Knowledge (XXG)

Solar neutrino

Source đź“ť

84: 240: 262:, Italy. Borexino is an actively used detector, and experiments are on-going at the site. The goal of the Borexino experiment is measuring low energy, typically below 1 MeV, solar neutrinos in real-time. The detector is a complex structure consisting of photomultipliers, electrons, and calibration systems making it equipped to take proper measurements of the low energy solar neutrinos. Photomultipliers are used as the detection device in this system as they are able to detect light for extremely weak signals. 156:, an Italo-Russian astrophysicist, suggested a new idea that maybe we do not quite understand neutrinos like we think we do, and that neutrinos could change in some way, meaning the neutrinos that are released by the sun changed form and were no longer neutrinos the way neutrinos were thought of by the time they reached Earth where the experiment was conducted. This theory Pontecorvo had would make sense in accounting for the discrepancy between the experimental and theoretical results that persisted. 118:), aimed to count the solar neutrinos arriving at Earth. Bahcall, using a solar model he developed, came to the conclusion that the most effective way to study solar neutrinos would be via the chlorine-argon reaction. Using his model, Bahcall was able to calculate the number of neutrinos expected to arrive at Earth from the Sun. Once the theoretical value was determined, the astrophysicists began pursuing experimental confirmation. Davis developed the idea of taking hundreds of thousands of liters of 1166: 578: 286: 2980: 1076: 1051: 152:
making the results more precise, the difference still remained. Davis even repeated his experiment changing the sensitivity and other factors to make sure nothing was overlooked, but he found nothing and the results still showed "missing" neutrinos. By the end of the 1970s, the widely expected result was the experimental data yielded about 39% of the calculated number of neutrinos. In 1969,
209:
in addition to neutrino observation is cosmic ray observation as well as searching for proton decay. In 1998, the Super-Kamiokande was the site of the Super-Kamiokande experiment which led to the discovery of neutrino oscillation, the process by neutrinos change their flavor, either to electron, muon
130:, and searching for neutrinos using a chlorine-argon detector. The process was conducted very far underground, hence the decision to conduct the experiment in Homestake as the town was home to the Homestake Gold Mine. By conducting the experiment deep underground, Bahcall and Davis were able to avoid 1206:
The critical issue of the solar neutrino problem, that many astrophysicists interested in solar neutrinos studied and attempted to solve in late 1900s and early 2000s, is solved. In the 21st century, even without a main problem to solve, there is still unique and novel research ongoing in this field
1079:
Theoretical curves of survival probability of solar neutrinos that arrive on day (orange, continuous) or on night (purple, dashed), as a function of the energy of the neutrinos. Also shown the four values of the energy of the neutrinos at which measurements have been performed, corresponding to four
213:
The Super-Kamiokande experiment began in 1996 and is still active. In the experiment, the detector works by being able to spot neutrinos by analyzing water molecules and detecting electrons being removed from them which then produces a blue Cherenkov light, which is produced by neutrinos. Therefore,
1071:
Solar models additionally predict the location within the Sun's core where solar neutrinos should originate, depending on the nuclear fusion reaction which leads to their production. Future neutrino detectors will be able to detect the incoming direction of these neutrinos with enough precision to
265:
Solar neutrinos are able to provide direct insight into the core of the Sun because that is where the solar neutrinos originate. Solar neutrinos leaving the Sun's core reach Earth before light does due to the fact solar neutrinos do not interact with any other particle or subatomic particle during
138:
conversions each day, and the first results were not yielded by the team until 1968. To their surprise, the experimental value of the solar neutrinos present was less than 20% of the theoretical value Bahcall calculated. At the time, it was unknown if there was an error with the experiment or with
1118:
at a rate of 144±33/day, consistent with the predicted rate of 131±2/day that was expected based on the standard solar model prediction that the pp-reaction generates 99% of the Sun's luminosity and their analysis of the detector's efficiency. And in 2020, Borexino reported the first detection of
1097:
are most sensitive to the solar neutrinos produced by the proton–proton chain reaction process, however they were not able to observe this contribution separately. The observation of the neutrinos from the basic reaction of this chain, proton–proton fusion in deuterium, was achieved for the first
956:
This alternative boron-yielding reaction produces about 0.02% of the solar neutrinos; although so few that they would conventionally be neglected, these rare solar neutrinos stand out because of their higher average energies. The asterisk (*) on the beryllium-8 nucleus indicates that it is in an
151:
Davis and Bahcall continued their work to understand where they may have gone wrong or what they were missing, along with other astrophysicists who also did their own research on the subject. Many reviewed and redid Bahcall's calculations in the 1970s and 1980s, and although there was more data
1059:
The highest flux of solar neutrinos come directly from the proton–proton interaction, and have a low energy, up to 400 keV. There are also several other significant production mechanisms, with energies up to 18 MeV. From the Earth, the amount of neutrino flux at Earth is around
1250:. The search was completed using data from exposure from the Borexino experiment's second phase which consisted of data over 1291.5 days (3.54 years). The results yielded that the electron recoil spectrum shape was as expected with no major changes or deviations from it. 1054:
The greatest number of solar neutrinos are direct products of the proton–proton reaction (tall, dark blue curve on the left). They have a low energy – only reaching up to 400 keV. There are several other significant production mechanisms, with energies up to
773:
This lithium-yielding reaction produces approximately 7% of the solar neutrinos. The resulting lithium-7 later combines with a proton to produce two nuclei of helium-4. The alternative reaction is proton capture, that produces boron-8, which then beta decays into
1194:, a Canadian physicist, was a key contributor in building the Sudbury Neutrino Observatory (SNO) in the mid 1980s and later became the director of the SNO and leader of the team that solved the solar neutrino problem. McDonald, along with Japanese physicist 1147:
was the first to suggest the idea of a particle such as the neutrino existing in our universe in 1930. He believed such a particle to be completely massless. This was the belief amongst the astrophysics community until the solar neutrino problem was solved.
20: 1131:
of various ages that have been exposed to solar neutrinos over geologic time, it may be possible to interrogate the luminosity of the Sun over time, which, according to the standard solar model, has changed over the eons as the (presently) inert byproduct
1126:
Note that Borexino measured neutrinos of several energies; in this manner they have demonstrated experimentally, for the first time, the pattern of solar neutrino oscillations predicted by the theory. Neutrinos can trigger nuclear reactions. By looking at
235:
The SNO is also a heavy-water Cherenkov detector and designed to work the same way as the Super-Kamiokande. The Neutrinos when reacted with heavy water produce the blue Cherenkov light, signaling the detection of neutrinos to researchers and observers.
