Knowledge (XXG)

Spatial descriptive statistics

Source đź“ť

94:
captures the degree to which points in a point set are separated from each other. For most applications, spatial dispersion should be quantified in a way that is invariant to rotations and reflections. Several simple measures of spatial dispersion for a point set can be defined using the
274: 475: 122:
A homogeneous set of points in the plane is a set that is distributed such that approximately the same number of points occurs in any circular region of a given area. A set of points that lacks homogeneity may be
534: 356: 169: 83:) that the familiar average solves on the real line — that is, the centroid has the smallest possible average squared distance to all points in the set. 716:
Wilschut, L.I.; Laudisoit, A.; Hughes, N.K.; Addink, E.A.; de Jong, S.M.; Heesterbeek, J.A.P.; Reijniers, J.; Eagle, S.; Dubyanskiy, V.M.; Begon, M. (2015).
383: 693: 540:, which will approximately follow the horizontal zero-axis with constant dispersion if the data follow a homogeneous Poisson process. 59:
of forest density that has been digitized on a grid. An example of a point set would be the latitude/longitude coordinates of all
775: 114:
A measure of spatial dispersion that is not based on the covariance matrix is the average distance between nearest neighbors.
547:
function it can be determined whether points have a random, dispersed or clustered distribution pattern at a certain scale.
601:
Clark, Philip; Evans, Francis (1954). "Distance to nearest neighbor as a measure of spatial relationships in populations".
718:"Spatial distribution patterns of plague hosts: point pattern analysis of the burrows of great gerbils in Kazakhstan" 32: 55:, in which a set of coordinates (e.g. of points in the plane) is observed. An example of gridded data would be a 770: 63:
in a particular plot of land. More complicated forms of data include marked point sets and spatial time series.
576: 320:(i.e. 1 if its operand is true, 0 otherwise). In 2 dimensions, if the points are approximately homogeneous, 582: 678: 100: 91: 24: 495: 323: 159:
are closely related descriptive statistics for detecting deviations from spatial homogeneity. The
659: 618: 317: 20: 127:
at a certain spatial scale. A simple probability model for spatially homogeneous points is the
747: 689: 96: 737: 729: 649: 610: 76: 300:
points, t is the search radius, λ is the average density of points (generally estimated as
269:{\displaystyle {\widehat {K}}(t)=\lambda ^{-1}\sum _{i\neq j}{\frac {I(d_{ij}<t)}{n}},} 156: 128: 80: 56: 51:, in which a scalar quantity is measured for each point in a regular grid of points, and 742: 717: 470:{\displaystyle {\widehat {L}}(t)=\left({\frac {{\widehat {K}}(t)}{\pi }}\right)^{1/2}.} 764: 556: 566: 104: 108: 561: 28: 751: 72: 60: 111:
of the covariance matrix can be used as measures of spatial dispersion.
663: 622: 571: 733: 654: 637: 614: 163:
function (technically its sample-based estimate) is defined as
579:
for clustering of sub-populations within clustered populations
36: 684:. In El-Shaarawi, Abdel H.; Piegorsch, Walter W. (eds.). 638:"The second-order analysis of stationary point processes" 373:
function is generally used. The sample version of the
27:; these methods are used for a variety of purposes in 498: 386: 326: 312:
is the area of the region containing all points) and
172: 528: 469: 365:For data analysis, the variance stabilized Ripley 350: 268: 131:in the plane with constant intensity function. 71:The coordinate-wise mean of a point set is the 488:and its variance is approximately constant in 688:. John Wiley & Sons. pp. 1796–1803. 8: 741: 653: 506: 505: 497: 454: 450: 420: 419: 416: 388: 387: 385: 328: 327: 325: 239: 226: 214: 201: 174: 173: 171: 480:For approximately homogeneous data, the 99:of the coordinates of the points. The 593: 47:The simplest forms of spatial data are 288:is the Euclidean distance between the 7: 79:in the plane (or higher-dimensional 67:Measures of spatial central tendency 37:Geographic Information Systems (GIS) 529:{\displaystyle t-{\widehat {L}}(t)} 358:should be approximately equal to Ď€ 14: 351:{\displaystyle {\widehat {K}}(t)} 134: 492:. A common plot is a graph of 118:Measures of spatial homogeneity 686:Encyclopedia of Environmetrics 642:Journal of Applied Probability 523: 517: 437: 431: 405: 399: 345: 339: 254: 232: 191: 185: 87:Measures of spatial dispersion 17:Spatial descriptive statistics 1: 484:function has expected value 792: 33:quantitative data analyses 677:Dixon, Philip M. (2002). 