: 1785:. 1765:: 1757:: 1751:1 1731:. 1711:: 1705:1 1684:. 1670:: 1100:. 697:e 690:t 683:v 23:.

Index

Soft Matter (journal)
Condensed matter physics

Phases
Phase transition
QCP
States of matter
Solid
Liquid
Gas
Plasma
Bose–Einstein condensate
Bose gas
Fermionic condensate
Fermi gas
Fermi liquid
Supersolid
Superfluidity
Luttinger liquid
Time crystal
Order parameter
Phase transition
QCP
Electronic band structure
Plasma
Insulator
Mott insulator
Semiconductor
Semimetal
Conductor

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.