232:, Canada, is the other site where neutrino oscillation research was taking place in the late 1990s and early 2000s. The results from experiments at this observatory along with those at Super-Kamiokande are what helped solve the solar neutrino problem. 945: 1084:
The energy spectrum of solar neutrinos is also predicted by solar models. It is essential to know this energy spectrum because different neutrino detection experiments are sensitive to different neutrino energy ranges. The Homestake experiment used
768: 373: 669: 847: 572: 420:
Of all Solar neutrinos, approximately 91% are produced from this reaction. As shown in the figure titled "Solar neutrinos (proton–proton chain) in the standard solar model", the deuteron will fuse with another proton to create a
483: 1040: 1238:. The results from this research yielded significantly different findings compared to past research in terms of the overall flux spectrum. Currently technology does not yet exist to put these findings to the test. 83: 270:) bounces around from particle to particle. The Borexino experiment used this phenomenon to discover that the Sun releases the same amount of energy currently as it did a 100,000 years ago. 1188:
Pontecorvo, known as the first astrophysicist to suggest the idea neutrinos have some mass and can oscillate, never received a Nobel Prize for his contributions due to his passing in 1993.
1580: 174:
proved and supported Pontecorvo's theory and discovered that neutrinos released from the Sun can in fact change form or flavor because they are not completely massless. This discovery of
1685:
Vinyoles, Núria; Serenelli, Aldo M.; Villante, Francesco L.; Basu, Sarbani; Bergström, Johannes; Gonzalez-Garcia, M. C.; Maltoni, Michele; Peña-Garay, Carlos; Song, Ningqiang (2017).
2349:
The Borexino collaboration; Agostini, M.; AltenmĂĽller, K.; Appel, S.; Atroshchenko, V.; Bagdasarian, Z.; Basilico, D.; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G. (2017-11-29).
857: 282:
reactions, each of which occurs at a particular rate and leads to its own spectrum of neutrino energies. Details of the more prominent of these reactions are described below.
2078:
Agostini, M.; AltenmĂĽller, K.; Appel, S.; Atroshchenko, V.; Bagdasarian, Z.; Basilico, D.; Bellini, G.; Benziger, J.; Biondi, R.; Bravo, D.; Caccianiga, B. (November 2020).
691: 170:
Pontecorvo was never able to prove his theory, but he was on to something with his thinking. In 2002, results from an experiment conducted 2100 meters underground at the
310: 595: 1609:
Alimonti, G.; Arpesella, C.; Back, H.; Balata, M.; Bartolomei, D.; de Bellefon, A.; Bellini, G.; Benziger, J.; Bevilacqua, A.; Bondi, D.; Bonetti, S. (March 2009).
1106:) that produces 1 in 400 deuterium nuclei in the Sun. The detector contained 100 metric tons of liquid and saw on average 3 events each day (due to 403: 784: 494: 2412: 431: 963: 134:
interactions which could affect the process and results. The entire experiment lasted several years as it was able to detect only a few chlorine to
1753: 1486: 1284: 1064:, but the number of neutrinos detected on Earth versus the number of neutrinos predicted are different by a factor of a third, which is the 1222:
for extremely low energies (keV range). Processes at these low energies consisted vital information that told researchers about the solar
1185:
won the Nobel Prize in Physics in 2002 after the solar neutrino problem was solved for their contributions in helping solve the problem.
139:
the calculations, or if Bahcall and Davis did not account for all variables, but this discrepancy gave birth to what became known as the
2510: 259: 1659:"Molecular Expressions Microscopy Primer: Digital Imaging in Optical Microscopy - Concepts in Digital Imaging - Photomultiplier Tubes" 2804: 2490: 1115: 1103: 239: 1615:
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
1418: 1978:
Witze, Alexandra (10 March 2012). "Elusive solar neutrinos spotted, detection reveals more about reaction that powers sun".
2960: 2965: 1370: 1264: 223: 171: 3014: 1837:
Davis, Jonathan H. (2016). "Projections for measuring the size of the solar core with neutrino-electron scattering".
681:
nucleus and an electron neutrino, or alternatively, it could capture one of the abundant protons, which would create
1658: 102:
The timeline of solar neutrinos and their discovery dates back to the 1960s, beginning with the two astrophysicists
2763: 2941: 1102:
in 2014. In 2012 the same collaboration reported detecting low-energy neutrinos for the proton–electron–proton (
1093:
Be. The Sudbury Neutrino Observatory is most sensitive to solar neutrinos produced by B. The detectors that use
2001:
Borexino Collaboration (27 August 2014). "Neutrinos from the primary proton–proton fusion process in the Sun".
301: 290: 23:
Diagram showing the Sun's components. The core is where nuclear fusion takes place, creating solar neutrinos.
3004: 2636: 1916:
Bellini, G.; et al. (2012). "First evidence of p-e-p solar neutrinos by direct detection in Borexino".
1274: 940:{\displaystyle {^{8}}{\text{B}}\to {^{8}}{\text{Be}}{^{*}}+{\text{e}}^{+}+\operatorname {\nu } _{\text{e}}} 178:
solved the solar neutrino problem, nearly 40 years after Davis and Bahcall began studying solar neutrinos.
2935: 2778: 2671: 2439: 1159: 1065: 165: 140: 72: 677:
can follow two different paths from this stage: It could capture an electron and produce the more stable
2831: 2651: 2483: 1090: 763:{\displaystyle {^{7}}{\text{Be}}+{\text{e}}^{-}\to {^{7}}{\text{Li}}+\operatorname {\nu } _{\text{e}}} 2915: 2885: 2703: 2520: 2431: 2372: 2278: 2160: 2101: 2010: 1935: 1856: 1791: 1708: 1528: 1466: 1177:
Raymond Davis and John Bahcall are the pioneers of solar neutrino studies. While Bahcall never won a
1061: 294: 214:
when this detection of blue light happens it can be inferred that a neutrino is present and counted.
