Knowledge (XXG)

Solid-state nuclear magnetic resonance

Source 📝

1807:). Despite often requiring isotopic enrichment, ssNMR has the advantage that little sample preparation is required and can be used on not just dry or frozen samples, but also fully hydrated samples or native non-crystalline tissues. Solid-state NMR structure elucidation of proteins has traditionally been based on secondary chemical shifts and spatial contacts mostly between carbon nuclei. Upon fast magic-angle spinning, just like in solution NMR spectroscopy, proton-proton contacts represent the main information on the protein tertiary structure. Solid-state NMR, just like solution NMR, also enables the assessment of protein dynamics, which for membrane proteins in lipid bilayers or even micro-crystalline proteins (anchored by contacts to the surrounding molecules but properly hydrated) are largely retained and of biophysical interest. 822: 1434: 1062: 5772: 1118: 663: 28: 5784: 63: 1649: 1442:
Rotational Echo DOuble Resonance (REDOR) experiment, are a type of heteronuclear dipolar recoupling experiment which enable one to re-introduce heteronuclear dipolar couplings averaged by MAS. The reintroduction of such dipolar coupling reduce the intensity of the NMR signal intensity compared to a
1109:
sharp lines separated from the isotropic frequency by a multiple of the spinning rate. Although spinning sidebands can be used to measure anisotropic interactions, they are often undesirable and removed by spinning the sample faster or by recording the data points synchronously with the rotor period.
616:
where you switch quickly between the two angles. Both techniques were developed in the late 1980s, and require specialized hardware (probe). Multiple quantum magic angle spinning (MQMAS) NMR was developed in 1995 and has become a routine method for obtaining high resolution solid-state NMR spectra of
547:
coupling. When the nuclear quadrupole coupling is not negligible relative to the Zeeman coupling, higher order corrections are needed to describe the NMR spectrum correctly. In such cases, the first-order correction to the NMR transition frequency leads to a strong anisotropic line broadening of the
1121:
The CP pulse sequence. The sequence starts with a 90º pulse on the abundant channel (typically H). Then CP contact pulses matching the Hartmann-Hahn condition are applied to transfer the magnetisation from H to X. Finally, the free induction decay (FID) of the X nuclei is detected, typically with H
720:
A powder pattern arises in powdered samples where crystallites are randomly oriented relative to the magnetic field so that all molecular orientations are present. In presence of a chemical shift anisotropy interaction, each orientation with respect to the magnetic field gives a different resonance
542:
Nuclei with a spin quantum number >1/2 have a non-spherical charge distribution and an associated electric quadrupole moment tensor. The nuclear electric quadrupole moment couples with surrounding electric field gradients. The nuclear quadrupole coupling is one of the largest interactions in NMR
107:
averages anisotropic interactions to zero and they are therefore not reflected in the NMR spectrum. However, in media with no or little mobility (e.g. crystalline powders, glasses, large membrane vesicles, molecular aggregates), anisotropic local fields or interactions have substantial influence on
1907:
NMR can also be applied to art conservation. Different salts and moisture levels can be detected through the use of solid state NMR. However, sampling sizes retrieved from works of art in order to run through these large conducting magnets typically exceed levels deemed acceptable. Unilateral NMR
54:
part of many spin interactions are present in solid-state NMR, unlike in solution-state NMR where rapid tumbling motion averages out many of the spin interactions. As a result, solid-state NMR spectra are characterised by larger linewidths than in solution state NMR, which can be utilized to give
1108:
Spinning a powder sample at a slower rate than the largest component of the chemical shift anisotropy results in an incomplete averaging of the interaction, and produces a set of spinning sidebands in addition to the isotropic line, centred at the isotropic chemical shift. Spinning sidebands are
122:
Chemical shielding is a local property of each nuclear site in a molecule or compound, and is proportional to the applied external magnetic field. The external magnetic field induces currents of the electrons in molecular orbitals. These induced currents create local magnetic fields that lead to
1459:
relaxation time effectively relegate proton for bimolecular NMR. Recent developments of faster MAS, and reduction of dipolar interactions by deuteration have made proton ssNMR as versatile as in solution. This includes spectral dispersion in multi-dimensional experiments as well as structurally
1437:
Rotational Echo DOuble Resonance (REDOR) pulse sequence. The first excitation step (90º pulse or CP step) puts the magnetisation in the transverse plane. Then two trains of 180º pulses synchronised with the rotor half period are applied on the Y channel to reintroduce X-Y heteronuclear dipolar
1412:
Heteronuclear decoupling is achieved by radio-frequency irradiation on at the frequency of the nucleus to be decoupled, which is often H. The irradiation can be continuous (continuous wave decoupling), or a series of pulses that extend the performance and the bandwidth of the decoupling (TPPM,
1752:
The development in the MAS-DNP instrumentation, as well as the improvement of polarising agents (TOTAPOL, AMUPOL, TEKPOL, etc.) to achieve a more efficient transfer of polarisation has dramatically reduced experiments times which enabled the observation of surfaces, insensitive isotopes, and
1736:
Magic angle spinning dynamic nuclear polarization (MAS-DNP) is a technique that increases the sensitivity of NMR experiments by several orders of magnitude. It involves the transfer of the very high electron polarisation from unpaired electrons to nearby nuclei. This is achieved at cryogenic
126:
In general, the chemical shielding is anisotropic because of the anisotropic distribution of molecular orbitals around the nuclear sites. Under sufficiently fast magic angle spinning, or under the effect of molecular tumbling in solution-state NMR, the anisotropic dependence of the
1765:
It is used to characterize chemical composition, supramolecular structure, local motions, kinetics, and thermodynamics, with the special ability to assign the observed behavior to specific sites in a molecule. It is also crucial in the area of surface and interfacial chemistry.
1438:
interactions. The trains of pulses are interrupted by a 180º pulse on the X channel that allows the refocussing of the X magnetisation for the X-detection (spin echo). The delay between the 90º pulse and the beginning of the acquisition is referred to as the "rephrasing time".
1420:. Ultra fast MAS (from 60 kHz up to above 111 kHz) is an efficient way to average all dipolar interactions, including H–H homonuclear dipolar interactions, which extends the resolution of H spectra and enables the usage of pulse sequences used in solution state NMR. 150: 829:
The dipolar powder pattern (also Pake pattern) has a very characteristic shape that arises when two nuclear spins are coupled together within a crystallite. The splitting between the maxima (the "horns") of the pattern is equal to the dipolar coupling constant
1463:
Ultra-fast NMR and the associated sharpening of the NMR lines enables NMR pulse sequences to capitalize on proton-detection to improve the sensitivity of the experiments compared to the direct detection of a spin-1/2 system (X). Such enhancement factor
944: 291: 1761:
Solid-state NMR spectroscopy serves as an effective analytical tool in biological, organic, and inorganic chemistry due to its close resemblance to liquid-state spectra while providing additional insights into anisotropic interactions.
1320: 1396:
is an integer. In practice, the pulse power, as well as the length of the contact pulse are experimentally optimised. The power of one contact pulse is typically ramped to achieve a more broadband and efficient magnetisation transfer.
1490: 514: 1065:
Simulation of an increasing MAS rate on the C solid-state NMR spectrum of C-Glycine at 9.4 T (400 MHz H frequency). MAS introduces a set of spinning sidebands separated from the isotropic frequency by a multiple of the spinning
1871:
and stability; alterations can impact the efficacy of drugs profoundly. Analysis of molecular-level interactions facilitates also the formulation development of amorphous solid dispersions, targeting enhanced solubility.
1862:
Firstly, it plays a pivotal role in the characterizatio of drug polymorphs and solid dispersions. This is useful to minimize risks linked with solid-state form changes: the determination of the solid form of an
1416:
Homonuclear decoupling is achieved with multiple-pulse sequences (WAHUHA, MREV-8, BR-24, BLEW-12, FSLG), or continuous wave modulation (DUMBO, eDUMBO). Dipolar interactions can also be removed with
2027:
Massiot D.; Touzo B.; Trumeau D.; Coutures J. P.; Virlet J.; Florian P.; Grandinetti P. J. (1996). "Two-dimensional Magic-Angle Spinning Isotropic Reconstruction Sequences for Quadrupolar Nuclei".
4481:
Sarou-Kanian, Vincent; Joudiou, Nicolas; Louat, Fanny; Yon, Maxime; Szeremeta, Frédéric; Même, Sandra; Massiot, Dominique; Decoville, Martine; Fayon, Franck; Beloeil, Jean-Claude (2015).
427: 1129:(CP) if a fundamental RF pulse sequence and a building-block in many solid-state NMR. It is typically used to enhance the signal of a dilute nuclei with a low gyromagnetic ratio (e.g. 5603: 4882:
Del Federico, Eleonora; Centeno, Silvia A; Kehlet, Cindie; Currier, Penelope; Stockman, Denise; Jerschow, Alexej (2009). "Unilateral NMR applied to the conservation of works of art".
4387:
Renault, Marie; Pawsey, Shane; Bos, Martine P.; Koers, Eline J.; Nand, Deepak; Tommassen-van Boxtel, Ria; Rosay, Melanie; Tommassen, Jan; Maas, Werner E.; Baldus, Marc (2012-03-19).
1070:
Magic angle spinning (MAS) is a technique routinely used in solid-state NMR to produce narrower NMR and more intense NMR lines. This is achieved by rotating the sample at the
5884: 5874: 612:, which has zero points at 30.6° and 70.1°. These anisotropic broadenings can be removed using DOR (DOuble angle Rotation) where you spin at two angles at the same time, or 856: 755: 203: 5276: 4426:
Martínez-Bisbal, M. Carmen; Martí-Bonmatí, Luis; Piquer, José; Revert, Antonio; Ferrer, Pilar; Llácer, José L.; Piotto, Martial; Assemat, Olivier; Celda, Bernardo (2004).
785: 714: 1374: 2895:
Linser R.; Fink U.; Reif B. (2008). "Proton-Detected Scalar Coupling Based Assignment Strategies in MAS Solid-State NMR Spectroscopy Applied to Perdeuterated Proteins".
5121: 1036: 821: 364: 1672: 1343: 1005: 603: 333: 3627:
Chow, W. Y.; Rajan, R.; Muller, K. H.; Reid, D. G.; Skepper, J. N.; Wong, W. C.; Brooks, R. A.; Green, M.; Bihan, D.; Farndale, R. W.; Slatter, D. A. (2014-05-16).
1212: 805: 684: 573: 3723:"Structure Calculation from Unambiguous Long-Range Amide and Methyl 1H-1H Distance Restraints for a Microcrystalline Protein with MAS Solid-State NMR Spectroscopy" 1644:{\displaystyle \xi \propto \left({\frac {\gamma _{H}}{\gamma _{X}}}\right)^{3/2}\left({\frac {W_{X}}{W_{H}}}\right)^{1/2}\left({\frac {Q_{H}}{Q_{X}}}\right)^{1/2}} 1482: 1220: 5029: 4986: 3356:
Rossini, Aaron J.; Widdifield, Cory M.; Zagdoun, Alexandre; Lelli, Moreno; Schwarzwälder, Martin; Copéret, Christophe; Lesage, Anne; Emsley, Lyndon (2014-02-12).
1105:
interactions. To achieve the complete averaging of these interactions, the sample needs to be spun at a rate that is at least higher than the largest anisotropy.
2948:
Schanda, P.; Meier, B. H.; Ernst, M. (2010). "Quantitative Analysis of Protein Backbone Dynamics in Microcrystalline Ubiquitin by Solid-State NMR Spectroscopy".
1716: 1696: 1394: 985: 848: 5494: 439: 123:
characteristic changes in resonance frequency. These changes can be predicted from molecular structure using empirical rules or quantum-chemical calculations.
5427: 5372: 5341: 724:
Fitting of the pattern in a static ssNMR experiment gives information about the shielding tensor, which are often described by the isotropic chemical shift
5336: 5709: 5527: 5389: 5894: 5822: 5658: 5477: 5321: 2983:
Ishii, Yoshitaka; Wickramasinghe, Ayesha; Matsuda, Isamu; Endo, Yuki; Ishii, Yuji; Nishiyama, Yusuke; Nemoto, Takahiro; Kamihara, Takayuki (2018).
66:
Bruker MAS rotors. From left to right: 1.3 mm (up to 67 kHz), 2.5 mm (up to 35 kHz), 3.2 mm (up to 24 kHz), 4 mm (up to 15 kHz), 7 mm (up to 7 kHz)
5919: 5831: 5598: 5400: 5301: 46:
is a technique for characterizing atomic level structure in solid materials e.g. powders, single crystals and amorphous samples and tissues using
5899: 5544: 5522: 5269: 5610: 5532: 5047: 5005: 4962: 4101: 3813: 2874: 1406: 5362: 5909: 5869: 5467: 5412: 3414: 2000:
Frydman Lucio; Harwood John S (1995). "Isotropic Spectra of Half-Integer Quadrupolar Spins from Bidimensional Magic-Angle Spinning NMR".
