Knowledge (XXG)

Solenoidal vector field

Source 📝

31: 180: 640:
This statement does not mean that the field lines of a solenoidal field must be closed, neither that they cannot begin or end. For a detailed discussion of the subject, see J. Slepian: "Lines of Force in Electric and Magnetic Fields", American Journal of Physics, vol. 19, pp. 87-90, 1951, and L.
376: 427: 225: 590: 312: 160: 90: 321: 253: 530: 174:
gives an equivalent integral definition of a solenoidal field; namely that for any closed surface, the net total flux through the surface must be zero:
612: 281: 668: 131: 393: 185: 545: 469: 658: 315: 622: 596: 480: 641:
Zilberti: "The Misconception of Closed Magnetic Flux Lines", IEEE Magnetics Letters, vol. 8, art. 1306005, 2017.
686: 37: 691: 434: 259: 112: 476: 233: 502: 171: 664: 266:
and a solenoidal field. The condition of zero divergence is satisfied whenever a vector field
379: 271: 162:
A common way of expressing this property is to say that the field has no sources or sinks.
30: 654: 617: 536: 96: 493: 462: 452:, which is σωληνοειδές (sōlēnoeidēs) meaning pipe-shaped, from σωλην (sōlēn) or pipe. 371:{\displaystyle \nabla \cdot \mathbf {v} =\nabla \cdot (\nabla \times \mathbf {A} )=0.} 680: 263: 118: 125: 486: 429:(Strictly speaking, this holds subject to certain technical conditions on 17: 449: 262:
states that any vector field can be expressed as the sum of an
318:(as can be shown, for example, using Cartesian coordinates): 660:
Vectors, tensors, and the basic equations of fluid mechanics
274:
component, because the definition of the vector potential
422:{\displaystyle \mathbf {v} =\nabla \times \mathbf {A} .} 220:{\displaystyle \;\;\mathbf {v} \cdot \,d\mathbf {S} =0,} 585:{\textstyle {\frac {\partial \rho _{e}}{\partial t}}=0} 307:{\displaystyle \mathbf {v} =\nabla \times \mathbf {A} } 548: 505: 396: 324: 284: 236: 188: 134: 40: 584: 524: 421: 370: 306: 247: 219: 154: 84: 255:is the outward normal to each surface element. 8: 155:{\displaystyle \nabla \cdot \mathbf {v} =0.} 190: 189: 613:Longitudinal and transverse vector fields 559: 549: 547: 510: 504: 411: 397: 395: 354: 331: 323: 299: 285: 283: 240: 235: 203: 199: 191: 187: 141: 133: 41: 39: 34:An example of a solenoidal vector field, 85:{\displaystyle \mathbf {v} (x,y)=(y,-x)} 29: 633: 542:where the charge density is unvarying, 260:fundamental theorem of vector calculus 448:has its origin in the Greek word for 7: 567: 552: 405: 348: 339: 325: 293: 135: 25: 128:zero at all points in the field: 27:Vector field with zero divergence 412: 398: 386:there exists a vector potential 355: 332: 300: 286: 241: 204: 192: 178: 142: 42: 382:also holds: for any solenoidal 359: 345: 79: 64: 58: 46: 1: 314:automatically results in the 248:{\displaystyle d\mathbf {S} } 109:divergence-free vector field 525:{\displaystyle \rho _{e}=0} 105:incompressible vector field 708: 623:Conservative vector field 597:magnetic vector potential 481:incompressible fluid flow 470:Gauss's law for magnetism 435:Helmholtz decomposition 114:transverse vector field 101:solenoidal vector field 586: 526: 423: 372: 308: 249: 221: 156: 92: 86: 587: 527: 424: 373: 309: 250: 222: 157: 87: 33: 546: 503: 499:in neutral regions ( 394: 322: 282: 234: 186: 132: 38: 582: 522: 419: 368: 304: 245: 217: 172:divergence theorem 152: 103:(also known as an 93: 82: 574: 16:(Redirected from 699: 673: 655:Aris, Rutherford 642: 638: 602:in Coulomb gauge 591: 589: 588: 583: 575: 573: 