175: 111: 97: 52: 2444: 1448: 2735: 1279: 1269: 368:{\displaystyle {\text{p}}+{\text{p}}\to {\text{d}}+{\text{e}}^{+}+\operatorname {\nu } _{\text{e}}} 228:
The Sudbury Neutrino Observatory (SNO), a 2,100 m (6,900 ft) underground observatory in
2821: 2553: 2457: 2421: 2362: 2302: 2268: 2133: 2091: 2034: 1959: 1925: 1880: 1846: 1807: 1781: 1726: 1698: 1640: 1622: 1610: 1492: 1456: 1191: 1107: 1060:
7·10 particles·cm·s . The number of neutrinos can be predicted with great confidence by the
664:{\displaystyle {^{3}}{\text{He}}+{^{4}}{\text{He}}\to {^{7}}{\text{Be}}+\operatorname {\gamma } } 1165: 1050: 957:
excited, unstable state. The excited beryllium-8 nucleus then splits into two helium-4 nuclei:
2955: 2870: 2676: 2294: 2176: 2125: 2117: 2026: 1951: 1872: 1749: 1562: 1544: 1482: 1259: 1182: 413: 202: 119: 107: 1898: 1226:. Solar metallicity is the measure of elements present in the particle that are heavier than 1198:
both received a Nobel Prize for their work discovering the oscillation of neutrinos in 2015.
488:
The isotope He can be produced by using the He in the previous reaction which is seen below.
2661: 2570: 2476: 2449: 2435: 2407: 2380: 2286: 2168: 2109: 2018: 1983: 1943: 1864: 1799: 1716: 1632: 1552: 1536: 1474: 1394: 1151: 589:
now in the environment, one of each weight of helium nucleus can fuse to produce beryllium:
198: 192: 153: 64: 577: 2895: 2875: 2850: 2745: 2690: 2666: 2543: 1247: 1128: 388: 229: 103: 60: 2199: 1114:
reaction. In 2014, Borexino reported a successful direct detection of neutrinos from the
842:{\displaystyle {^{7}}{\text{Be}}+{\text{p}}\to {^{8}}{\text{B}}+\operatorname {\gamma } } 2453: 2376: 2290: 2282: 2164: 2105: 2014: 1939: 1860: 1795: 1712: 1532: 1470: 2845: 2840: 2628: 2533: 2223: 1557: 1516: 1195: 1170: 1144: 279: 36: 1721: 1686: 1315: 567:{\displaystyle {^{3}}{\text{He}}+{^{3}}{\text{He}}\to {^{4}}{\text{He}}+2\,{\text{p}}} 2998: 2910: 2905: 2880: 2809: 2799: 2720: 2715: 2710: 2613: 2590: 2575: 2461: 2306: 2137: 2038: 1963: 1730: 1496: 1345: 1111: 2079: 1884: 1811: 1644: 3009: 2983: 2890: 2860: 2855: 2816: 2646: 2641: 2618: 2600: 2580: 1947: 1868: 1426: 1246:
This research, published in 2017, aimed to search for the solar neutrino effective
1216: 478:{\displaystyle {\text{d}}+{\text{p}}\to {^{3}}{\text{He}}+\operatorname {\gamma } } 285: 115: 1075: 75:. Much is now known about solar neutrinos, but research in this field is ongoing. 19: 2320: 47:, and is the most common type of neutrino passing through any source observed on 2826: 2773: 2768: 2755: 2740: 2725: 2698: 2608: 2562: 2410:; Serenelli, Aldo M. (18 August 2013). "Solar Neutrinos: Status and Prospects". 2403: 2256: 2080:"Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun" 2052: 1223: 1178: 1155: 775: 674: 205:
2,700 meters (8,900 ft) underground. The primary uses for this detector in
2385: 2351:"Limiting neutrino magnetic moments with Borexino Phase-II solar neutrino data" 2350: 2172: 1636: 1478: 2900: 2730: 2538: 2528: 2113: 1803: 1035:{\displaystyle {^{8}}{\text{Be}}{^{*}}\to {^{4}}{\text{He}}+{^{4}}{\text{He}}} 131: 44: 2298: 2151:
Haxton, W.C. (1990). "Proposed neutrino monitor of long-term solar burning".
2121: 1548: 1447:
Walter, Christopher W.; for the Super-Kamiokande collaboration (March 2008),
1242:
Limiting neutrino magnetic moments with Borexino Phase-II solar neutrino data
2783: 2656: 1987: 1521:
Proceedings of the Japan Academy. Series B, Physical and Biological Sciences
1120: 678: 56: 2180: 2129: 2030: 1955: 1876: 1566: 71:, making their detection very difficult. This has led to the now-resolved 2925: 1227: 1099: 1086: 586: 422: 409: 405: 253: 127: 32: 2022: 1540: 1215:
This research, published in 2017, aimed to solve the solar neutrino and
2585: 1786: 1158:
were the first astrophysicists to detect neutrinos in 1956. They won a
1094: 1089:
and was most sensitive to solar neutrinos produced by the decay of the
682: 383: 68: 1231: 1133: 267: 123: 278:
Solar neutrinos are produced in the core of the Sun through various
2367: 2273: 2255:
Vitagliano, Edoardo; Redondo, Javier; Raffelt, Georg (2017-12-06).
2096: 1851: 1703: 2426: 1930: 1627: 1611:"The Borexino detector at the Laboratori Nazionali del Gran Sasso" 1461: 1164: 1049: 238: 206: 135: 48: 2920: 1235: 1219: 2472: 2499: 1772:
Bellerive, A. (2004). "Review of solar neutrino experiments".