5950: 5859: 55:
quantitative information on the molecular structure, conformation and dynamics of the material. Solid-state NMR is often combined with
5180: 193:, of the vector connecting the two nuclear spins (see figure). The maximum dipolar coupling is given by the dipolar coupling constant 144: 5849: 5694: 5446: 5262: 4858: 2108: 2073: 5099: 4612:
Hoffmann, Herbert; Debowski, Marta; Müller, Philipp; Paasch, Silvia; Senkovska, Irena; Kaskel, Stefan; Brunner, Eike (2012-11-28).
3431: 1433: 1187:
To establish magnetization transfer, RF pulses ("contact pulses") are simultaneously applied on both frequency channels to produce
721:
frequency. If enough crystallites are present, all the different contributions overlap continuously and lead to a smooth spectrum.
3690:
Castellani, Federica; van Rossum, Barth-Jan; Diehl, Anne; Schubert, Mario; Rehbein, Kristina; Oschkinat, Hartmut (November 2002).
5699: 5517: 1864: 1443:
reference spectrum where no dephasing pulse is used. REDOR can be used to measure heteronuclear distances, and are the basis of
4226:"Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls" 5714: 5684: 5615: 5549: 4167:
Mandala, Venkata S.; McKay, Matthew J.; Shcherbakov, Alexander A.; Dregni, Aurelio J.; Kolocouris, Antonios; Hong, Mei (2020).
1746: 5955: 5643: 5434: 5331: 3853:"The contribution of solid-state NMR spectroscopy to understanding biomineralization: Atomic and molecular structure of bone" 5924: 5914: 4810:"Adsorption and Activation of CO 2 by Amine-Modified Nanoporous Materials Studied by Solid-State NMR and 13 CO 2 Adsorption" 3446:
Marchetti, Alessandro; Chen, Juner; Pang, Zhenfeng; Li, Shenhui; Ling, Daishun; Deng, Feng; Kong, Xueqian (April 11, 2017).
5889: 5879: 5441: 5346: 1409:) to increase the resolution of NMR spectra during the detection, or to extend the lifetime of the nuclear magnetization. 617:
quadrupolar nuclei. A similar method to MQMAS is satellite transition magic angle spinning (STMAS) NMR developed in 2000.
5929: 5864: 605:
levels are unaffected by the first-order frequency contribution. The second-order frequency contribution depends on the P
5904: 5815: 5575: 5422: 5311: 1731: 5731: 5086:
Laws David D., Hans- , Bitter Marcus L., Jerschow Alexej (2002). "Solid-State NMR Spectroscopic Methods in Chemistry".
1888: 5570: 5539: 5472: 3199:
Rossini, Aaron J.; Zagdoun, Alexandre; Lelli, Moreno; Lesage, Anne; Copéret, Christophe; Emsley, Lyndon (2013-09-17).
3953:
Ferizoli, Bajram; Cresswell-Boyes, Alexander J.; Anderson, Paul; Lynch, Richard J. M.; Hill, Robert G. (2023-05-24).
3764:"Studying dynamics by magic-angle spinning solid-state NMR spectroscopy: Principles and applications to biomolecules" 3763: 3597: 637:. J-couplings are not always resolved in solids owing to the typically large linewdiths observed in solid state NMR. 5721: 5663: 5512: 5384: 5071: 3837: 3303:"Natural Isotopic Abundance 13 C and 15 N Multidimensional Solid-State NMR Enabled by Dynamic Nuclear Polarization" 3142:
Rankin, Andrew G.M.; Trébosc, Julien; Pourpoint, Frédérique; Amoureux, Jean-Paul; Lafon, Olivier (September 2019).
47: 4428:"1H and13C HR-MAS spectroscopy of intact biopsy samplesex vivo andin vivo1H MRS study of human high grade gliomas" 2985:"Progress in proton-detected solid-state NMR (SSNMR): Super-fast 2D SSNMR collection for nano-mole-scale proteins" 384: 5747: 5726: 5489: 5367: 1098: 100: 4122:
Quinn, Caitlin M.; Lu, Manman; Suiter, Christopher L.; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana (2015).
3077:
Rankin, Andrew G.M.; Trébosc, Julien; Pourpoint, Frédérique; Amoureux, Jean-Paul; Lafon, Olivier (2019-09-01).
2761:
Struppe, Jochem; Quinn, Caitlin M.; Sarkar, Sucharita; Gronenborn, Angela M.; Polenova, Tatyana (2020-01-13).
31:
Solid-state 900 MHz (21.1 T) NMR spectrometer at the Canadian National Ultrahigh-field NMR Facility for Solids
5788: 1908:
techniques use portable magnets that are applied to the object of interest, bypassing the need for sampling.
1779:
Solid-state NMR is used to study insoluble proteins and proteins very sensitive to their environment such as
5808: 5620: 5316: 1008: 336: 174: 4673:"In Situ Solid-State NMR Spectroscopy of Electrochemical Cells: Batteries, Supercapacitors, and Fuel Cells" 3996:"Secondary structure of peptides 16th. Characterization of proteins by means of13C NMR CP/MAS spectroscopy" 59:
to remove anisotropic interactions and improve the resolution as well as the sensitivity of the technique.
5407: 4042: 3078: 1947:"Design and construction of a contactless mobile RF coil for double resonance variable angle spinning NMR" 1946: 1792: 1788: 5219:
Solid-State NMR Literature Blog by Prof. Rob Schurko's Solid-State NMR group at the University of Windsor
3485: 5776: 5648: 5379: 5293: 5115: 4328:
Renault, M.; Tommassen-van Boxtel, R.; Bos, M. P.; Post, J. A.; Tommassen, J.; Baldus, M. (2012-03-27).
2260:
Bennett, Andrew E.; Rienstra, Chad M.; Auger, Michèle; Lakshmi, K. V.; Griffin, Robert G. (1995-10-22).
1800: 128: 3596:
Demers, Jean-Philippe; Fricke, Pascal; Shi, Chaowei; Chevelkov, Veniamin; Lange, Adam (December 2018).
4169:"Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers" 3040:
Lilly Thankamony, Aany Sofia; Wittmann, Johannes J.; Kaushik, Monu; Corzilius, Björn (November 2017).
939:{\displaystyle d=\hbar \left({\frac {\mu _{0}}{4\pi }}\right){\frac {1}{r^{3}}}\gamma _{1}\gamma _{2}} 629:
or indirect nuclear spin-spin coupling (sometimes also called "scalar" coupling despite the fact that
286:{\displaystyle d=\hbar \left({\frac {\mu _{0}}{4\pi }}\right){\frac {1}{r^{3}}}\gamma _{1}\gamma _{2}} 4731: 4625: 4494: 3864: 3640: 3544: 2996: 2904: 2660: 2621: 2578: 2539: 2500: 2453: 2406: 2367: 2320: 2273: 2226: 2187: 2148: 1958: 1879:
systems, thus enhabling scientists to design carriers and formulations that heighten drug efficacy.
1417: 1056: 609: 56: 3598:"Structure determination of supra-molecular assemblies by solid-state NMR: Practical considerations" 2356:"Swept-frequency two-pulse phase modulation for heteronuclear dipolar decoupling in solid-state NMR" 534:. Magic angle spinning is typically used to remove dipolar couplings weaker than the spinning rate. 103:, dipolar interactions). In a classical liquid-state NMR experiment, molecular tumbling coming from 5704: 5417: 5326: 1804: 1444: 1039: 727: 367: 76: 760: 689: 5752: 5689: 5668: 5484: 5462: 5395: 5306: 5065: 5042:. Robin K. Harris, Roderick E. Wasylishen. Chichester, West Sussex: John Wiley & Sons. 2012. 5023: 4980: 4907: 4774: 4755: 4463: 4310: 4282: 4081: 4023: 3935: 3852: 3831: 3672: 3448:"Understanding Surface and Interfacial Chemistry in Functional Nanomaterials via Solid-State NMR" 3447: 3338: 3181: 3155: 3143: 3124: 3090: 3041: 2686: 2648: 2609: 2355: 2308: 1675: 1352: 1346: 1126: 964: 312: 182: 4389:"Solid-State NMR Spectroscopy on Cellular Preparations Enhanced by Dynamic Nuclear Polarization" 3629:"NMR Spectroscopy of Native and in Vitro Tissues Implicates PolyADP Ribose in Biomineralization" 2527: 2488: 2175: 1093:, which has the effect to cancel, at least partially, anisotropic nuclear interactions such as 5653: 5580: 5554: 5176: 5160: 5103: 5053: 5043: 5011: 5001: 4968: 4958: 4899: 4864: 4854: 4829: 4790: 4747: 4700: 4692: 4643: 4528: 4510: 4455: 4447: 4408: 4369: 4351: 4302: 4263: 4245: 4206: 4188: 4149: 4097: 4062: 4015: 3976: 3927: 3919: 3880: 3819: 3809: 3664: 3656: 3578: 3560: 3513: 3505: 3395: 3387: 3330: 3322: 3283: 3275: 3267: 3228: 3220: 3173: 3116: 3108: 3059: 3022: 2965: 2930: 2870: 2835: 2800: 2782: 2743: 2725: 2678: 2469: 2422: 2336: 2289: 2242: 2114: 2104: 2079: 2069: 2044: 1982: 1974: 1014: 342: 4719: 4483:"Metabolite localization in living drosophila using High Resolution Magic Angle Spinning NMR" 4388: 1657: 1328: 1315:{\displaystyle \gamma _{H}B_{1}(^{1}{\text{H}})=\gamma _{X}B_{1}({\text{X}})\pm n\omega _{R}} 5150: 5142: 5095: 4939: 4891: 4821: 4782: 4739: 4684: 4651: 4633: 4592: 4559: 4518: 4502: 4439: 4400: 4359: 4341: 4294: 4253: 4237: 4196: 4180: 4139: 4131: 4089: 4054: 4007: 3966: 3911: 3872: 3783: 3775: 3742: 3734: 3703: 3648: 3568: 3552: 3497: 3459: 3426: 3377: 3369: 3314: 3259: 3212: 3165: 3100: 3049: 3012: 3004: 2957: 2920: 2912: 2862: 2827: 2790: 2774: 2733: 2717: 2668: 2629: 2586: 2547: 2508: 2461: 2414: 2375: 2328: 2281: 2234: 2195: 2156: 2133: 2036: 2009: 1966: 1892: 1780: 1094: 1061: 990: 578: 318: 178: 17: 3721:
Linser, Rasmus; Bardiaux, Benjamin; Higman, Victoria; Fink, Uwe; Reif, Bernd (March 2011).
3556: 1455:
The strong H-H homonuclear dipolar interactions associated with broad NMR lines and short T
1190: 790: 669: 551: 177:, which generates a magnetic field that interacts with the dipole moments of other nuclei ( 3898:
Mohammed, N.R.; Kent, N.W.; Lynch, R.J.M.; Karpukhina, N.; Hill, R.; Anderson, P. (2013).
3747: 3501: 2925: 1868: 1467: 104: 3955:"Effects of fluoride on in vitro hydroxyapatite demineralisation analysed by 19F MAS-NMR" 1151:) by magnetization transfer from an abundant nuclei with a high gyromagnetic ratio (e.g. 509:{\displaystyle \theta _{m}=\arccos {\sqrt {1/3}}=\arctan {\sqrt {2}}\simeq 54.7^{\circ }} 108:
the behaviour of nuclear spins, which results in the line broadening of the NMR spectra.
4938:. Apollo-University Of Cambridge Repository, Apollo-University Of Cambridge Repository. 4735: 4629: 4498: 3868: 3692:"Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy" 3644: 3548: 3358:"Dynamic Nuclear Polarization Enhanced NMR Spectroscopy for Pharmaceutical Formulations" 3000: 2908: 2854: 2664: 2625: 2582: 2543: 2504: 2457: 2410: 2371: 2324: 2277: 2230: 2191: 2152: 1962: 5155: 5130: 4656: 4613: 4523: 4482: 4364: 4329: 4281:
Zhao, Wancheng; Fernando, Liyanage D.; Kirui, Alex; Deligey, Fabien; Wang, Tuo (2020).
