Knowledge (XXG)

Solar eclipse of January 26, 2009

Source 📝

21st-century annular solar eclipse
Solar eclipse of January 26, 2009
Annularity from Palangka Raya, Indonesia
Map
Type of eclipse
NatureAnnular
Gamma−0.282
Magnitude0.9282
Maximum eclipse
Duration474 s (7 min 54 s)
Coordinates34°06′S 70°12′E / 34.1°S 70.2°E / -34.1; 70.2
Max. width of band280 km (170 mi)
Times (UTC)
Greatest eclipse7:59:45
References
Saros131 (50 of 70)
Catalog # (SE5000)9527

An annular solar eclipse occurred at the Moon's ascending node of orbit on Monday, January 26, 2009, with a magnitude of 0.9282. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 3.3 days after apogee (on January 23, 2009, at 0:10 UTC), the Moon's apparent diameter was smaller.

The eclipse was visible from a narrow corridor beginning in the south Atlantic Ocean and sweeping eastward 900 km south of Africa, slowly curving northeast through the Indian Ocean. Its first landfall was in the Cocos Islands followed by southern Sumatra and western Java. It continued somewhat more easterly across central Borneo, across the northwestern edge of Celebes, then ending just before Mindanao, Philippines. The duration of annularity at greatest eclipse lasted 7 minutes, 53.58 seconds, but at greatest duration lasted 7 minutes, 56.05 seconds. A partial eclipse was visible for parts of Southern Africa, East Antarctica, Southeast Asia, the Philippines, and Australia.

Visibility


Animated path

Images


Progression from Colombo, Sri Lanka

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.

January 26, 2009 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 2009 January 26 at 04:57:42.7 UTC
First Umbral External Contact 2009 January 26 at 06:03:44.5 UTC
First Central Line 2009 January 26 at 06:06:54.1 UTC
First Umbral Internal Contact 2009 January 26 at 06:10:04.0 UTC
First Penumbral Internal Contact 2009 January 26 at 07:22:11.5 UTC
Greatest Duration 2009 January 26 at 07:43:23.8 UTC
Equatorial Conjunction 2009 January 26 at 07:47:30.2 UTC
Ecliptic Conjunction 2009 January 26 at 07:56:23.1 UTC
Greatest Eclipse 2009 January 26 at 07:59:44.5 UTC
Last Penumbral Internal Contact 2009 January 26 at 08:37:36.7 UTC
Last Umbral Internal Contact 2009 January 26 at 09:49:34.5 UTC
Last Central Line 2009 January 26 at 09:52:42.3 UTC
Last Umbral External Contact 2009 January 26 at 09:55:49.6 UTC
Last Penumbral External Contact 2009 January 26 at 11:01:46.9 UTC
January 26, 2009 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 0.92825
Eclipse Obscuration 0.86165
Gamma −0.28197
Sun Right Ascension 20h35m32.8s
Sun Declination -18°38'55.0"
Sun Semi-Diameter 16'14.6"
Sun Equatorial Horizontal Parallax 08.9"
Moon Right Ascension 20h35m55.2s
Moon Declination -18°53'18.2"
Moon Semi-Diameter 14'51.6"
Moon Equatorial Horizontal Parallax 0°54'32.2"
ΔT 65.8 s

Eclipse season

See also: Eclipse cycle

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of January–February 2009
January 26
Ascending node (new moon)
February 9
Descending node (full moon)
Annular solar eclipse
Solar Saros 131
Penumbral lunar eclipse
Lunar Saros 143

Related eclipses

Eclipses in 2009

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 131

Inex

Triad

Solar eclipses of 2008–2011

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.

The partial solar eclipses on June 1, 2011 and November 25, 2011 occur in the next lunar year eclipse set.

Solar eclipse series sets from 2008 to 2011
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
121

Partial in Christchurch, New Zealand
February 7, 2008

Annular
−0.95701 126

Totality in Kumul, Xinjiang, China
August 1, 2008

Total
0.83070
131

Annularity in Palangka Raya, Indonesia
January 26, 2009

Annular
−0.28197 136

Totality in Kurigram District, Bangladesh
July 22, 2009

Total
0.06977
141

Annularity in Jinan, Shandong, China
January 15, 2010

Annular
0.40016 146

Totality in Hao, French Polynesia
July 11, 2010

Total
−0.67877
151

Partial in Poland
January 4, 2011

Partial
1.06265 156 July 1, 2001

Partial
−1.49171

Saros 131

This eclipse is a part of Saros series 131, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on August 1, 1125. It contains total eclipses from March 27, 1522 through May 30, 1612; hybrid eclipses from June 10, 1630 through July 24, 1702; and annular eclipses from August 4, 1720 through June 18, 2243. The series ends at member 70 as a partial eclipse on September 2, 2369. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 28 at 58 seconds on May 30, 1612, and the longest duration of annularity was produced by member 50 at 7 minutes, 54 seconds on January 26, 2009. All eclipses in this series occur at the Moon’s ascending node of orbit.