1517:"Atmospheric neutrinos and discovery of neutrino oscillations" 1169:
Raymond Davis Jr receives the Medal of Science from President
40: 114:, named after the town in which it was conducted (Homestake, 2468: 425:
nucleus and a gamma ray. This reaction can be seen as:
1680: 1678: 966: 860: 787: 694: 598: 497: 434: 391: 313: 2948: 2934: 2792: 2754: 2689: 2627: 2599: 2561: 2552: 2519: 1154:, from the University of California at Irvine, and 1234:, typically in this field this element is usually 1034: 939: 841: 762: 663: 566: 477: 397: 367: 2053:"Borexino measures the Sun's energy in real time" 1767: 1765: 2261:Journal of Cosmology and Astroparticle Physics 1774:International Journal of Modern Physics A 1371:"Solving the mystery of the missing neutrinos" 1080:different branches of the proton–proton chain. 2484: 8: 16:Extremely light particle produced by the Sun 2413:Annual Review of Astronomy and Astrophysics 1687:"A New Generation of Standard Solar Models" 1123:neutrinos from deep within the solar core. 2558: 2491: 2477: 2469: 87:Diagram of the Homestake experiment set-up 2443: 2425: 2384: 2366: 2272: 2200:"Arthur B. McDonald | Canadian physicist" 2095: 1982:. Vol. 181, no. 5. p. 14. 1929: 1850: 1785: 1720: 1702: 1626: 1556: 1460: 1027: 1020: 1016: 1008: 1001: 997: 987: 983: 978: 971: 967: 965: 931: 926: 916: 911: 900: 896: 891: 884: 880: 872: 865: 861: 859: 834: 826: 819: 815: 807: 799: 792: 788: 786: 754: 749: 740: 733: 729: 720: 715: 706: 699: 695: 693: 656: 648: 641: 637: 629: 622: 618: 610: 603: 599: 597: 559: 558: 547: 540: 536: 528: 521: 517: 509: 502: 498: 496: 470: 462: 455: 451: 443: 435: 433: 390: 359: 354: 344: 339: 330: 322: 314: 312: 2321:"Astronomy & Astrophysics (A&A)" 1074: 576: 284: 258:The Borexino detector is located at the 166:Solar neutrino problem § Resolution 82: 51:at any particular moment. Neutrinos are 18: 1316:"Solar neutrinos | All Things Neutrino" 1296: 685:. The first reaction via lithium-7 is: 1824: 2344: 2342: 2340: 2257:"Solar neutrino flux at keV energies" 2250: 2248: 2246: 2244: 2194: 2192: 2190: 1344:Vignaud, AuthorDaniel (4 June 2018). 1285:Diffuse supernova neutrino background 300:The main contribution comes from the 63:. They only interact with matter via 7: 1604: 1602: 1600: 1455:, WORLD SCIENTIFIC, pp. 19–43, 1395:"Solar neutrino problem | cosmology" 1365: 1363: 1361: 1339: 1337: 1335: 1333: 1331: 1310: 1308: 1306: 1304: 1302: 1300: 2454:10.1146/annurev-astro-081811-125539 1419:"Super-Kamiokande Official Website" 1211:Solar neutrino flux at keV energies 260:Laboratori Nazionali de Gran Sasso 160:Solution to solar neutrino problem 14: 1968:. 6 pages; preprint on arXiv 1449:"The Super-Kamiokande Experiment" 122:, a chemical compound made up of 2979: 2978: 1140:Key contributing astrophysicists 1110:) from this relatively uncommon 218:The Sudbury Neutrino Observatory 110:. The experiment, known as the 1948:10.1103/PhysRevLett.108.051302 1869:10.1103/PhysRevLett.117.211101 1515:Kajita, Takaaki (April 2010). 994: 877: 812: 726: 634: 533: 448: 392: 327: 1: 2961:List of heliophysics missions 2291:10.1088/1475-7516/2017/12/010 1202:Current research and findings 1136:has accumulated in its core. 2966:Category:Missions to the Sun 1265:Neutral particle oscillation 224:Sudbury Neutrino Observatory 172:Sudbury Neutrino Observatory 1899:"Solar neutrino viewgraphs" 1722:10.3847/1538-4357/835/2/202 3031: 2386:10.1103/PhysRevD.96.091103 2224:"Neutrino mass discovered" 2173:10.1103/physrevlett.65.809 1637:10.1016/j.nima.2008.11.076 1479:10.1142/9789812771971_0002 251: 243:Borexino detector exterior 221: 190: 163: 95: 2974: 2942:G-type main-sequence star 2506: 2114:10.1038/s41586-020-2934-0 1804:10.1142/S0217751X04019093 1691:The Astrophysical Journal 1423:www-sk.icrr.u-tokyo.ac.jp 581:Solar Neutrino Generation 266:their path, while light ( 2805:In mythology and culture 1162:for their work in 1995. 2436:2013ARA&A..51...21H 2204:Encyclopedia Britannica 2153:Physical Review Letters 1988:10.1002/scin.5591810516 1918:Physical Review Letters 1839:Physical Review Letters 1399:Encyclopedia Britannica 1275:Stellar nucleosynthesis 585:With both helium-3 and 147:Further experimentation 2672:Supra-arcade downflows 2408:Hamish Robertson, R.G. 1744:Grupen, Claus (2005). 