4258: 4225: 4201: 4168: 4144: 4123: 3788: 3573: 3532: 3302: 3017: 2984: 2795: 2762: 2738: 2705: 1844: 1701: 1681: 1379: 1090: 970: 833: 634: 132: 117: 92: 88: 84: 5223: 4935: 4581:"Solid-state NMR in the Field of Drug Delivery: State of the Art and New Perspectives" 4427: 4093: 4058: 3628: 2778: 2763:"Ultrafast 1 H MAS NMR Crystallography for Natural Abundance Pharmaceutical Compounds" 2633: 2394: 5944: 5854: 4911: 4808:
Pinto, Moisés L.; Mafra, Luís; Guil, José M.; Pires, João; Rocha, João (2011-03-22).
4314: 3486:"Structure and Dynamics of Membrane Proteins by Magic Angle Spinning Solid-State NMR" 3342: 3185: 3128: 2866: 2690: 2610:"Homonuclear dipolar decoupling in solid-state NMR using continuous phase modulation" 2566: 2551: 2512: 2199: 2040: 1876: 544: 4759: 4467: 4027: 3676: 3042:"Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR" 149: 5285: 5186: 3939: 2214: 1753:
multidimensional experiments on low natural abundance nuclei, and diluted species.
1162:), or as a spectral editing method to get through space information (e.g. directed 816: 646: 80: 43: 3248:"Natural Abundance 17 O DNP Two-Dimensional and Surface-Enhanced NMR Spectroscopy" 1117: 3900:"Effects of Fluoride on in vitro Enamel Demineralization Analyzed by 19F MAS-NMR" 3899: 3301:
Smith, Adam N.; Märker, Katharina; Hediger, Sabine; De Paëpe, Gaël (2019-08-15).
2721: 2441: 2379: 4786: 4720:"What Can We Learn from Solid State NMR on the Electrode-Electrolyte Interface?" 4298: 4135: 3779: 3413:
Laws, David D. Laws; Bitter, Hans-Marcus L.; Jerschow, Alexej (30 August 2002).
3318: 3247: 3169: 3104: 3054: 2605: 2261: 1796: 1071: 531: 5146: 4564: 4547: 4184: 3971: 3954: 2418: 666:
Simulations of the shape of different powder patterns for different asymmetry
5800: 4895: 4597: 4580: 4579:
Marchetti, Alessandro; Yin, Jinglin; Su, Yongchao; Kong, Xueqian (July 2021).
3876: 3382: 3008: 2916: 2831: 2673: 2590: 1970: 1815:
Solid-state NMR has also been successfully used to study biomaterials such as
1737:
temperatures by the means of a continuous microwave irradiation coming from a
626: 96: 51: 5057: 5015: 4972: 4833: 4809: 4696: 4672: 4647: 4514: 4451: 4355: 4249: 4192: 4066: 4019: 3980: 3923: 3722: 3691: 3660: 3564: 3509: 3391: 3357: 3326: 3271: 3224: 3112: 2786: 2729: 2649:"High-resolution 1H NMR of powdered solids by homonuclear dipolar decoupling" 2473: 2426: 2293: 2246: 2160: 1978: 1460:
valuable restraints and parameters important for studying material dynamics.
4868: 4346: 3823: 3652: 2238: 2118: 2083: 662: 27: 5237: 5164: 5107: 4903: 4794: 4751: 4743: 4704: 4532: 4459: 4412: 4404: 4373: 4306: 4267: 4210: 4153: 3931: 3884: 3668: 3582: 3517: 3463: 3399: 3334: 3287: 3232: 3177: 3120: 3063: 3026: 2969: 2934: 2839: 2804: 2747: 2682: 2340: 2332: 1986: 5100:
10.1002/1521-3773(20020902)41:17<3096::AID-ANIE3096>3.0.CO;2-X
5037: 4995: 4952: 4614:"Solid-State NMR Spectroscopy of Metal–Organic Framework Compounds (MOFs)" 3432:
10.1002/1521-3773(20020902)41:17<3096::AID-ANIE3096>3.0.CO;2-X
2706:"Proton-Based Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy" 2309:"An Improved Broadband Decoupling Sequence for Liquid Crystals and Solids" 2048: 1787:
fibrils. The latter topic relates to protein aggregation diseases such as
5193:, Blackwell, Oxford, 2004. (Some detailed examples of ssNMR spectroscopy) 4848: 4241: 3803: 3263: 2098: 2063: 1742: 1738: 1719: 633:
is a tensor quantity) describes the interaction of nuclear spins through
516:. Consequently, two nuclei with a dipolar coupling vector at an angle of 3707: 2818:
Gullion T.; Schaefer J. (1989). "Rotational-echo double-resonance NMR".
2704:
Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy (2017-04-18).
2013: 1875:
Furthermore, ssNMR aids in characterizing porous materials tailored for
523:= 54.7° to a strong external magnetic field have zero dipolar coupling. 370:. In a strong magnetic field, the dipolar coupling depends on the angle 5835: 4011: 2176:"Magic-angle spinning and polarization transfer in proton-enhanced NMR" 1896: 1784: 62: 4825: 4688: 4638: 4506: 3915: 3738: 3373: 3279: 3216: 2961: 2465: 1859:
Other ssNMR applications are in the field of pharmaceutical research.
5210: 4943: 4082:"Solid-State Nmr Studies Of Wood And Other Lignocellulosic Materials" 3995: 3246:
Perras, Frédéric A.; Kobayashi, Takeshi; Pruski, Marek (2015-07-08).
2285: 1925: 1848: 5129:
Reif, Bernd; Ashbrook, Sharon E.; Emsley, Lyndon; Hong, Mei (2021).
4443: 3200: 4283:"Solid-state NMR of plant and fungal cell walls: A critical review" 3160: 3095: 2861:, Chichester, UK: John Wiley & Sons, Ltd, pp. emrstm0448, 189:, and the orientation, with respect to the external magnetic field 4546:
Li, Mingyue; Xu, Wei; Su, Yongchao; Su, Yongchao (December 2020).
2567:"Nuclear-Magnetic-Resonance Line Narrowing by a Rotating rf Field" 1840: 1836: 1820: 1432: 1116: 1060: 820: 661: 148: 61: 26: 2354:
Thakur, Rajendra Singh; Kurur, Narayanan D.; Madhu, P.K. (2006).
3201:"Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy" 1832: 1828: 1824: 1816: 374:
between the internuclear vector and the external magnetic field
5804: 5258: 5254: 5216: 4773:
Griffin, John M.; Forse, Alexander C.; Grey, Clare P. (2016).
4671:
Blanc, Frédéric; Leskes, Michal; Grey, Clare P. (2013-09-17).
4330:"Cellular solid-state nuclear magnetic resonance spectroscopy" 153:
Vectors important for dipolar coupling between nuclear spins I
2174:
Stejskal, E.O; Schaefer, Jacob; Waugh, J.S (October 1977).
1945:
Qian, Chunqi; Pines, Alex; Martin, Rachel W. (2007-09-01).
1214:
fields whose strength fulfil the Hartmann–Hahn condition:
548:
NMR spectrum. However, all symmetric transitions, between
4548:"Solid-state NMR Spectroscopy in Pharmaceutical Sciences" 2440:
Rhim, W‐K.; Elleman, D. D.; Vaughan, R. W. (1973-02-15).
613: 4957:. J. A. Jones, Stephen Wimperis (2nd ed.). Oxford. 2528:"Low-power multipulse line narrowing in solid-state NMR" 2489:"Low-power multipulse line narrowing in solid-state NMR" 2393:
Waugh, J. S.; Huber, L. M.; Haeberlen, U. (1968-01-29).
2307:
Fung, B.M.; Khitrin, A.K.; Ermolaev, Konstantin (2000).
181:). The magnitude of the interaction is dependent on the 5213:
Python package for simulating solid-state NMR spectra.
4954:
NMR : the toolkit : how pulse sequences work
2647:
Paruzzo, Federico M.; Emsley, Lyndon (December 2019).
3533:"Solid-State NMR Studies of Amyloid Fibril Structure" 1704: 1684: 1660: 1493: 1470: 1382: 1355: 1331: 1223: 1193: 1017: 993: 973: 859: 836: 793: 763: 730: 692: 672: 581: 554: 442: 387: 345: 321: 206: 131:
is time-averaged to zero, leaving only the isotropic
3415:"Solid-State NMR Spectroscopic Methods in Chemistry" 1887:
Solid-state NMR has been successfully used to study
5842: 5740: 5677: 5636: 5629: 5591: 5563: 5505: 5455: 5355: 5292: 5173:
Spin Dynamics: Basics of Nuclear Magnetic Resonance
4128:
Progress in Nuclear Magnetic Resonance Spectroscopy
4047:
Progress in Nuclear Magnetic Resonance Spectroscopy
3602:
Progress in Nuclear Magnetic Resonance Spectroscopy
3046:
Progress in Nuclear Magnetic Resonance Spectroscopy
2215:"Coherent Averaging Effects in Magnetic Resonance" 1926:"National Ultrahigh-Field NMR Facility for Solids" 1710: 1690: 1666: 1643: 1476: 1388: 1368: 1337: 1314: 1206: 1030: 999: 979: 938: 842: 799: 779: 749: 708: 678: 597: 567: 508: 421: 358: 327: 285: 3144:"Recent developments in MAS DNP-NMR of materials" 3079:"Recent developments in MAS DNP-NMR of materials" 2608:; Hodgkinson, Paul; Emsley, Lyndon (March 2000). 4853:. Hans Wolfgang Spiess. London: Academic Press. 2134:"Nuclear Double Resonance in the Rotating Frame" 161:. θ is the angle between the vector connecting I 4334:Proceedings of the National Academy of Sciences 2526:Burum, D.P; Linder, M; Ernst, R.R (July 1981). 2487:Burum, D.P; Linder, M; Ernst, R.R (July 1981). 185:of the spin species, the internuclear distance 3762:Schanda, Paul; Ernst, Matthias (August 2016). 2565:Lee, Moses; Goldburg, Walter I. (1965-11-15). 1745:, with a frequency close to the corresponding 543:spectroscopy, often comparable in size to the 5816: 5270: 5198:Multidimensional Solid-State NMR and Polymers 4850:Multidimensional solid-state NMR and polymers 4041:Zhao, Chenhua; Asakura, Tetsuo (2001-12-14). 3994:Kricheldorf, H. R.; Müller, D. (1984-11-01). 2262:"Heteronuclear decoupling in rotating solids" 8: 5342:Vibrational spectroscopy of linear molecules 5191:Introduction to Solid-State NMR Spectroscopy 5120:: CS1 maint: multiple names: authors list ( 4775:"Solid-state NMR studies of supercapacitors" 2100:Introduction to solid-state NMR spectroscopy 2065:Introduction to solid-state NMR spectroscopy 1867:plays a pivotal role in ensuring controlled 1102: 422:{\displaystyle D\propto 3\cos ^{2}\theta -1} 5175:, Wiley, Chichester, United Kingdom, 2001. 