565: 564: 563: 550: 531: 529: 528: 523: 515: 514: 428: 426: 425: 420: 415: 401: 377: 375: 374: 369: 358: 335: 313: 311: 310: 305: 303: 289: 272:vector potential 254: 252: 251: 246: 244: 227: 226: 224: 223: 218: 207: 195: 182: 181: 161: 159: 158: 153: 145: 91: 89: 88: 83: 45: 21: 707: 706: 702: 701: 700: 698: 697: 696: 687:Vector calculus 677: 676: 671: 653: 650: 645: 639: 635: 631: 618:Stream function 609: 566: 555: 551: 544: 543: 537:current density 506: 501: 500: 458: 443: 392: 391: 320: 319: 280: 279: 232: 231: 228: 184: 183: 179: 177: 168: 130: 129: 97:vector calculus 36: 35: 28: 23: 22: 15: 12: 11: 5: 705: 703: 695: 694: 692:Fluid dynamics 689: 679: 678: 675: 674: 669: 649: 646: 644: 643: 632: 630: 627: 626: 625: 620: 615: 608: 605: 604: 603: 593: 581: 578: 572: 569: 562: 558: 554: 533: 521: 518: 513: 509: 494:electric field 490: 483: 473: 463:magnetic field 457: 454: 442: 439: 418: 414: 410: 407: 404: 400: 367: 364: 361: 357: 353: 350: 347: 344: 341: 338: 334: 330: 327: 302: 298: 295: 292: 288: 243: 239: 216: 213: 210: 206: 202: 198: 194: 176: 167: 164: 151: 148: 144: 140: 137: 81: 78: 75: 72: 69: 66: 63: 60: 57: 54: 51: 48: 44: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 704: 693: 690: 688: 685: 684: 682: 672: 670:0-486-66110-5 666: 662: 661: 656: 652: 651: 647: 637: 634: 628: 624: 621: 619: 616: 614: 611: 610: 606: 601: 598: 594: 579: 576: 570: 560: 556: 541: 538: 534: 519: 516: 511: 507: 498: 495: 491: 488: 484: 482: 478: 474: 471: 467: 464: 460: 459: 455: 453: 451: 447: 440: 438: 436: 432: 416: 408: 402: 389: 385: 381: 365: 362: 351: 342: 336: 328: 317: 296: 290: 277: 273: 269: 265: 261: 256: 237: 214: 211: 208: 200: 196: 175: 173: 165: 163: 149: 146: 138: 127: 123: 120: 116: 115: 110: 106: 102: 98: 76: 73: 70: 67: 61: 55: 52: 49: 32: 19: 659: 636: 599: 539: 496: 479:field of an 465: 445: 444: 430: 387: 383: 275: 267: 264:irrotational 257: 229: 169: 121: 119:vector field 113: 108: 104: 100: 94: 270:has only a 681:Categories 648:References 446:Solenoidal 390:such that 166:Properties 126:divergence 18:Solenoidal 663:, Dover, 568:∂ 557:ρ 553:∂ 508:ρ 487:vorticity 441:Etymology 409:× 406:∇ 352:× 349:∇ 343:⋅ 340:∇ 329:⋅ 326:∇ 297:× 294:∇ 197:⋅ 139:⋅ 136:∇ 74:− 657:(1989), 607:See also 477:velocity 456:Examples 450:solenoid 380:converse 316:identity 117:) is a 111:, or a 667:  433:, see 230:where 629:Notes 489:field 468:(see 124:with 665:ISBN 595:The 535:The 492:The 485:The 475:The 461:The 378:The 278:as: 258:The 170:The 107:, a 437:.) 95:In 683:: 532:); 366:0. 150:0. 99:a 600:A 592:. 580:0 577:= 571:t 561:e 540:J 520:0 517:= 512:e 497:E 472:) 466:B 431:v 417:. 413:A 403:= 399:v 388:A 384:v 363:= 360:) 356:A 346:( 337:= 333:v 301:A 291:= 287:v 276:A 268:v 242:S 238:d 215:, 212:0 209:= 205:S 201:d 193:v 147:= 143:v 122:v 80:) 77:x 71:, 68:y 65:( 62:= 59:) 56:y 53:, 50:x 47:( 43:v 20:)

Index

Solenoidal

vector calculus
transverse vector field
vector field
divergence
divergence theorem
fundamental theorem of vector calculus
irrotational
vector potential
identity
converse
Helmholtz decomposition
solenoid
magnetic field
Gauss's law for magnetism
velocity
incompressible fluid flow
vorticity
electric field
current density
magnetic vector potential
Longitudinal and transverse vector fields
Stream function
Conservative vector field
Aris, Rutherford
Vectors, tensors, and the basic equations of fluid mechanics
ISBN
0-486-66110-5
Categories

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.