1174: 1160:Nobel Prize in Physics 1081: 1066:solar neutrino problem 1056: 1036: 941: 843: 764: 665: 582: 568: 479: 399: 369: 297: 244: 201:is a 50,000 ton water 182:Neutrino observatories 141:solar neutrino problem 88: 79:History and background 73:solar neutrino problem 24: 2652:Coronal mass ejection 1746:Astroparticle Physics 1453:Neutrino Oscillations 1168: 1078: 1072:measure this effect. 1053: 1037: 942: 844: 765: 666: 580: 569: 480: 400: 370: 288: 242: 86: 55:with extremely small 22: 2916:Standard solar model 2886:Solar radio emission 2704:List of solar cycles 1663:micro.magnet.fsu.edu 1062:standard solar model 964: 858: 785: 692: 596: 495: 432: 398:{\displaystyle \to } 389: 311: 295:standard solar model 176:neutrino oscillation 112:Homestake experiment 98:Homestake experiment 92:Homestake experiment 53:elementary particles 2736:Magnetic switchback 2377:2017PhRvD..96i1103A 2283:2017JCAP...12..010V 2165:1990PhRvL..65..809H 2106:2020Natur.587..577B 2059:. 23 September 2014 2023:10.1038/nature13702 2015:2014Natur.512..383B 1940:2012PhRvL.108e1302B 1861:2016PhRvL.117u1101D 1796:2004IJMPA..19.1167B 1713:2017ApJ...835..202V 1541:10.2183/pjab.86.303 1533:2010PJAB...86..303K 1471:2008nops.book...19W 1280:Supernova neutrinos 1270:Solar neutrino unit 1181:, Davis along with 304:. The reaction is: 302:proton–proton chain 291:proton–proton chain 3015:Neutrino astronomy 2926:Sunlight radiation 2521:Internal structure 1585:sno.phy.queensu.ca 1581:"The SNO Homepage" 1192:Arthur B. McDonald 1175: 1082: 1057: 1032: 937: 839: 760: 661: 583: 564: 475: 395: 365: 298: 245: 203:Cherenkov detector 89: 25: 2992: 2991: 2956:Solar observatory 2871:Solar observation 2769:Termination shock 2685: 2684: 2637:Transition region 2355:Physical Review D 2090:(7835): 577–582. 2009:(7515): 383–386. 1755:978-3-540-25312-9 1488:978-981-277-196-4 1346:"Solar Neutrinos" 1260:Neutrino detector 1207:of astrophysics. 1183:Masatoshi Koshiba 1091:beryllium isotope 1030: 1011: 981: 934: 914: 894: 875: 829: 810: 802: 757: 743: 718: 709: 651: 632: 613: 562: 550: 531: 512: 465: 446: 438: 414:electron neutrino 362: 342: 333: 325: 317: 289:Solar neutrinos ( 274:Formation process 120:perchloroethylene 35:originating from 3022: 2982: 2981: 2571:Supergranulation 2559: 2493: 2486: 2479: 2470: 2465: 2447: 2429: 2391: 2390: 2388: 2370: 2346: 2335: 2334: 2332: 2331: 2317: 2311: 2310: 2276: 2252: 2239: 2238: 2236: 2235: 2220: 2214: 2213: 2211: 2210: 2196: 2185: 2184: 2148: 2142: 2141: 2099: 2075: 2069: 2068: 2066: 2064: 2049: 2043: 2042: 1998: 1992: 1991: 1975: 1969: 1967: 1933: 1913: 1907: 1906: 1895: 1889: 1888: 1854: 1834: 1828: 1822: 1816: 1815: 1789: 1780:(8): 1167–1179. 1769: 1760: 1759: 1741: 1735: 1734: 1724: 1706: 1682: 1673: 1672: 1670: 1669: 1655: 1649: 1648: 1630: 1606: 1595: 1594: 1592: 1591: 1577: 1571: 1570: 1560: 1512: 1506: 1505: 1504: 1503: 1464: 1444: 1438: 1437: 1435: 1434: 1425:. Archived from 1415: 1409: 1408: 1406: 1405: 1391: 1385: 1384: 1382: 1381: 1367: 1356: 1355: 1353: 1352: 1341: 1326: 1325: 1323: 1322: 1312: 1152:Frederick Reines 1041: 1039: 1038: 1033: 1031: 1028: 1026: 1025: 1024: 1012: 1009: 1007: 1006: 1005: 993: 992: 991: 982: 979: 977: 976: 975: 946: 944: 943: 938: 936: 935: 932: 930: 921: 920: 915: 912: 906: 905: 904: 895: 892: 890: 889: 888: 876: 873: 871: 870: 869: 848: 846: 845: 840: 838: 830: 827: 825: 824: 823: 811: 808: 803: 800: 798: 797: 796: 778:as shown below: 769: 767: 766: 761: 759: 758: 755: 753: 744: 741: 739: 738: 737: 725: 724: 719: 716: 710: 707: 705: 704: 703: 670: 668: 667: 662: 660: 652: 649: 647: 646: 645: 633: 630: 628: 627: 626: 614: 611: 609: 608: 607: 573: 571: 570: 565: 563: 560: 551: 548: 546: 545: 544: 532: 529: 527: 526: 525: 513: 510: 508: 507: 506: 484: 482: 481: 476: 474: 466: 463: 461: 460: 459: 447: 444: 439: 436: 404: 402: 401: 396: 374: 372: 371: 366: 364: 363: 360: 358: 349: 348: 343: 340: 334: 331: 326: 323: 318: 315: 199:Super-Kamiokande 193:Super-Kamiokande 187:Super-Kamiokande 154:Bruno Pontecorvo 108:Raymond Davis Jr 65:weak interaction 3030: 3029: 3025: 3024: 3023: 3021: 3020: 3019: 2995: 2994: 2993: 2988: 2970: 2944: 2930: 2896:Solar telescope 2876:Solar phenomena 2851:Solar astronomy 2788: 2750: 2746:Helioseismology 2681: 2667:Helmet streamer 2623: 2595: 2548: 2544:Convection zone 2515: 2502: 2497: 2445:10.1.1.755.6940 2402: 2399: 2397:Further reading 2394: 2348: 2347: 2338: 2329: 2327: 2319: 2318: 2314: 2254: 2253: 2242: 2233: 2231: 2222: 2221: 2217: 2208: 2206: 2198: 2197: 2188: 2150: 2149: 2145: 2077: 2076: 2072: 2062: 2060: 2051: 2050: 2046: 2000: 