4088:, vol. 37, Elsevier, pp. 75–117, 3808:. Jacek Klinowski. Berlin: Springer. 2005. 2395:"Approach to High-Resolution nmr in Solids" 1795:. Solid-state NMR spectroscopy complements 645:Paramagnetic substances are subject to the 91:, which can be modified by isotropic (e.g. 5823: 5809: 5801: 5633: 5337:Nuclear resonance vibrational spectroscopy 5277: 5263: 5255: 5028:: CS1 maint: location missing publisher ( 4985:: CS1 maint: location missing publisher ( 2213:Haeberlen, U.; Waugh, J. S. (1968-11-10). 1726:MAS-Dynamic Nuclear Polarisation (MAS-DNP) 757:, the chemical shift anisotropy parameter 5710:Inelastic electron tunneling spectroscopy 5390:Resonance-enhanced multiphoton ionization 5154: 4655: 4637: 4596: 4563: 4522: 4363: 4345: 4257: 4200: 4173:Nature Structural & Molecular Biology 4143: 3970: 3787: 3746: 3572: 3430: 3381: 3307:The Journal of Physical Chemistry Letters 3159: 3094: 3053: 3016: 2924: 2794: 2737: 2672: 2442:"Enhanced resolution for solid state NMR" 1703: 1683: 1659: 1631: 1627: 1615: 1605: 1599: 1584: 1580: 1568: 1558: 1552: 1537: 1533: 1521: 1511: 1505: 1492: 1469: 1381: 1360: 1354: 1330: 1306: 1288: 1279: 1269: 1254: 1248: 1238: 1228: 1222: 1198: 1192: 1022: 1016: 992: 972: 930: 920: 908: 899: 879: 873: 858: 835: 792: 768: 762: 735: 729: 697: 691: 671: 589: 580: 559: 553: 500: 486: 467: 462: 447: 441: 401: 386: 350: 344: 320: 277: 267: 255: 246: 226: 220: 205: 5478:Extended X-ray absorption fine structure 5238:"University of Ottawa NMR Facility Blog" 3362:Journal of the American Chemical Society 3252:Journal of the American Chemical Society 1429:Rotational Echo DOuble Resonance (REDOR) 5088:Angewandte Chemie International Edition 4393:Angewandte Chemie International Edition 1917: 1089:) with respect to the direction of the 994: 866: 322: 213: 5113: 5063: 5021: 4978: 4884:Analytical and Bioanalytical Chemistry 4779:Solid State Nuclear Magnetic Resonance 4287:Solid State Nuclear Magnetic Resonance 3829: 3557:10.1146/annurev-physchem-032210-103539 3148:Solid State Nuclear Magnetic Resonance 3083:Solid State Nuclear Magnetic Resonance 4718:Haber, Shira; Leskes, Michal (2018). 4124:"Magic angle spinning NMR of viruses" 3502:10.1146/annurev.biophys.050708.133719 2132:Hartmann, S. R.; Hahn, E. L. (1962). 1424:Advanced solid-state NMR spectroscopy 825:Dipolar powder pattern (Pake pattern) 7: 5783: 5196:Schmidt-Rohr, K. and Spiess, H.-W., 4080:Gil, A.M.; Neto, C. Pascoal (1999), 4043:"Structure of Silk studied with NMR" 1895:, surfaces of nanoporous materials, 5224:"Solid-State MAS NMR | Protein NMR" 4552:TrAC Trends in Analytical Chemistry 3537:Annual Review of Physical Chemistry 1799:and beam diffraction methods (e.g. 1698:represent the NMR line widths, and 5200:, Academic Press, San Diego, 1994. 4086:Annual Reports on NMR Spectroscopy 3768:Prog. Nucl. Magn. Reson. Spectrosc 2859:Encyclopedia of Magnetic Resonance 1405:Spin interactions can be removed ( 765: 694: 145:Magnetic dipole-dipole interaction 25: 5695:Deep-level transient spectroscopy 5447:Saturated absorption spectroscopy 3805:New techniques in solid-state NMR 2779:10.1021/acs.molpharmaceut.9b01157 5782: 5771: 5770: 5700:Dual-polarization interferometry 5242:u-of-o-nmr-facility.blogspot.com 4936:"Understanding NMR Spectroscopy" 4923:Suggested readings for beginners 2867:10.1002/9780470034590.emrstm0448 1865:active pharmaceutical ingredient 1046:Essential solid-state techniques 99:) and anisotropic interactions ( 5715:Scanning tunneling spectroscopy 5690:Circular dichroism spectroscopy 5685:Acoustic resonance spectroscopy 2446:The Journal of Chemical Physics 2266:The Journal of Chemical Physics 1855:Drugs and drug delivery systems 1797:solution-state NMR spectroscopy 1747:electron paramagnetic resonance 967:of the dipolar-coupled nuclei, 83:depends on the strength of the 5644:Fourier-transform spectroscopy 5332:Vibrational circular dichroism 5183:(NMR basics, including solids) 5135:Nature Reviews Methods Primers 5131:"Solid-state NMR spectroscopy" 4230:Journal of Experimental Botany 3748:11858/00-001M-0000-0018-E916-0 2926:11858/00-001M-0000-0018-EE69-A 2853:Schaefer, Jacob (2007-03-15), 1293: 1285: 1259: 1245: 987:is the internuclear distance, 787:, and the asymmetry parameter 686:and chemical shift anisotropy 101:e.g. chemical shift anisotropy 1: 5442:Cavity ring-down spectroscopy 5347:Thermal infrared spectroscopy 4677:Accounts of Chemical Research 4224:Wang, Tuo; Hong, Mei (2016). 4094:10.1016/s0066-4103(08)60014-9 4059:10.1016/S0079-6565(01)00039-5 3857:Journal of Magnetic Resonance 3205:Accounts of Chemical Research 2989:Journal of Magnetic Resonance 2857:, in Harris, Robin K. (ed.), 2710:Accounts of Chemical Research 2653:Journal of Magnetic Resonance 2634:10.1016/S0009-2614(00)00127-5 2532:Journal of Magnetic Resonance 2493:Journal of Magnetic Resonance 2313:Journal of Magnetic Resonance 2180:Journal of Magnetic Resonance 1951:Journal of Magnetic Resonance 1184:CP in protein spectroscopy). 750:{\displaystyle \delta _{iso}} 5576:Inelastic neutron scattering 3959:Frontiers in Dental Medicine 3531:Tycko, Robert (2011-05-05). 3484:McDermott, Ann (June 2009). 2722:10.1021/acs.accounts.7b00082 2552:10.1016/0022-2364(81)90200-6 2513:10.1016/0022-2364(81)90200-6 2380:10.1016/j.cplett.2006.06.007 2200:10.1016/0022-2364(77)90260-8 2041:10.1016/0926-2040(95)01210-9 1732:Dynamic nuclear polarization 780:{\displaystyle \Delta _{CS}} 709:{\displaystyle \Delta _{CS}} 18:Solid-state NMR spectroscopy 5637:Data collection, processing 5513:Photoelectron/photoemission 4787:10.1016/j.ssnmr.2016.03.003 4299:10.1016/j.ssnmr.2020.101660 4136:10.1016/j.pnmrs.2015.02.003 4000:Colloid and Polymer Science 3780:10.1016/j.pnmrs.2016.02.001 3490:Annual Review of Biophysics 3319:10.1021/acs.jpclett.8b03874 3170:10.1016/j.ssnmr.2019.05.009 3105:10.1016/j.ssnmr.2019.05.009 3055:10.1016/j.pnmrs.2017.06.002 1369:{\displaystyle \omega _{R}} 653:Solid-state NMR line shapes 614:DAS (Double Angle Spinning) 169:, and the magnetic field B. 5972: 5951:Nuclear magnetic resonance 5722:Photoacoustic spectroscopy 5664:Time-resolved spectroscopy 5147:10.1038/s43586-020-00002-1 4997:Nuclear magnetic resonance 4585:Magnetic Resonance Letters 4565:10.1016/j.trac.2020.116152 4185:10.1038/s41594-020-00536-8 3972:10.3389/fdmed.2023.1171827 2419:10.1103/PhysRevLett.20.180 1775:Proteins and bioaggregates 1729: 1376:is the spinning rate, and 1054: 814: 142: 115: 48:nuclear magnetic resonance 5766: 5748:Astronomical spectroscopy 5727:Photothermal spectroscopy 4896:10.1007/s00216-009-3128-7 4847:Schmidt-Rohr, K. (1994). 4598:10.1016/j.mrl.2021.100003 3877:10.1016/j.jmr.2014.12.011 3851:Duer, Melinda J. (2015). 3009:10.1016/j.jmr.2017.11.011 2917:10.1016/j.jmr.2008.04.021 2832:10.1016/j.jmr.2011.09.003 2674:10.1016/j.jmr.2019.106598 2591:10.1103/PhysRev.140.A1261 2103:. Oxford, UK: Blackwell. 2097:Duer, Melinda J. (2004). 2068:. Oxford, UK: Blackwell. 2062:Duer, Melinda J. (2004). 1971:10.1016/j.jmr.2007.06.006 1851:, and even live animals. 1722:of the probe resonances. 1099:chemical shift anisotropy 71:Nuclear spin interactions 5000:(2nd ed.). Oxford. 2614:Chemical Physics Letters 2360:Chemical Physics Letters 2161:10.1103/PhysRev.128.2042 1889:metal organic frameworks 1451:Ultra Fast MAS for H NMR 1031:{\displaystyle \mu _{0}} 359:{\displaystyle \mu _{0}} 173:Nuclear spins exhibit a 50:(NMR) spectroscopy. The 5732:Pump–probe spectroscopy 5621:Ferromagnetic resonance 5413:Laser-induced breakdown 4347:10.1073/pnas.1116478109 3653:10.1126/science.1248167 2767:Molecular Pharmaceutics 2604:Sakellariou, Dimitris; 2399:Physical Review Letters 2239:10.1103/PhysRev.175.453 1667:{\displaystyle \gamma } 1338:{\displaystyle \gamma } 1009:reduced Planck constant 538:Quadrupolar interaction 337:reduced Planck constant 5428:Glow-discharge optical 5408:Raman optical activity 5322:Rotational–vibrational 5070:: CS1 maint: others ( 4934:Keeler, James (2002). 