Series members 39–60 occur between 1801 and 2200:
39 40 41

September 28, 1810

October 9, 1828

October 20, 1846
42 43 44

October 30, 1864

November 10, 1882

November 22, 1900
45 46 47

December 3, 1918

December 13, 1936

December 25, 1954
48 49 50

January 4, 1973

January 15, 1991

January 26, 2009
51 52 53

February 6, 2027

February 16, 2045

February 28, 2063
54 55 56

March 10, 2081

March 21, 2099

April 2, 2117
57 58 59

April 13, 2135

April 23, 2153

May 5, 2171
60

May 15, 2189

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

21 eclipse events between June 21, 1982 and June 21, 2058
June 21 April 8–9 January 26 November 13–14 September 1–2
117 119 121 123 125

June 21, 1982

April 9, 1986

January 26, 1990

November 13, 1993

September 2, 1997
127 129 131 133 135

June 21, 2001

April 8, 2005

January 26, 2009

November 13, 2012

September 1, 2016
137 139 141 143 145

June 21, 2020

April 8, 2024

January 26, 2028

November 14, 2031

September 2, 2035
147 149 151 153 155

June 21, 2039

April 9, 2043

January 26, 2047

November 14, 2050

September 2, 2054
157

June 21, 2058

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

September 8, 1801
(Saros 112)

August 7, 1812
(Saros 113)

July 8, 1823
(Saros 114)

June 7, 1834
(Saros 115)

May 6, 1845
(Saros 116)

April 5, 1856
(Saros 117)

March 6, 1867
(Saros 118)

February 2, 1878
(Saros 119)

January 1, 1889
(Saros 120)

December 3, 1899
(Saros 121)

November 2, 1910
(Saros 122)

October 1, 1921
(Saros 123)

August 31, 1932
(Saros 124)

August 1, 1943
(Saros 125)

June 30, 1954
(Saros 126)

May 30, 1965
(Saros 127)

April 29, 1976
(Saros 128)

March 29, 1987
(Saros 129)

February 26, 1998
(Saros 130)

January 26, 2009
(Saros 131)

December 26, 2019
(Saros 132)

November 25, 2030
(Saros 133)

October 25, 2041
(Saros 134)

September 22, 2052
(Saros 135)

August 24, 2063
(Saros 136)

July 24, 2074
(Saros 137)

June 22, 2085
(Saros 138)

May 22, 2096
(Saros 139)

April 23, 2107
(Saros 140)

March 22, 2118
(Saros 141)

February 18, 2129
(Saros 142)

January 20, 2140
(Saros 143)

December 19, 2150
(Saros 144)

November 17, 2161
(Saros 145)

October 17, 2172
(Saros 146)

September 16, 2183
(Saros 147)

August 16, 2194
(Saros 148)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

June 16, 1806
(Saros 124)

May 27, 1835
(Saros 125)

May 6, 1864
(Saros 126)

April 16, 1893
(Saros 127)

March 28, 1922
(Saros 128)

March 7, 1951
(Saros 129)

February 16, 1980
(Saros 130)

January 26, 2009
(Saros 131)

January 5, 2038
(Saros 132)

December 17, 2066
(Saros 133)

November 27, 2095
(Saros 134)

November 6, 2124
(Saros 135)

October 17, 2153
(Saros 136)

September 27, 2182
(Saros 137)

Notes

  1. "January 26, 2009 Annular Solar Eclipse". timeanddate. Retrieved August 11, 2024.
  2. "Indonesians witness solar eclipse today". The Herald. January 26, 2009. p. 19. Retrieved October 25, 2023 – via Newspapers.com.
  3. "Indonesians among the few to witness solar eclipse". Whitehorse Daily Star. January 26, 2009. p. 16. Retrieved October 25, 2023 – via Newspapers.com.
  4. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved August 11, 2024.
  5. "Annular Solar Eclipse of 2009 Jan 26". EclipseWise.com. Retrieved August 11, 2024.
  6. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved October 6, 2018.
  7. "NASA - Catalog of Solar Eclipses of Saros 131". eclipse.gsfc.nasa.gov.

References

Photos:

Features
Lists of eclipses
By era
Saros series (list)
Visibility
Historical
21 August 2017 total solar eclipse
Total/hybrid eclipses
next total/hybrid
10 May 2013 annular eclipse
Annular eclipses
next annular
23 October 2014 partial eclipse
Partial eclipses
next partial
Other bodies
Related

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.