1999: 1995: 1977: 1976: 1972: 1915: 1914: 1910: 1903:www.sns.ias.edu 1897: 1896: 1892: 1836: 1835: 1831: 1823: 1819: 1771: 1770: 1763: 1756: 1743: 1742: 1738: 1684: 1683: 1676: 1667: 1665: 1657: 1656: 1652: 1608: 1607: 1598: 1589: 1587: 1579: 1578: 1574: 1514: 1513: 1509: 1501: 1499: 1489: 1446: 1445: 1441: 1432: 1430: 1417: 1416: 1412: 1403: 1401: 1393: 1392: 1388: 1379: 1377: 1369: 1368: 1359: 1350: 1348: 1343: 1342: 1329: 1320: 1318: 1314: 1313: 1298: 1294: 1256: 1248:magnetic moment 1244: 1213: 1204: 1142: 1048: 1017: 998: 984: 968: 962: 961: 925: 910: 897: 881: 862: 856: 855: 816: 789: 783: 782: 748: 730: 714: 696: 690: 689: 638: 619: 600: 594: 593: 537: 518: 499: 493: 492: 452: 430: 429: 387: 386: 353: 338: 309: 308: 276: 256: 250: 226: 220: 195: 189: 184: 168: 162: 149: 104:John N. Bahcall 100: 94: 81: 61:electric charge 17: 12: 11: 5: 3028: 3026: 3018: 3017: 3012: 3007: 3005:Nuclear fusion 2997: 2996: 2990: 2989: 2987: 2986: 2975: 2972: 2971: 2969: 2968: 2963: 2958: 2952: 2950: 2946: 2945: 2940: 2938: 2936:Spectral class 2932: 2931: 2929: 2928: 2923: 2918: 2913: 2908: 2903: 2898: 2893: 2888: 2883: 2878: 2873: 2868: 2866:Solar neutrino 2863: 2858: 2853: 2848: 2846:Solar activity 2843: 2841:Sun in fiction 2838: 2837: 2836: 2835: 2834: 2819: 2814: 2813: 2812: 2807: 2796: 2794: 2790: 2789: 2787: 2786: 2781: 2776: 2771: 2766: 2760: 2758: 2752: 2751: 2749: 2748: 2743: 2738: 2733: 2728: 2723: 2718: 2713: 2708: 2707: 2706: 2695: 2693: 2687: 2686: 2683: 2682: 2680: 2679: 2677:AlfvĂ©n surface 2674: 2669: 2664: 2659: 2654: 2649: 2644: 2639: 2633: 2631: 2625: 2624: 2622: 2621: 2616: 2611: 2605: 2603: 2597: 2596: 2594: 2593: 2588: 2583: 2578: 2573: 2567: 2565: 2556: 2550: 2549: 2547: 2546: 2541: 2536: 2534:Radiation zone 2531: 2525: 2523: 2517: 2516: 2514: 2513: 2507: 2504: 2503: 2498: 2496: 2495: 2488: 2481: 2473: 2467: 2466: 2398: 2395: 2393: 2392: 2336: 2312: 2240: 2215: 2186: 2159:(7): 809–812. 2143: 2070: 2044: 1993: 1970: 1908: 1890: 1845:(21): 211101. 1829: 1817: 1787:hep-ex/0312045 1761: 1754: 1736: 1674: 1650: 1621:(3): 568–593. 1596: 1572: 1527:(4): 303–321. 1507: 1487: 1439: 1410: 1386: 1375:NobelPrize.org 1357: 1327: 1295: 1293: 1290: 1289: 1288: 1282: 1277: 1272: 1267: 1262: 1255: 1252: 1243: 1240: 1212: 1209: 1203: 1200: 1196:Kajita Takaaki 1171:George W. Bush 1145:Wolfgang Pauli 1141: 1138: 1047: 1044: 1043: 1042: 1023: 1019: 1015: 1004: 1000: 996: 990: 986: 974: 970: 954: 953: 952: 951: 950: 949: 948: 947: 929: 924: 919: 909: 903: 899: 887: 883: 879: 868: 864: 837: 833: 822: 818: 814: 806: 795: 791: 771: 770: 752: 747: 736: 732: 728: 723: 713: 702: 698: 672: 671: 659: 655: 644: 640: 636: 625: 621: 617: 606: 602: 575: 574: 557: 554: 543: 539: 535: 524: 520: 516: 505: 501: 486: 485: 473: 469: 458: 454: 450: 442: 418: 417: 394: 376: 375: 357: 352: 347: 337: 329: 321: 280:nuclear fusion 275: 272: 252:Main article: 249: 246: 222:Main article: 219: 216: 191:Main article: 188: 185: 183: 180: 161: 158: 148: 145: 96:Main article: 93: 90: 80: 77: 59:and a neutral 37:nuclear fusion 29:solar neutrino 15: 13: 10: 9: 6: 4: 3: 2: 3027: 3016: 3013: 3011: 3008: 3006: 3003: 3002: 3000: 2985: 2977: 2976: 2973: 2967: 2964: 2962: 2959: 2957: 2954: 2953: 2951: 2947: 2943: 2939: 2937: 2933: 2927: 2924: 2922: 2919: 2917: 2914: 2912: 2911:Space weather 2909: 2907: 2906:Space climate 2904: 2902: 2899: 2897: 2894: 2892: 2889: 2887: 2884: 2882: 2881:Solar physics 2879: 2877: 2874: 2872: 2869: 2867: 2864: 2862: 2859: 2857: 2854: 2852: 2849: 2847: 2844: 2842: 2839: 2833: 2830: 2829: 2828: 2825: 2824: 2823: 2820: 2818: 2815: 2811: 2810:Lunar eclipse 2808: 2806: 2803: 2802: 2801: 2798: 2797: 2795: 2791: 2785: 2782: 2780: 2777: 2775: 2772: 2770: 2767: 2765: 2764:Current sheet 2762: 2761: 2759: 2757: 2753: 2747: 2744: 2742: 2739: 2737: 2734: 2732: 2729: 2727: 2724: 2722: 2721:Solar minimum 2719: 2717: 2716:Solar maximum 2714: 2712: 2711:Active region 2709: 2705: 2702: 2701: 2700: 2697: 2696: 2694: 2692: 2688: 2678: 2675: 2673: 2670: 2668: 2665: 2663: 2660: 2658: 2655: 2653: 2650: 2648: 2645: 2643: 2640: 2638: 2635: 2634: 2632: 2630: 2626: 2620: 2617: 2615: 2612: 2610: 2607: 2606: 2604: 2602: 2598: 2592: 2591:Ellerman bomb 2589: 2587: 2584: 2582: 2579: 2577: 2574: 2572: 2569: 2568: 2566: 2564: 2560: 2557: 2555: 2551: 2545: 2542: 2540: 2537: 2535: 2532: 2530: 2527: 2526: 2524: 2522: 2518: 2512: 2509: 2508: 2505: 2501: 2494: 2489: 2487: 2482: 2480: 2475: 2474: 2471: 2463: 2459: 2455: 2451: 2446: 2441: 2437: 2433: 2428: 2423: 2419: 2415: 2414: 2409: 2405: 2401: 2400: 2396: 2387: 2382: 2378: 2374: 2369: 2364: 2361:(9): 091103. 