4814:Chemistry of Materials 4744:10.1002/adma.201706496 4405:10.1002/anie.201105984 3836:: CS1 maint: others ( 3464:10.1002/adma.201605895 2333:10.1006/jmre.1999.1896 1712: 1692: 1668: 1645: 1478: 1439: 1390: 1370: 1339: 1316: 1208: 1123: 1067: 1032: 1001: 1000:{\displaystyle \hbar } 981: 940: 844: 826: 801: 781: 751: 717: 710: 680: 599: 598:{\displaystyle -m_{I}} 569: 510: 423: 378:(figure) according to 360: 329: 328:{\displaystyle \hbar } 287: 175:magnetic dipole moment 170: 67: 32: 5956:Scientific techniques 5649:Hyperspectral imaging 1801:X-ray crystallography 1730:Further information: 1713: 1693: 1669: 1646: 1479: 1436: 1413:SPINAL-64, SWf-TPPM) 1391: 1371: 1340: 1317: 1209: 1207:{\displaystyle B_{1}} 1120: 1064: 1033: 1002: 982: 941: 845: 824: 815:Further information: 802: 800:{\displaystyle \eta } 782: 752: 711: 681: 679:{\displaystyle \eta } 665: 600: 570: 568:{\displaystyle m_{I}} 511: 424: 361: 330: 288: 152: 65: 30: 5401:Coherent anti-Stokes 5356:UV–Vis–NIR "Optical" 5171:Levitt, Malcolm H., 4994:Hore, P. J. (2015). 4951:Hore, P. J. (2015). 3264:10.1021/jacs.5b03905 3048:. 102–103: 120–195. 1770:Biology and Medicine 1702: 1682: 1658: 1491: 1477:{\displaystyle \xi } 1468: 1445:NMR crystallographic 1418:magic angle spinning 1380: 1353: 1329: 1221: 1191: 1057:Magic angle spinning 1051:Magic angle spinning 1015: 991: 971: 857: 834: 791: 761: 728: 690: 670: 579: 552: 440: 385: 343: 319: 204: 57:magic angle spinning 5705:Hadron spectroscopy 5495:Conversion electron 5456:X-ray and Gamma ray 5363:Ultraviolet–visible 5039:Encyclopedia of NMR 4736:2018AdM....3006496H 4630:2012Mate....5.2537H 4499:2015NatSR...5E9872S 3869:2015JMagR.253...98D 3708:10.1038/nature01070 3645:2014Sci...344..742C 3549:2011ARPC...62..279T 3001:2018JMagR.286...99I 2956:(45): 15957–15967. 2909:2008JMagR.193...89L 2665:2019JMagR.30906598P 2626:2000CPL...319..253S 2583:1965PhRv..140.1261L 2577:(4A): A1261–A1271. 2544:1981JMagR..44..173B 2505:1981JMagR..44..173B 2458:1973JChPh..58.1772R 2411:1968PhRvL..20..180W 2372:2006CPL...426..459T 2325:2000JMagR.142...97F 2278:1995JChPh.103.6951B 2231:1968PhRv..175..453H 2192:1977JMagR..28..105S 2153:1962PhRv..128.2042H 2014:10.1021/ja00124a023 1963:2007JMagR.188..183Q 1805:electron microscopy 1793:Parkinson's disease 1789:Alzheimer's disease 1676:gyromagnetic ratios 1347:gyromagnetic ratios 1078:(ca. 54.74°, where 1040:vacuum permeability 965:gyromagnetic ratios 610:Legendre polynomial 368:vacuum permeability 313:gyromagnetic ratios 77:resonance frequency 5753:Force spectroscopy 5678:Measured phenomena 5669:Video spectroscopy 5373:Cold vapour atomic 4724:Advanced Materials 4487:Scientific Reports 4432:NMR in Biomedicine 4242:10.1093/jxb/erv416 4012:10.1007/BF01452215 3452:Advanced Materials 3383:20.500.11850/80771 1708: 1688: 1664: 1641: 1474: 1440: 1386: 1366: 1335: 1312: 1204: 1127:Cross-polarization 1124: 1113:Cross-polarisation 1068: 1028: 997: 977: 936: 840: 827: 797: 777: 747: 718: 706: 676: 641:Other interactions 595: 565: 506: 419: 356: 325: 283: 183:gyromagnetic ratio 171: 129:chemical shielding 112:Chemical shielding 68: 33: 5938: 5937: 5798: 5797: 5762: 5761: 5654:Spectrophotometry 5581:Neutron spin echo 5555:Beta spectroscopy 5468:Energy-dispersive 5094:(17): 3096–3129. 5049:978-0-470-05821-3 5007:978-0-19-870341-9 4964:978-0-19-870342-6 4826:10.1021/cm1029563 4689:10.1021/ar400022u 4639:10.3390/ma5122537 4624:(12): 2537–2572. 4507:10.1038/srep09872 4399:(12): 2998–3001. 4340:(13): 4863–4868. 4179:(12): 1202–1208. 4103:978-0-12-505337-2 3916:10.1159/000350171 3815:978-3-540-22168-5 3739:10.1021/ja110222h 3639:(6185): 742–746. 3419:Angewandte Chemie 3374:10.1021/ja4092038 3313:(16): 4652–4662. 3258:(26): 8336–8339. 3217:10.1021/ar300322x 2962:10.1021/ja100726a 2876:978-0-470-03459-0 2855:"REDOR and TEDOR" 2466:10.1063/1.1679423 2272:(16): 6951–6958. 2008:(19): 5367–5368. 1883:Materials science 1781:membrane proteins 1749:(EPR) frequency. 1711:{\displaystyle Q} 1691:{\displaystyle W} 1621: 1574: 1527: 1389:{\displaystyle n} 1291: 1257: 980:{\displaystyle r} 914: 893: 843:{\displaystyle d} 491: 475: 436:becomes zero for 261: 240: 16:(Redirected from 5963: 5832:NMR spectroscopy 5825: 5818: 5811: 5802: 5786: 5785: 5774: 5773: 5634: 5545:phenomenological 5294:Vibrational (IR) 5279: 5272: 5265: 5256: 5251: 5249: 5248: 5233: 5231: 5230: 5187:Duer, Melinda J. 5168: 5158: 5125: 5119: 5111: 5075: 5069: 5061: 5033: 5027: 5019: 4990: 4984: 4976: 4947: 4944:10.17863/CAM.968 4916: 4915: 4879: 4873: 4872: 4844: 4838: 4837: 4820:(6): 1387–1395. 4805: 4799: 4798: 4781:. 74–75: 16–35. 4770: 4764: 4763: 4715: 4709: 4708: 4683:(9): 1952–1963. 4668: 4662: 4661: 4659: 4641: 4609: 4603: 4602: 4600: 4576: 4570: 4569: 4567: 4543: 4537: 4536: 4526: 4478: 4472: 4471: 4423: 4417: 4416: 4384: 4378: 4377: 4367: 4349: 4325: 4319: 4318: 4278: 4272: 4271: 4261: 4221: 4215: 4214: 4204: 4164: 4158: 4157: 4147: 4130:. 86–87: 21–40. 4119: 4113: 4112: 4111: 4110: 4077: 4071: 4070: 4038: 4032: 4031: 3991: 3985: 3984: 3974: 3950: 3944: 3943: 3895: 3889: 3888: 3848: 3842: 3841: 3835: 3827: 3800: 3794: 3793: 3791: 3759: 3753: 3752: 3750: 3727:J. Am. Chem. Soc 3718: 3712: 3711: 3687: 3681: 3680: 3624: 3618: 3617: 3615: 3613: 3593: 3587: 3586: 3576: 3528: 3522: 3521: 3481: 3475: 3474: 3472: 3470: 3443: 3437: 3436: 3434: 3410: 3404: 3403: 3385: 3368:(6): 2324–2334. 3353: 3347: 3346: 3298: 3292: 3291: 3243: 3237: 3236: 3211:(9): 1942–1951. 3196: 3190: 3189: 3163: 3139: 3133: 3132: 3098: 3074: 3068: 3067: 3057: 3037: 3031: 3030: 3020: 2980: 2974: 2973: 2950:J. Am. Chem. Soc 2945: 2939: 2938: 2928: 2892: 2886: 2885: 2884: 2883: 2850: 2844: 2843: 2815: 2809: 2808: 2798: 2758: 2752: 2751: 2741: 2716:(4): 1105–1113. 2701: 2695: 2694: 2676: 2644: 2638: 2637: 2620:(3–4): 253–260. 2601: 2595: 2594: 2562: 2556: 2555: 2523: 2517: 2516: 2484: 2478: 2477: 2452:(4): 1772–1773. 2437: 2431: 2430: 2390: 2384: 2383: 2366:(4–6): 459–463. 2351: 2345: 2344: 2304: 2298: 2297: 2286:10.1063/1.470372 2257: 2251: 2250: 2210: 2204: 2203: 2171: 2165: 2164: 2147:(5): 2042–2053. 2138: 2129: 2123: 2122: 2094: 2088: 2087: 2059: 2053: 2052: 2024: 2018: 2017: 2002:J. Am. Chem. Soc 1997: 1991: 1990: 1942: 1936: 1935: 1933: 1932: 1922: 1903:Art conservation 1717: 1715: 1714: 1709: 1697: 1695: 1694: 1689: 1673: 1671: 1670: 1665: 1650: 1648: 1647: 1642: 1640: 1639: 1635: 1626: 1622: 1620: 1619: 1610: 1609: 1600: 1593: 1592: 1588: 1579: 1575: 1573: 1572: 1563: 1562: 1553: 1546: 1545: 1541: 1532: 1528: 1526: 1525: 1516: 1515: 1506: 1483: 1481: 1480: 1475: 1395: 1393: 1392: 1387: 1375: 1373: 1372: 1367: 1365: 1364: 1344: 1342: 1341: 1336: 1321: 1319: 1318: 1313: 1311: 1310: 1292: 1289: 1284: 1283: 1274: 1273: 1258: 1255: 1253: 1252: 1243: 1242: 1233: 1232: 1213: 1211: 1210: 1205: 1203: 1202: 1183: 1181: 1180: 1172: 1170: 1169: 1161: 1159: 1158: 1150: 1148: 1147: 1139: 1137: 1136: 1088: 1037: 1035: 1034: 1029: 1027: 1026: 1006: 1004: 1003: 998: 986: 984: 983: 978: 945: 943: 942: 937: 935: 934: 925: 924: 915: 913: 912: 900: 898: 894: 892: 884: 883: 874: 849: 847: 846: 841: 806: 804: 803: 798: 786: 784: 783: 778: 776: 775: 756: 754: 753: 748: 746: 745: 715: 713: 712: 707: 705: 704: 685: 683: 682: 677: 604: 602: 601: 596: 594: 593: 574: 572: 571: 566: 564: 563: 515: 513: 512: 507: 505: 504: 492: 487: 476: 471: 463: 452: 451: 428: 426: 425: 420: 406: 405: 365: 363: 362: 357: 355: 354: 334: 332: 331: 326: 292: 290: 289: 284: 282: 281: 272: 271: 262: 260: 259: 247: 245: 241: 239: 231: 230: 221: 179:dipolar coupling 139:Dipolar coupling 21: 5971: 5970: 5966: 5965: 5964: 5962: 5961: 5960: 5941: 5940: 5939: 5934: 5838: 5829: 5799: 5794: 5758: 5736: 5673: 5625: 5587: 5559: 5501: 5451: 5351: 5312:Resonance Raman 5288: 5283: 5246: 5244: 5236: 5228: 5226: 5222: 5207: 5128: 5112: 5085: 5082: 5080:Solid-state NMR 5062: 5050: 5036: 5020: 5008: 4993: 4977: 4965: 4950: 4933: 4930: 4925: 4920: 4919: 4881: 4880: 4876: 4861: 4846: 4845: 4841: 4807: 4806: 4802: 4772: 4771: 4767: 4730:(41): 1706496. 4717: 4716: 4712: 4670: 4669: 4665: 4611: 4610: 4606: 4578: 4577: 4573: 4545: 4544: 4540: 4480: 4479: 4475: 4444:10.1002/nbm.888 4425: 4424: 4420: 4386: 4385: 4381: 4327: 4326: 4322: 4280: 4279: 4275: 4223: 4222: 4218: 4166: 4165: 4161: 4121: 4120: 4116: 4108: 4106: 4104: 4079: 4078: 4074: 4040: 4039: 4035: 4006:(11): 856–861. 3993: 3992: 3988: 3952: 3951: 3947: 3904:Caries Research 3897: 3896: 3892: 3850: 3849: 3845: 3828: 3816: 3802: 3801: 3797: 3761: 3760: 3756: 3720: 3719: 3715: 3689: 3688: 3684: 3626: 3625: 3621: 3611: 3609: 3595: 3594: 3590: 3530: 3529: 3525: 3483: 3482: 3478: 3468: 3466: 3458:(14): 1605895. 