2360: 2356: 2352: 2345: 2343: 2341: 2337: 2326: 2325:www.aanda.org 2322: 2316: 2313: 2308: 2304: 2300: 2296: 2292: 2288: 2284: 2280: 2275: 2270: 2266: 2262: 2258: 2251: 2249: 2247: 2245: 2241: 2229: 2228:Physics World 2225: 2219: 2216: 2205: 2201: 2195: 2193: 2191: 2187: 2182: 2178: 2174: 2170: 2166: 2162: 2158: 2154: 2147: 2144: 2139: 2135: 2131: 2127: 2123: 2119: 2115: 2111: 2107: 2103: 2098: 2093: 2089: 2085: 2081: 2074: 2071: 2058: 2054: 2048: 2045: 2040: 2036: 2032: 2028: 2024: 2020: 2016: 2012: 2008: 2004: 1997: 1994: 1989: 1985: 1981: 1974: 1971: 1965: 1961: 1957: 1953: 1949: 1945: 1941: 1937: 1932: 1927: 1924:(5): 051302. 1923: 1919: 1912: 1909: 1904: 1900: 1894: 1891: 1886: 1882: 1878: 1874: 1870: 1866: 1862: 1858: 1853: 1848: 1844: 1840: 1833: 1830: 1826: 1821: 1818: 1813: 1809: 1805: 1801: 1797: 1793: 1788: 1783: 1779: 1775: 1768: 1766: 1762: 1757: 1751: 1747: 1740: 1737: 1732: 1728: 1723: 1718: 1714: 1710: 1705: 1700: 1696: 1692: 1688: 1681: 1679: 1675: 1664: 1660: 1654: 1651: 1646: 1642: 1638: 1634: 1629: 1624: 1620: 1616: 1612: 1605: 1603: 1601: 1597: 1586: 1582: 1576: 1573: 1568: 1564: 1559: 1554: 1550: 1546: 1542: 1538: 1534: 1530: 1526: 1522: 1518: 1511: 1508: 1498: 1494: 1490: 1484: 1480: 1476: 1472: 1468: 1463: 1458: 1454: 1450: 1443: 1440: 1429:on 2021-03-18 1428: 1424: 1420: 1414: 1411: 1400: 1396: 1390: 1387: 1376: 1372: 1366: 1364: 1362: 1358: 1347: 1340: 1338: 1336: 1334: 1332: 1328: 1317: 1311: 1309: 1307: 1305: 1303: 1301: 1297: 1291: 1286: 1283: 1281: 1278: 1276: 1273: 1271: 1268: 1266: 1263: 1261: 1258: 1257: 1253: 1251: 1249: 1241: 1239: 1237: 1233: 1229: 1225: 1221: 1218: 1210: 1208: 1201: 1199: 1197: 1193: 1189: 1186: 1184: 1180: 1172: 1167: 1163: 1161: 1157: 1153: 1149: 1146: 1139: 1137: 1135: 1130: 1124: 1122: 1117: 1113: 1112:thermonuclear 1109: 1105: 1101: 1096: 1092: 1088: 1077: 1073: 1069: 1067: 1063: 1052: 1046:Observed data 1045: 1021: 1018: 1013: 1002: 999: 988: 985: 972: 969: 960: 959: 958: 927: 922: 917: 907: 901: 898: 885: 882: 866: 863: 854: 853: 852: 851: 850: 849: 835: 831: 820: 817: 804: 793: 790: 781: 780: 779: 777: 750: 745: 734: 731: 721: 711: 700: 697: 688: 687: 686: 684: 680: 676: 657: 653: 642: 639: 623: 620: 615: 604: 601: 592: 591: 590: 588: 579: 555: 552: 541: 538: 522: 519: 514: 503: 500: 491: 490: 489: 471: 467: 456: 453: 440: 428: 427: 426: 424: 415: 411: 407: 385: 381: 380: 379: 378:or in words: 355: 350: 345: 335: 319: 307: 306: 305: 303: 296: 292: 287: 283: 281: 273: 271: 269: 263: 261: 255: 247: 241: 237: 233: 231: 225: 217: 215: 211: 208: 204: 200: 194: 186: 181: 179: 177: 173: 167: 159: 157: 155: 146: 144: 142: 137: 133: 129: 125: 121: 117: 113: 109: 105: 99: 91: 85: 78: 76: 74: 70: 66: 62: 58: 54: 50: 46: 42: 38: 34: 30: 21: 2891:Solar System 2865: 2861:Solar energy 2856:Solar dynamo 2817:Heliophysics 2647:Coronal loop 2642:Coronal hole 2619:Moreton wave 2601:Chromosphere 2420:(1): 21–61. 2417: 2411: 2404:Haxton, W.C. 2358: 2354: 2328:. Retrieved 2324: 2315: 2264: 2260: 2232:. Retrieved 2230:. 1998-07-01 2227: 2218: 2207:. Retrieved 2203: 2156: 2152: 2146: 2087: 2083: 2073: 2061:. Retrieved 2057:CERN COURIER 2056: 2047: 2006: 2002: 1996: 1980:Science News 1979: 1973: 1921: 1917: 1911: 1902: 1893: 1842: 1838: 1832: 1827:, p. 95 1820: 1777: 1773: 1748:. Springer. 1745: 1739: 1694: 1690: 1666:. Retrieved 1662: 1653: 1618: 1614: 1588:. Retrieved 1584: 1575: 1524: 1520: 1510: 1500:, retrieved 1452: 1442: 1431:. Retrieved 1427:the original 1422: 1413: 1402:. Retrieved 1398: 1389: 1378:. Retrieved 1374: 1349:. Retrieved 1319:. Retrieved 1245: 1217:antineutrino 1214: 1205: 1190: 1187: 1176: 1150: 1143: 1129:ancient ores 1125: 1108:C production 1104:pep reaction 1083: 1070: 1058: 1055:18 MeV. 955: 772: 673: 584: 487: 419: 377: 299: 277: 264: 257: 234: 227: 212: 196: 169: 150: 116:South Dakota 101: 28: 26: 2949:Exploration 2827:Solar deity 2774:Heliosheath 2756:Heliosphere 2726:Wolf number 2699:Solar cycle 2563:Photosphere 2267:(12): 010. 1825:Grupen 2005 1224:metallicity 1179:Nobel Prize 1156:Clyde Cowan 1116:pp-reaction 776:beryllium-8 675:Beryllium-7 2999:Categories 2901:Solar time 2822:In culture 2779:Heliopause 2731:Solar wind 2662:Prominence 2554:Atmosphere 2539:Tachocline 2368:1707.09355 2330:2021-05-08 2274:1708.02248 2234:2021-05-07 2209:2021-05-07 2097:2006.15115 2063:20 October 1852:1606.02558 1704:1611.09867 1697:(2): 202. 1668:2021-05-07 1590:2021-05-07 1502:2021-05-07 1433:2021-05-07 1404:2021-05-07 1380:2021-05-07 1351:2021-05-07 1321:2021-05-07 1292:References 164:See also: 132:cosmic ray 2784:Bow shock 2691:Variation 2657:Nanoflare 2462:119255372 2440:CiteSeerX 2427:1208.5723 2307:118965350 2299:1475-7516 2138:227174644 2122:1476-4687 2039:205240340 1966:. 051302. 1964:118444784 1931:1110.3230 1731:119098686 1628:0806.2400 1549:0386-2208 1497:118617515 1462:0802.1041 1121:CNO cycle 995:→ 989:∗ 928:ν 902:∗ 878:→ 836:γ 813:→ 751:ν 727:→ 722:− 679:lithium-7 658:γ 635:→ 534:→ 472:γ 449:→ 393:→ 356:ν 328:→ 293:) in the 57:rest mass 2984:Category 2181:10043028 2130:33239797 2031:25164748 1956:22400925 1885:22640563 1877:27911522 1812:16980300 1645:18786899 1567:20431258 1254:See also 1228:hydrogen 1100:Borexino 1098:time by 1087:chlorine 587:helium-4 410:positron 406:deuteron 254:Borexino 248:Borexino 210:or tau. 128:chlorine 33:neutrino 2800:Eclipse 2793:Related 2614:Spicule 2586:Sunspot 2581:Faculae 2576:Granule 2500:The Sun 2432:Bibcode 2373:Bibcode 2279:Bibcode 2161:Bibcode 2102:Bibcode 2011:Bibcode 1936:Bibcode 1857:Bibcode 1792:Bibcode 1709:Bibcode 1558:3417797 1529:Bibcode 1467:Bibcode 1095:gallium 683:boron-8 384:protons 268:photons 230:Sudbury 69:gravity 39:in the 2629:Corona 2460:  2442:  2305:  2297:  2179:  2136:  2128:  2120:  2084:Nature 2037:  2029:  2003:Nature 1962:  1954:  1883:  1875:  1810:  1752:  1729:  1643:  1565:  1555:  1547:  1495:  1485:  1287:(DSNB) 1232:helium 1134:helium 124:carbon 2741:Flare 2609:Plage 2458:S2CID 2422:arXiv 2363:arXiv 2303:S2CID 2269:arXiv 2134:S2CID 2092:arXiv 2035:S2CID 1960:S2CID 1926:arXiv 1881:S2CID 1847:arXiv 1808:S2CID 1782:arXiv 1727:S2CID 1699:arXiv 1641:S2CID 1623:arXiv 1493:S2CID 1457:arXiv 207:Japan 136:argon 49:Earth 31:is a 2921:Star 2832:List 2529:Core 2511:List 2295:ISSN 2265:2017 2177:PMID 2126:PMID 2118:ISSN 2065:2014 2027:PMID 1952:PMID 1873:PMID 1750:ISBN 1563:PMID 1545:ISSN 1483:ISBN 1236:iron 1230:and 1220:flux 382:two 197:The 126:and 106:and 67:and 45:core 3010:Sun 2450:doi 2381:doi 2287:doi 2169:doi 2110:doi 2088:587 2019:doi 2007:512 1984:doi 1944:doi 1922:108 1865:doi 1843:117 1800:doi 1717:doi 1695:835 1633:doi 1619:600 1553:PMC 1537:doi 1475:doi 43:'s 41:Sun 3001:: 2456:. 2448:. 2438:. 2430:. 2418:51 2416:. 2406:; 2379:. 2371:. 2359:96 2357:. 2353:. 2339:^ 2323:. 2301:. 2293:. 2285:. 2277:. 2263:. 2259:. 2243:^ 2226:. 2202:. 2189:^ 2175:. 2167:. 2157:65 2155:. 2132:. 2124:. 2116:. 2108:. 2100:. 2086:. 2082:. 2055:. 2033:. 2025:. 2017:. 2005:. 1958:. 1950:. 1942:. 1934:. 1920:. 1901:. 1879:. 1871:. 1863:. 1855:. 1841:. 1806:. 1798:. 1790:. 1778:19 1776:. 1764:^ 1725:. 1715:. 1707:. 1693:. 1689:. 1677:^ 1661:. 1639:. 1631:. 1617:. 1613:. 1599:^ 1583:. 1561:. 1551:. 1543:. 1535:. 1525:86 1523:. 1519:. 1491:, 1481:, 1473:, 1465:, 1451:, 1421:. 1397:. 1373:. 1360:^ 1330:^ 1299:^ 1068:. 1029:He 1010:He 980:Be 893:Be 801:Be 742:Li 708:Be 650:Be 631:He 612:He 549:He 530:He 511:He 464:He 423:He 412:+ 408:+ 143:. 27:A 2492:e 2485:t 2478:v 2464:. 2452:: 2434:: 2424:: 2389:. 2383:: 2375:: 2365:: 2333:. 2309:. 2289:: 2281:: 2271:: 2237:. 2212:. 2183:. 2171:: 2163:: 2140:. 2112:: 2104:: 2094:: 2067:. 2041:. 2021:: 2013:: 1990:. 1986:: 1946:: 1938:: 1928:: 1905:. 1887:. 1867:: 1859:: 1849:: 1814:. 1802:: 1794:: 1784:: 1758:. 1733:. 1719:: 1711:: 1701:: 1671:. 1647:. 1635:: 1625:: 1593:. 1569:. 1539:: 1531:: 1477:: 1469:: 1459:: 1436:. 1407:. 1383:. 1354:. 1324:. 1173:. 1022:4 1014:+ 1003:4 973:8 933:e 923:+ 918:+ 913:e 908:+ 886:8 874:B 867:8 832:+ 828:B 821:8 809:p 805:+ 794:7 756:e 746:+ 735:7 717:e 712:+ 701:7 654:+ 643:7 624:4 616:+ 605:3 561:p 556:2 553:+ 542:4 523:3 515:+ 504:3 468:+ 457:3 445:p 441:+ 437:d 416:. 361:e 351:+ 346:+ 341:e 336:+ 332:d 324:p 320:+ 316:p

Index


neutrino
nuclear fusion
Sun
core
Earth
elementary particles
rest mass
electric charge
weak interaction
gravity
solar neutrino problem

Homestake experiment
John N. Bahcall
Raymond Davis Jr
Homestake experiment
South Dakota
perchloroethylene
carbon
chlorine
cosmic ray
argon
solar neutrino problem
Bruno Pontecorvo
Solar neutrino problem § Resolution
Sudbury Neutrino Observatory
neutrino oscillation
Super-Kamiokande
Super-Kamiokande

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