3445: 3444: 3440: 3412: 3411: 3407: 3355: 3354: 3350: 3300: 3299: 3295: 3245: 3244: 3240: 3198: 3197: 3193: 3141: 3140: 3136: 3076: 3075: 3071: 3039: 3038: 3034: 2982: 2981: 2977: 2947: 2946: 2942: 2894: 2893: 2889: 2881: 2879: 2877: 2852: 2851: 2847: 2817: 2816: 2812: 2760: 2759: 2755: 2703: 2702: 2698: 2646: 2645: 2641: 2603: 2602: 2598: 2571:Physical Review 2564: 2563: 2559: 2525: 2524: 2520: 2486: 2485: 2481: 2439: 2438: 2434: 2392: 2391: 2387: 2353: 2352: 2348: 2306: 2305: 2301: 2259: 2258: 2254: 2219:Physical Review 2212: 2211: 2207: 2173: 2172: 2168: 2136: 2131: 2130: 2126: 2111: 2096: 2095: 2091: 2076: 2061: 2060: 2056: 2029:Solid-State NMR 2026: 2025: 2021: 1999: 1998: 1994: 1944: 1943: 1939: 1930: 1928: 1924: 1923: 1919: 1914: 1905: 1885: 1869:bioavailability 1857: 1813: 1777: 1772: 1759: 1734: 1728: 1700: 1699: 1680: 1679: 1656: 1655: 1611: 1601: 1595: 1594: 1564: 1554: 1548: 1547: 1517: 1507: 1501: 1500: 1489: 1488: 1466: 1465: 1458: 1453: 1431: 1426: 1403: 1378: 1377: 1356: 1351: 1350: 1327: 1326: 1302: 1275: 1265: 1244: 1234: 1224: 1219: 1218: 1194: 1189: 1188: 1179: 1177: 1176: 1175: 1174: 1168: 1166: 1165: 1164: 1163: 1157: 1155: 1154: 1153: 1152: 1146: 1144: 1143: 1142: 1141: 1135: 1133: 1132: 1131: 1130: 1115: 1103:and quadrupolar 1086: 1079: 1077: 1059: 1053: 1048: 1018: 1013: 1012: 989: 988: 969: 968: 962: 955: 926: 916: 904: 885: 875: 869: 855: 854: 832: 831: 819: 813: 811:Dipolar pattern 789: 788: 764: 759: 758: 731: 726: 725: 693: 688: 687: 668: 667: 660: 655: 643: 623: 608: 585: 577: 576: 555: 550: 549: 540: 529: 522: 496: 443: 438: 437: 397: 383: 382: 346: 341: 340: 317: 316: 315:of the nuclei, 310: 303: 273: 263: 251: 232: 222: 216: 202: 201: 168: 164: 160: 156: 147: 141: 120: 114: 105:Brownian motion 73: 36:Solid-state NMR 23: 22: 15: 12: 11: 5: 5969: 5967: 5959: 5958: 5953: 5943: 5942: 5936: 5935: 5933: 5932: 5927: 5922: 5917: 5912: 5907: 5902: 5897: 5892: 5887: 5882: 5877: 5872: 5867: 5862: 5857: 5852: 5846: 5844: 5840: 5839: 5830: 5828: 5827: 5820: 5813: 5805: 5796: 5795: 5793: 5792: 5780: 5767: 5764: 5763: 5760: 5759: 5757: 5756: 5750: 5744: 5742: 5738: 5737: 5735: 5734: 5729: 5724: 5719: 5718: 5717: 5707: 5702: 5697: 5692: 5687: 5681: 5679: 5675: 5674: 5672: 5671: 5666: 5661: 5656: 5651: 5646: 5640: 5638: 5631: 5627: 5626: 5624: 5623: 5618: 5613: 5608: 5607: 5606: 5595: 5593: 5589: 5588: 5586: 5585: 5584: 5583: 5573: 5567: 5565: 5561: 5560: 5558: 5557: 5552: 5547: 5542: 5537: 5536: 5535: 5530: 5528:Angle-resolved 5525: 5520: 5509: 5507: 5503: 5502: 5500: 5499: 5498: 5497: 5487: 5482: 5481: 5480: 5475: 5470: 5459: 5457: 5453: 5452: 5450: 5449: 5444: 5439: 5438: 5437: 5432: 5431: 5430: 5415: 5410: 5405: 5404: 5403: 5393: 5387: 5382: 5377: 5376: 5375: 5365: 5359: 5357: 5353: 5352: 5350: 5349: 5344: 5339: 5334: 5329: 5324: 5319: 5314: 5309: 5304: 5298: 5296: 5290: 5289: 5284: 5282: 5281: 5274: 5267: 5259: 5253: 5252: 5234: 5220: 5214: 5206: 5205:External links 5203: 5202: 5201: 5194: 5184: 5181:978-0470511176 5169: 5126: 5081: 5078: 5077: 5076: 5048: 5034: 5006: 4991: 4963: 4948: 4929: 4926: 4924: 4921: 4918: 4917: 4890:(1): 213–220. 4874: 4859: 4839: 4800: 4765: 4710: 4663: 4604: 4571: 4538: 4473: 4438:(4): 191–205. 4418: 4379: 4320: 4273: 4236:(2): 503–514. 4216: 4159: 4114: 4102: 4072: 4053:(4): 301–352. 4033: 3986: 3945: 3910:(5): 421–428. 3890: 3843: 3814: 3795: 3754: 3713: 3682: 3619: 3588: 3543:(1): 279–299. 3523: 3496:(1): 385–403. 3476: 3438: 3405: 3348: 3293: 3238: 3191: 3134: 3069: 3032: 2975: 2940: 2897:J. Magn. Reson 2887: 2875: 2845: 2826:(2): 196–200. 2820:J. Magn. Reson 2810: 2773:(2): 674–682. 2753: 2696: 2639: 2596: 2557: 2538:(1): 173–188. 2518: 2499:(1): 173–188. 2479: 2432: 2405:(5): 180–182. 2385: 2346: 2299: 2252: 2225:(2): 453–467. 2205: 2186:(1): 105–112. 2166: 2124: 2109: 2089: 2074: 2054: 2019: 1992: 1957:(1): 183–189. 1937: 1916: 1915: 1913: 1910: 1904: 1901: 1884: 1881: 1856: 1853: 1812: 1809: 1776: 1773: 1771: 1768: 1758: 1755: 1727: 1724: 1720:quality factor 1718:represent the 1707: 1687: 1663: 1652: 1651: 1638: 1634: 1630: 1625: 1618: 1614: 1608: 1604: 1598: 1591: 1587: 1583: 1578: 1571: 1567: 1561: 1557: 1551: 1544: 1540: 1536: 1531: 1524: 1520: 1514: 1510: 1504: 1499: 1496: 1473: 1456: 1452: 1449: 1430: 1427: 1425: 1422: 1402: 1399: 1385: 1363: 1359: 1334: 1323: 1322: 1309: 1305: 1301: 1298: 1295: 1287: 1282: 1278: 1272: 1268: 1264: 1261: 1251: 1247: 1241: 1237: 1231: 1227: 1201: 1197: 1178: 1167: 1156: 1145: 1134: 1114: 1111: 1091:magnetic field 1084: 1075: 1055:Main article: 1052: 1049: 1047: 1044: 1025: 1021: 996: 976: 960: 953: 947: 946: 933: 929: 923: 919: 911: 907: 903: 897: 891: 888: 882: 878: 872: 868: 865: 862: 839: 812: 809: 796: 774: 771: 767: 744: 741: 738: 734: 703: 700: 696: 675: 659: 658:Powder pattern 656: 654: 651: 642: 639: 635:chemical bonds 622: 619: 606: 592: 588: 584: 562: 558: 539: 536: 530:is called the 527: 520: 503: 499: 495: 490: 485: 482: 479: 474: 470: 466: 461: 458: 455: 450: 446: 431: 430: 418: 415: 412: 409: 404: 400: 396: 393: 390: 353: 349: 324: 308: 301: 295: 294: 280: 276: 270: 266: 258: 254: 250: 244: 238: 235: 229: 225: 219: 215: 212: 209: 166: 162: 158: 154: 143:Main article: 140: 137: 133:chemical shift 118:Chemical shift 116:Main article: 113: 110: 95:, isotropic J- 93:chemical shift 85:magnetic field 72: 69: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5968: 5957: 5954: 5952: 5949: 5948: 5946: 5931: 5928: 5926: 5923: 5921: 5918: 5916: 5913: 5911: 5908: 5906: 5903: 5901: 5898: 5896: 5893: 5891: 5888: 5886: 5883: 5881: 5878: 5876: 5873: 5871: 5868: 5866: 5863: 5861: 5858: 5856: 5853: 5851: 5848: 5847: 5845: 5841: 5837: 5833: 5826: 5821: 5819: 5814: 5812: 5807: 5806: 5803: 5791: 5790: 5781: 5779: 5778: 5769: 5768: 5765: 5754: 5751: 5749: 5746: 5745: 5743: 5739: 5733: 5730: 5728: 5725: 5723: 5720: 5716: 5713: 5712: 5711: 5708: 5706: 5703: 5701: 5698: 5696: 5693: 5691: 5688: 5686: 5683: 5682: 5680: 5676: 5670: 5667: 5665: 5662: 5660: 5657: 5655: 5652: 5650: 5647: 5645: 5642: 5641: 5639: 5635: 5632: 5628: 5622: 5619: 5617: 5614: 5612: 5609: 5605: 5602: 5601: 5600: 5597: 5596: 5594: 5590: 5582: 5579: 5578: 5577: 5574: 5572: 5569: 5568: 5566: 5562: 5556: 5553: 5551: 5548: 5546: 5543: 5541: 5538: 5534: 5531: 5529: 5526: 5524: 5521: 5519: 5516: 5515: 5514: 5511: 5510: 5508: 5504: 5496: 5493: 5492: 5491: 5488: 5486: 5483: 5479: 5476: 5474: 5471: 5469: 5466: 5465: 5464: 5461: 5460: 5458: 5454: 5448: 5445: 5443: 5440: 5436: 5433: 5429: 5426: 5425: 5424: 5421: 5420: 5419: 5416: 5414: 5411: 5409: 5406: 5402: 5399: 5398: 5397: 5394: 5391: 5388: 5386: 5385:Near-infrared 5383: 5381: 5378: 5374: 5371: 5370: 5369: 5366: 5364: 5361: 5360: 5358: 5354: 5348: 5345: 5343: 5340: 5338: 5335: 5333: 5330: 5328: 5325: 5323: 5320: 5318: 5315: 5313: 5310: 5308: 5305: 5303: 5300: 5299: 5297: 5295: 5291: 5287: 5280: 5275: 5273: 5268: 5266: 5261: 5260: 5257: 5243: 5239: 5235: 5225: 5221: 5218: 5215: 5212: 5209: 5208: 5204: 5199: 5195: 5192: 5188: 5185: 5182: 5178: 5174: 5170: 5166: 5162: 5157: 5152: 5148: 5144: 5140: 5136: 5132: 5127: 5123: 5117: 5109: 5105: 5101: 5097: 5093: 5089: 5084: 5083: 5079: 5073: 5067: 5059: 5055: 5051: 5045: 5041: 5040: 5035: 5031: 5025: 5017: 5013: 5009: 5003: 4999: 4998: 4992: 4988: 4982: 4974: 4970: 4966: 4960: 4956: 4955: 4949: 4945: 4941: 4937: 4932: 4931: 4927: 4922: 4913: 4909: 4905: 4901: 4897: 4893: 4889: 4885: 4878: 4875: 4870: 4866: 4862: 4860:0-12-626630-1 4856: 4852: 4851: 4843: 4840: 4835: 4831: 4827: 4823: 4819: 4815: 4811: 4804: 4801: 4796: 4792: 4788: 4784: 4780: 4776: 4769: 4766: 4761: 4757: 4753: 4749: 4745: 4741: 4737: 4733: 4729: 4725: 4721: 4714: 4711: 4706: 4702: 4698: 4694: 4690: 4686: 4682: 4678: 4674: 4667: 4664: 4658: 4653: 4649: 4645: 4640: 4635: 4631: 4627: 4623: 4619: 4615: 4608: 4605: 4599: 4594: 4591:(9): 100003. 4590: 4586: 4582: 4575: 4572: 4566: 4561: 4558:(4): 116152. 4557: 4553: 4549: 4542: 4539: 4534: 4530: 4525: 4520: 4516: 4512: 4508: 4504: 4500: 4496: 4492: 4488: 4484: 4477: 4474: 4469: 4465: 4461: 4457: 4453: 4449: 4445: 4441: 4437: 4433: 4429: 4422: 4419: 4414: 4410: 4406: 4402: 4398: 4394: 4390: 4383: 4380: 4375: 4371: 4366: 4361: 4357: 4353: 4348: 4343: 4339: 4335: 4331: 4324: 4321: 4316: 4312: 4308: 4304: 4300: 4296: 4292: 4288: 4284: 4277: 4274: 4269: 4265: 4260: 4255: 4251: 4247: 4243: 4239: 4235: 4231: 4227: 4220: 4217: 4212: 4208: 4203: 4198: 4194: 4190: 4186: 4182: 4178: 4174: 4170: 4163: 4160: 4155: 4151: 4146: 4141: 4137: 4133: 4129: 4125: 4118: 4115: 4105: 4099: 4095: 4091: 4087: 4083: 4076: 4073: 4068: 4064: 4060: 4056: 4052: 4048: 4044: 4037: 4034: 4029: 4025: 4021: 4017: 4013: 4009: 4005: 4001: 3997: 3990: 3987: 3982: 3978: 3973: 3968: 3964: 3960: 3956: 3949: 3946: 3941: 3937: 3933: 3929: 3925: 3921: 3917: 3913: 3909: 3905: 3901: 3894: 3891: 3886: 3882: 3878: 3874: 3870: 3866: 3862: 3858: 3854: 3847: 3844: 3839: 3833: 3825: 3821: 3817: 3811: 3807: 3806: 3799: 3796: 3790: 3785: 3781: 3777: 3773: 3769: 3765: 3758: 3755: 3749: 3744: 3740: 3736: 3733:: 5905–5912. 3732: 3728: 3724: 3717: 3714: 3709: 3705: 3701: 3697: 3693: 3686: 3683: 3678: 3674: 3670: 3666: 3662: 3658: 3654: 3650: 3646: 3642: 3638: 3634: 3630: 3623: 3620: 3607: 3603: 3599: 3592: 3589: 3584: 3580: 3575: 3570: 3566: 3562: 3558: 3554: 3550: 3546: 3542: 3538: 3534: 3527: 3524: 3519: 3515: 3511: 3507: 3503: 3499: 3495: 3491: 3487: 3480: 3477: 3465: 3461: 3457: 3453: 3449: 3442: 3439: 3433: 3428: 3424: 3420: 3416: 3409: 3406: 3401: 3397: 3393: 3389: 3384: 3379: 3375: 3371: 3367: 3363: 3359: 3352: 3349: 3344: 3340: 3336: 3332: 3328: 3324: 3320: 3316: 3312: 3308: 3304: 3297: 3294: 3289: 3285: 3281: 3277: 3273: 3269: 3265: 3261: 3257: 3253: 3249: 3242: 3239: 3234: 3230: 3226: 3222: 3218: 3214: 3210: 3206: 3202: 3195: 3192: 3187: 3183: 3179: 3175: 3171: 3167: 3162: 3157: 3153: 3149: 3145: 3138: 3135: 3130: 3126: 3122: 3118: 3114: 3110: 3106: 3102: 3097: 3092: 3088: 3084: 3080: 3073: 3070: 3065: 3061: 3056: 3051: 3047: 3043: 3036: 3033: 3028: 3024: 3019: 3014: 3010: 3006: 3002: 2998: 2994: 2990: 2986: 2979: 2976: 2971: 2967: 2963: 2959: 2955: 2951: 2944: 2941: 2936: 2932: 2927: 2922: 2918: 2914: 2910: 2906: 2902: 2898: 2891: 2888: 2878: 2872: 2868: 2864: 2860: 2856: 2849: 2846: 2841: 2837: 2833: 2829: 2825: 2821: 2814: 2811: 2806: 2802: 2797: 2792: 2788: 2784: 2780: 2776: 2772: 2768: 2764: 2757: 2754: 2749: 2745: 2740: 2735: 2731: 2727: 2723: 2719: 2715: 2711: 2707: 2700: 2697: 2692: 2688: 2684: 2680: 2675: 2670: 2666: 2662: 2658: 2654: 2650: 2643: 2640: 2635: 2631: 2627: 2623: 2619: 2615: 2611: 2607: 2600: 2597: 2592: 2588: 2584: 2580: 2576: 2572: 2568: 2561: 2558: 2553: 2549: 2545: 2541: 2537: 2533: 2529: 2522: 2519: 2514: 2510: 2506: 2502: 2498: 2494: 2490: 2483: 2480: 2475: 2471: 2467: 2463: 2459: 2455: 2451: 2447: 2443: 2436: 2433: 2428: 2424: 2420: 2416: 2412: 2408: 2404: 2400: 2396: 2389: 2386: 2381: 2377: 2373: 2369: 2365: 2361: 2357: 2350: 2347: 2342: 2338: 2334: 2330: 2326: 2322: 2319:(1): 97–101. 2318: 2314: 2310: 2303: 2300: 2295: 2291: 2287: 2283: 2279: 2275: 2271: 2267: 2263: 2256: 2253: 2248: 2244: 2240: 2236: 2232: 2228: 2224: 2220: 2216: 2209: 2206: 2201: 2197: 2193: 2189: 2185: 2181: 2177: 2170: 2167: 2162: 2158: 2154: 2150: 2146: 2142: 2135: 2128: 2125: 2120: 2116: 2112: 2110:1-4051-0914-9 2106: 2102: 2101: 2093: 2090: 2085: 2081: 2077: 2075:1-4051-0914-9 2071: 2067: 2066: 2058: 2055: 2050: 2046: 2042: 2038: 2034: 2030: 2023: 2020: 2015: 2011: 2007: 2003: 1996: 1993: 1988: 1984: 1980: 1976: 1972: 1968: 1964: 1960: 1956: 1952: 1948: 1941: 1938: 1927: 1921: 1918: 1911: 1909: 1902: 1900: 1898: 1894: 1890: 1882: 1880: 1878: 1877:drug delivery 1873: 1870: 1866: 1860: 1854: 1852: 1850: 1846: 1842: 1838: 1835:, as well as 1834: 1830: 1826: 1822: 1818: 1810: 1808: 1806: 1802: 1798: 1794: 1790: 1786: 1782: 1774: 1769: 1767: 1763: 1756: 1754: 1750: 1748: 1744: 1740: 1733: 1725: 1723: 1721: 1705: 1685: 1677: 1661: 1636: 1632: 1628: 1623: 1616: 1612: 1606: 1602: 1596: 1589: 1585: 1581: 1576: 1569: 1565: 1559: 1555: 1549: 1542: 1538: 1534: 1529: 1522: 1518: 1512: 1508: 1502: 1497: 1494: 1487: 1486: 1485: 1484:is given by: 1471: 1461: 1450: 1448: 1446: 1435: 1428: 1423: 1421: 1419: 1414: 1410: 1408: 1400: 1398: 1383: 1361: 1357: 1348: 1332: 1307: 1303: 1299: 1296: 1280: 1276: 1270: 1266: 1262: 1249: 1239: 1235: 1229: 1225: 1217: 1216: 1215: 1199: 1195: 1185: 1128: 1119: 1112: 1110: 1106: 1104: 1100: 1096: 1092: 1083: 1073: 1063: 1058: 1050: 1045: 1043: 1041: 1023: 1019: 1010: 974: 966: 959: 952: 931: 927: 921: 917: 909: 905: 901: 895: 889: 886: 880: 876: 870: 863: 860: 853: 852: 851: 837: 823: 818: 810: 808: 794: 772: 769: 742: 739: 736: 732: 722: 701: 698: 673: 664: 657: 652: 650: 648: 640: 638: 636: 632: 628: 620: 618: 615: 611: 590: 586: 582: 560: 556: 546: 537: 535: 533: 526: 519: 501: 497: 493: 488: 483: 480: 477: 472: 468: 464: 459: 456: 453: 448: 444: 435: 416: 413: 410: 407: 402: 398: 394: 391: 388: 381: 380: 379: 377: 373: 369: 351: 347: 338: 314: 307: 300: 278: 274: 268: 264: 256: 252: 248: 242: 236: 233: 227: 223: 217: 210: 207: 200: 199: 198: 196: 192: 188: 184: 180: 176: 151: 146: 138: 136: 134: 130: 124: 119: 111: 109: 106: 102: 98: 94: 90: 86: 82: 78: 70: 64: 60: 58: 53: 49: 45: 41: 37: 29: 19: 5787: 5775: 5755:(a misnomer) 5741:Applications 5659:Time-stretch 5550:paramagnetic 5368:Fluorescence 5286:Spectroscopy 5245:. Retrieved 5241: 5227:. Retrieved 5197: 5190: 5172: 5138: 5134: 5116:cite journal 5091: 5087: 5038: 4996: 4953: 4887: 4883: 4877: 4849: 4842: 4817: 4813: 4803: 4778: 4768: 4727: 4723: 4713: 4680: 4676: 4666: 4621: 4617: 4607: 4588: 4584: 4574: 4555: 4551: 4541: 4490: 4486: 4476: 4435: 4431: 4421: 4396: 4392: 4382: 4337: 4333: 4323: 4290: 4286: 4276: 4233: 4229: 4219: 4176: 4172: 4162: 4127: 4117: 4107:, retrieved 4085: 4075: 4050: 4046: 4036: 4003: 3999: 3989: 3962: 3958: 3948: 3907: 3903: 3893: 3860: 3856: 3846: 3804: 3798: 3771: 3767: 3757: 3730: 3726: 3716: 3699: 3695: 3685: 3636: 3632: 3622: 3610:. Retrieved 3605: 3601: 3591: 3540: 3536: 3526: 3493: 3489: 3479: 3467:. Retrieved 3455: 3451: 3441: 3425:(17): 3096. 3422: 3418: 3408: 3365: 3361: 3351: 3310: 3306: 3296: 3255: 3251: 3241: 3208: 3204: 3194: 3151: 3147: 3137: 3086: 3082: 3072: 3045: 3035: 2992: 2988: 2978: 2953: 2949: 2943: 2903:(1): 89–93. 2900: 2896: 2890: 2880:, retrieved 2858: 2848: 2823: 2819: 2813: 2770: 2766: 2756: 2713: 2709: 2699: 2656: 2652: 2642: 2617: 2613: 2606:Lesage, Anne 2599: 2574: 2570: 2560: 2535: 2531: 2521: 2496: 2492: 2482: 2449: 2445: 2435: 2402: 2398: 2388: 2363: 2359: 2349: 2316: 2312: 2302: 2269: 2265: 2255: 2222: 2218: 2208: 2183: 2179: 2169: 2144: 2140: 2127: 2099: 2092: 2064: 2057: 2035:(1): 73–83. 2032: 2028: 2022: 2005: 2001: 1995: 1954: 1950: 1940: 1929:. Retrieved 1920: 1906: 1886: 1874: 1861: 1858: 1814: 1811:Biomaterials 1778: 1764: 1760: 1757:Applications 1751: 1735: 1653: 1462: 1454: 1441: 1415: 1411: 1404: 1324: 1186: 1125: 1107: 1081: 1069: 957: 950: 948: 828: 817:Pake doublet 723: 719: 647:Knight shift 644: 630: 624: 541: 524: 517: 433: 432: 375: 371: 305: 298: 296: 194: 190: 186: 172: 125: 121: 81:nuclear spin 74: 44:spectroscopy 39: 35: 34: 5327:Vibrational 5211:mrsimulator 4928:General NMR 4493:(1): 9872. 3612:20 December 3469:20 December 3154:: 116–143. 3089:: 116–143. 1122:decoupling. 1072:magic angle 716:parameters. 532:magic angle 52:anisotropic 5945:Categories 5533:Two-photon 5435:absorption 5317:Rotational 5247:2021-09-13 5229:2021-09-13 4293:: 101660. 4109:2021-09-13 3863:: 98–110. 3702:: 98–102. 3161:2007.09954 3096:2007.09954 2995:: 99–109. 2882:2021-09-13 2659:: 106598. 1931:2014-09-22 1912:References 1401:Decoupling 627:J-coupling 621:J-coupling 5611:Terahertz 5592:Radiowave 5490:Mössbauer 5217:SSNMRBLOG 5066:cite book 5058:796758664 5024:cite book 5016:910929524 4981:cite book 4973:910929523 4912:206902463 4834:0897-4756 4697:0001-4842 4648:1996-1944 4618:Materials 4515:2045-2322 4452:0952-3480 4356:0027-8424 4315:215409770 4250:0022-0957 4193:1545-9993 4067:0079-6565 4020:1435-1536 3981:2673-4915 3924:0008-6568 3832:cite book 3661:0036-8075 3565:0066-426X 3510:1936-122X 3392:0002-7863 3343:199000068 3327:1948-7185 3272:0002-7863 3225:0001-4842 3186:189814925 3129:189814925 3113:0926-2040 2787:1543-8384 2730:0001-4842 2691:203139911 2474:0021-9606 2427:0031-9007 2294:0021-9606 2247:0031-899X 2141:Phys. Rev 1979:1090-7807 1893:batteries 1662:γ 1519:γ 1509:γ 1498:∝ 1495:ξ 1472:ξ 1447:studies. 1407:decoupled 1358:ω 1333:γ 1304:ω 1297:± 1267:γ 1226:γ 1020:μ 995:ℏ 928:γ 918:γ 890:π 877:μ 867:ℏ 795:η 766:Δ 733:δ 695:Δ 674:η 583:− 502:∘ 494:≃ 484:⁡ 460:⁡ 445:θ 414:− 411:θ 408:⁡ 392:∝ 348:μ 323:ℏ 275:γ 265:γ 237:π 224:μ 214:ℏ 5777:Category 5506:Electron 5473:Emission 5423:emission 5380:Vibronic 5165:34368784 5108:12207374 4904:19787343 4869:31785818 4795:26974032 4760:47012638 4752:29889328 4705:24041242 4533:25892587 4468:19939314 4460:15229932 4413:22298470 4374:22331896 4307:32251983 4268:26355148 4211:33177698 4154:25919197 4028:95774717 3932:23712030 3885:25797009 3824:56697027 3774:: 1–46. 3677:26146114 3669:24833391 3583:21219138 3518:19245337 3400:24410528 3335:31361489 3288:26098846 3233:23517009 3178:31189121 3121:31189121 3064:29157490 3027:29223566 2970:20977205 2935:18462963 2840:22152360 2805:31891271 2748:28353338 2683:31586820 2341:10617439 2119:53178681 2084:53178681 1987:17638585 1897:polymers 1891:(MOFS), 1849:biopsies 1743:gyrotron 1739:klystron 1674:are the 1345:are the 963:are the 311:are the 97:coupling 5843:Isotope 5836:isotope 5789:Commons 5616:ESR/EPR 5564:Nucleon 5392:(REMPI) 5156:8341432 4732:Bibcode 4657:5449066 4626:Bibcode 4524:4402646 4495:Bibcode 4365:3323964 4259:6280985 4202:7718435 4145:4413014 3940:6854002 3865:Bibcode 3789:4836562 3641:Bibcode 3633:Science 3608:: 51–78 3574:3191906 3545:Bibcode 3280:1227378 3018:6387629 2997:Bibcode 2905:Bibcode 2796:7307729 2739:5828698 2661:Bibcode 2622:Bibcode 2579:Bibcode 2540:Bibcode 2501:Bibcode 2454:Bibcode 2407:Bibcode 2368:Bibcode 2321:Bibcode 2274:Bibcode 2227:Bibcode 2188:Bibcode 2149:Bibcode 2049:8925268 1959:Bibcode 1837:viruses 1785:amyloid 1095:dipolar 1038:is the 1007:is the 366:is the 335:is the 89:nucleus 87:at the 5630:Others 5418:Atomic 5179:  5163:  5153:  5106:  5056:  5046:  5014:  5004:  4971:  4961:  4910:  4902:  4867:  4857:  4832:  4793:  4758:  4750:  4703:  4695:  4654:  4646:  4531:  4521:  4513:  4466:  4458:  4450:  4411:  4372:  4362:  4354:  4313:  4305:  4266:  4256:  4248:  4209:  4199:  4191:  4152:  4142:  4100:  4065:  4026:  4018:  3979:  3938:  3930:  3922:  3883:  3822:  3812:  3786:  3696:Nature 3675:  3667:  3659:  3581:  3571:  3563:  3516:  3508:  3398:  3390:  3341:  3333:  3325:  3286:  3278:  3270:  3231:  3223:  3184:  3176:  3127:  3119:  3111:  3062:  3025:  3015:  2968:  2933:  2873:  2838:  2803:  2793:  2785:  2746:  2736:  2728:  2689:  2681:  2472:  2425:  2339:  2292:  2245:  2117:  2107:  2082:  2072:  2047:  1985:  1977:  1841:plants 1654:where 1325:where 1011:, and 949:where 545:Zeeman 481:arctan 457:arccos 339:, and 297:where 5571:Alpha 5540:Auger 5518:X-ray 5485:Gamma 5463:X-ray 5396:Raman 5307:Raman 5302:FT-IR 4908:S2CID 4756:S2CID 4464:S2CID 4311:S2CID 4024:S2CID 3936:S2CID 3673:S2CID 3339:S2CID 3182:S2CID 3156:arXiv 3125:S2CID 3091:arXiv 2687:S2CID 2137:(PDF) 1845:cells 1821:teeth 1741:or a 1087:= 1/3 1066:rate. 165:and I 157:and I 79:of a 40:ssNMR 5177:ISBN 5161:PMID 5122:link 5104:PMID 5072:link 5054:OCLC 5044:ISBN 5030:link 5012:OCLC 5002:ISBN 4987:link 4969:OCLC 4959:ISBN 4900:PMID 4865:OCLC 4855:ISBN 4830:ISSN 4791:PMID 4748:PMID 4701:PMID 4693:ISSN 4644:ISSN 4529:PMID 4511:ISSN 4456:PMID 4448:ISSN 4409:PMID 4370:PMID 4352:ISSN 4303:PMID 4264:PMID 4246:ISSN 4207:PMID 4189:ISSN 4150:PMID 4098:ISBN 4063:ISSN 4016:ISSN 3977:ISSN 3928:PMID 3920:ISSN 3881:PMID 3838:link 3820:OCLC 3810:ISBN 3665:PMID 3657:ISSN 3614:2023 3579:PMID 3561:ISSN 3514:PMID 3506:ISSN 3471:2023 3396:PMID 3388:ISSN 3331:PMID 3323:ISSN 3284:PMID 3276:OSTI 3268:ISSN 3229:PMID 3221:ISSN 3174:PMID 3117:PMID 3109:ISSN 3060:PMID 3023:PMID 2966:PMID 2931:PMID 2871:ISBN 2836:PMID 2801:PMID 2783:ISSN 2744:PMID 2726:ISSN 2679:PMID 2470:ISSN 2423:ISSN 2337:PMID 2290:ISSN 2243:ISSN 2115:OCLC 2105:ISBN 2080:OCLC 2070:ISBN 2045:PMID 1983:PMID 1975:ISSN 1833:wood 1829:silk 1825:hair 1817:bone 1791:and 1783:and 956:and 625:The 575:and 498:54.7 304:and 75:The 5834:by 5599:NMR 5151:PMC 5143:doi 5096:doi 4940:doi 4892:doi 4888:396 4822:doi 4783:doi 4740:doi 4685:doi 4652:PMC 4634:doi 4593:doi 4560:doi 4556:135 4519:PMC 4503:doi 4440:doi 4401:doi 4360:PMC 4342:doi 4338:109 4295:doi 4291:107 4254:PMC 4238:doi 4197:PMC 4181:doi 4140:PMC 4132:doi 4090:doi 4055:doi 4008:doi 4004:262 3967:doi 3912:doi 3873:doi 3861:253 3784:PMC 3776:doi 3743:hdl 3735:doi 3731:133 3704:doi 3700:420 3649:doi 3637:344 3606:109 3569:PMC 3553:doi 3498:doi 3460:doi 3427:doi 3378:hdl 3370:doi 3366:136 3315:doi 3260:doi 3256:137 3213:doi 3166:doi 3152:101 3101:doi 3087:101 3050:doi 3013:PMC 3005:doi 2993:286 2958:doi 2954:132 2921:hdl 2913:doi 2901:193 2863:doi 2828:doi 2791:PMC 2775:doi 2734:PMC 2718:doi 2669:doi 2657:309 2630:doi 2618:319 2587:doi 2575:140 2548:doi 2509:doi 2462:doi 2415:doi 2376:doi 2364:426 2329:doi 2317:142 2282:doi 2270:103 2235:doi 2223:175 2196:doi 2157:doi 2145:128 2037:doi 2010:doi 2006:117 1967:doi 1955:188 1080:cos 850:.: 399:cos 5947:: 5930:Pb 5925:Hg 5920:Pt 5915:Se 5910:Co 5905:Fe 5890:Si 5860:He 5604:2D 5523:UV 5240:. 5189:, 5159:. 5149:. 5141:. 5137:. 5133:. 5118:}} 5114:{{ 5102:. 5092:41 5090:. 5068:}} 5064:{{ 5052:. 5026:}} 5022:{{ 5010:. 4983:}} 4979:{{ 4967:. 4906:. 4898:. 4886:. 4863:. 4828:. 4818:23 4816:. 4812:. 4789:. 4777:. 4754:. 4746:. 4738:. 4728:30 4726:. 4722:. 4699:. 4691:. 4681:46 4679:. 4675:. 4650:. 4642:. 4632:. 4620:. 4616:. 4587:. 4583:. 4554:. 4550:. 4527:. 4517:. 4509:. 4501:. 4489:. 4485:. 4462:. 4454:. 4446:. 4436:17 4434:. 4430:. 4407:. 4397:51 4395:. 4391:. 4368:. 4358:. 4350:. 4336:. 4332:. 4309:. 4301:. 4289:. 4285:. 4262:. 4252:. 4244:. 4234:67 4232:. 4228:. 4205:. 4195:. 4187:. 4177:27 4175:. 4171:. 4148:. 4138:. 4126:. 4096:, 4084:, 4061:. 4051:39 4049:. 4045:. 4022:. 4014:. 4002:. 3998:. 3975:. 3965:. 3961:. 3957:. 3934:. 3926:. 3918:. 3908:47 3906:. 3902:. 3879:. 3871:. 3859:. 3855:. 3834:}} 3830:{{ 3818:. 3782:. 3772:96 3770:. 3766:. 3741:. 3729:. 3725:. 3698:. 3694:. 3671:. 3663:. 3655:. 3647:. 3635:. 3631:. 3604:. 3600:. 3577:. 3567:. 3559:. 3551:. 3541:62 3539:. 3535:. 3512:. 3504:. 3494:38 3492:. 3488:. 3456:29 3454:. 3450:. 3423:41 3421:. 3417:. 3394:. 3386:. 3376:. 3364:. 3360:. 3337:. 3329:. 3321:. 3311:10 3309:. 3305:. 3282:. 3274:. 3266:. 3254:. 3250:. 3227:. 3219:. 3209:46 3207:. 3203:. 3180:. 3172:. 3164:. 3150:. 3146:. 3123:. 3115:. 3107:. 3099:. 3085:. 3081:. 3058:. 3044:. 3021:. 3011:. 3003:. 2991:. 2987:. 2964:. 2952:. 2929:. 2919:. 2911:. 2899:. 2869:, 2834:. 2824:81 2822:. 2799:. 2789:. 2781:. 2771:17 2769:. 2765:. 2742:. 2732:. 2724:. 2714:50 2712:. 2708:. 2685:. 2677:. 2667:. 2655:. 2651:. 2628:. 2616:. 2612:. 2585:. 2573:. 2569:. 2546:. 2536:44 2534:. 2530:. 2507:. 2497:44 2495:. 2491:. 2468:. 2460:. 2450:58 2448:. 2444:. 2421:. 2413:. 2403:20 2401:. 2397:. 2374:. 2362:. 2358:. 2335:. 2327:. 2315:. 2311:. 2288:. 2280:. 2268:. 2264:. 2241:. 2233:. 2221:. 2217:. 2194:. 2184:28 2182:. 2178:. 2155:. 2143:. 2139:. 2113:. 2078:. 2043:. 2031:. 2004:. 1981:. 1973:. 1965:. 1953:. 1949:. 1899:. 1847:, 1843:, 1839:, 1831:, 1827:, 1823:, 1819:, 1803:, 1678:, 1349:, 1140:, 1101:, 1097:, 1042:. 807:. 649:. 197:, 135:. 42:) 5900:V 5895:P 5885:F 5880:O 5875:N 5870:C 5865:B 5855:H 5850:H 5824:e 5817:t 5810:v 5278:e 5271:t 5264:v 5250:. 5232:. 5167:. 5145:: 5139:1 5124:) 5110:. 5098:: 5074:) 5060:. 5032:) 5018:. 4989:) 4975:. 4946:. 4942:: 4914:. 4894:: 4871:. 4836:. 4824:: 4797:. 4785:: 4762:. 4742:: 4734:: 4707:. 4687:: 4660:. 4636:: 4628:: 4622:5 4601:. 4595:: 4589:1 4568:. 4562:: 4535:. 4505:: 4497:: 4491:5 4470:. 4442:: 4415:. 4403:: 4376:. 4344:: 4317:. 4297:: 4270:. 4240:: 4213:. 4183:: 4156:. 4134:: 4092:: 4069:. 4057:: 4030:. 4010:: 3983:. 3969:: 3963:4 3942:. 3914:: 3887:. 3875:: 3867:: 3840:) 3826:. 3792:. 3778:: 3751:. 3745:: 3737:: 3710:. 3706:: 3679:. 3651:: 3643:: 3616:. 3585:. 3555:: 3547:: 3520:. 3500:: 3473:. 3462:: 3435:. 3429:: 3402:. 3380:: 3372:: 3345:. 3317:: 3290:. 3262:: 3235:. 3215:: 3188:. 3168:: 3158:: 3131:. 3103:: 3093:: 3066:. 3052:: 3029:. 3007:: 2999:: 2972:. 2960:: 2937:. 2923:: 2915:: 2907:: 2865:: 2842:. 2830:: 2807:. 2777:: 2750:. 2720:: 2693:. 2671:: 2663:: 2636:. 2632:: 2624:: 2593:. 2589:: 2581:: 2554:. 2550:: 2542:: 2515:. 2511:: 2503:: 2476:. 2464:: 2456:: 2429:. 2417:: 2409:: 2382:. 2378:: 2370:: 2343:. 2331:: 2323:: 2296:. 2284:: 2276:: 2249:. 2237:: 2229:: 2202:. 2198:: 2190:: 2163:. 2159:: 2151:: 2121:. 2086:. 2051:. 2039:: 2033:6 2016:. 2012:: 1989:. 1969:: 1961:: 1934:. 1706:Q 1686:W 1637:2 1633:/ 1629:1 1624:) 1617:X 1613:Q 1607:H 1603:Q 1597:( 1590:2 1586:/ 1582:1 1577:) 1570:H 1566:W 1560:X 1556:W 1550:( 1543:2 1539:/ 1535:3 1530:) 1523:X 1513:H 1503:( 1457:2 1384:n 1362:R 1308:R 1300:n 1294:) 1290:X 1286:( 1281:1 1277:B 1271:X 1263:= 1260:) 1256:H 1250:1 1246:( 1240:1 1236:B 1230:H 1200:1 1196:B 1182:C 1173:→ 1171:N 1160:H 1149:N 1138:C 1085:m 1082:θ 1076:m 1074:θ 1024:0 975:r 961:2 958:γ 954:1 951:γ 932:2 922:1 910:3 906:r 902:1 896:) 887:4 881:0 871:( 864:= 861:d 838:d 773:S 770:C 743:o 740:s 737:i 702:S 699:C 631:J 607:4 591:I 587:m 561:I 557:m 528:m 525:θ 521:m 518:θ 489:2 478:= 473:3 469:/ 465:1 454:= 449:m 434:D 429:. 417:1 403:2 395:3 389:D 376:B 372:θ 352:0 309:2 306:γ 302:1 299:γ 293:, 279:2 269:1 257:3 253:r 249:1 243:) 234:4 228:0 218:( 211:= 208:d 195:d 191:B 187:r 167:2 163:1 159:2 155:1 38:( 20:)

Index

Solid-state NMR spectroscopy

spectroscopy
nuclear magnetic resonance
anisotropic
magic angle spinning

resonance frequency
nuclear spin
magnetic field
nucleus
chemical shift
coupling
e.g. chemical shift anisotropy
Brownian motion
Chemical shift
chemical shielding
chemical shift
Magnetic dipole-dipole interaction

magnetic dipole moment
dipolar coupling
gyromagnetic ratio
gyromagnetic ratios
reduced Planck constant
vacuum permeability
magic angle
Zeeman
Legendre polynomial
DAS (Double Angle Spinning)

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.