296:points in a data set of 155:functions introduced by 75:, which solves the same 722:Journal of Biogeography 583:Spatial autocorrelation 377:function is defined as 19:is the intersection of 776:Descriptive statistics 530: 471: 352: 270: 25:descriptive statistics 679:"Ripley's K function" 636:Ripley, B.D. (1976). 531: 472: 353: 271: 43:Types of spatial data 496: 384: 369:function called the 324: 170: 577:Cuzick–Edwards test 125:spatially clustered 77:variational problem 526: 467: 348: 318:indicator function 266: 225: 107:, and the largest 31:, particularly in 21:spatial statistics 734:10.1111/jbi.12534 695:978-0-471-89997-6 514: 444: 428: 396: 336: 261: 210: 182: 97:covariance matrix 783: 771:Spatial analysis 756: 755: 745: 728:(7): 1281–1292. 713: 707: 706: 704: 702: 683: 674: 668: 667: 657: 633: 627: 626: 598: 535: 533: 532: 527: 516: 515: 507: 476: 474: 473: 468: 463: 462: 458: 449: 445: 440: 430: 429: 421: 417: 398: 397: 389: 357: 355: 354: 349: 338: 337: 329: 275: 273: 272: 267: 262: 257: 247: 246: 227: 224: 209: 208: 184: 183: 175: 791: 790: 786: 785: 784: 782: 781: 780: 761: 760: 759: 715: 714: 710: 700: 698: 696: 681: 676: 675: 671: 655:10.2307/3212829 635: 634: 630: 615:10.2307/1931034 600: 599: 595: 591: 553: 543:Using Ripley's 494: 493: 418: 412: 411: 382: 381: 322: 321: 287: 235: 228: 197: 168: 167: 157:Brian D. Ripley 145: 129:Poisson process 120: 89: 81:Euclidean space 69: 57:satellite image 45: 12: 11: 5: 789: 787: 779: 778: 773: 763: 762: 758: 757: 708: 694: 669: 648:(2): 255–266. 628: 609:(4): 445–453. 592: 590: 587: 586: 585: 580: 574: 569: 564: 559: 552: 549: 525: 522: 519: 513: 510: 504: 501: 478: 477: 466: 461: 457: 453: 448: 443: 439: 436: 433: 427: 424: 415: 410: 407: 404: 401: 395: 392: 347: 344: 341: 335: 332: 283: 277: 276: 265: 260: 256: 253: 250: 245: 242: 238: 234: 231: 223: 220: 217: 213: 207: 204: 200: 196: 193: 190: 187: 181: 178: 144: 133: 119: 116: 88: 85: 68: 65: 44: 41: 13: 10: 9: 6: 4: 3: 2: 788: 777: 774: 772: 769: 768: 766: 753: 749: 744: 739: 735: 731: 727: 723: 719: 712: 709: 697: 691: 687: 680: 673: 670: 665: 661: 656: 651: 647: 643: 639: 632: 629: 624: 620: 616: 612: 608: 604: 597: 594: 588: 584: 581: 578: 575: 573: 570: 568: 565: 563: 560: 558: 557:Geostatistics 555: 554: 550: 548: 546: 541: 539: 520: 511: 508: 502: 499: 491: 487: 483: 464: 459: 455: 451: 446: 441: 434: 425: 422: 413: 408: 402: 393: 390: 380: 379: 378: 376: 372: 368: 363: 361: 342: 333: 330: 319: 315: 311: 307: 303: 299: 295: 291: 286: 282: 263: 258: 251: 248: 243: 240: 236: 229: 221: 218: 215: 211: 205: 202: 198: 194: 188: 179: 176: 166: 165: 164: 162: 158: 154: 150: 142: 138: 132: 130: 126: 117: 115: 112: 110: 106: 102: 98: 93: 86: 84: 82: 78: 74: 66: 64: 62: 58: 54: 50: 42: 40: 38: 34: 30: 26: 22: 18: 725: 721: 711: 699:. Retrieved 685: 672: 645: 641: 631: 606: 602: 596: 544: 542: 537: 489: 485: 481: 479: 374: 370: 366: 364: 359: 313: 309: 305: 301: 297: 293: 289: 284: 280: 278: 160: 152: 148: 146: 140: 136: 124: 121: 113: 90: 70: 52: 49:gridded data 48: 46: 16: 15: 567:Correlogram 105:determinant 765:Categories 589:References 109:eigenvalue 92:Dispersion 53:point sets 35:involving 701:April 25, 562:Variogram 512:^ 503:− 442:π 426:^ 394:^ 334:^ 219:≠ 212:∑ 203:− 199:λ 180:^ 147:Ripley's 143:functions 135:Ripley's 61:elm trees 29:geography 752:26877580 551:See also 536:against 308:, where 73:centroid 743:4737218 664:3212829 623:1931034 603:Ecology 572:Kriging 316:is the 750:  740:  692:  662:  621:  279:where 103:, the 682:(PDF) 660:JSTOR 619:JSTOR 101:trace 748:PMID 703:2014 690:ISBN 292:and 249:< 151:and 139:and 23:and 738:PMC 730:doi 650:doi 611:doi 767:: 746:. 736:. 726:42 724:. 720:. 658:. 646:13 644:. 640:. 617:. 607:35 605:. 362:. 285:ij 39:. 754:. 732:: 705:. 666:. 652:: 625:. 613:: 545:K 538:t 524:) 521:t 518:( 509:L 500:t 490:t 486:t 482:L 465:. 460:2 456:/ 452:1 447:) 438:) 435:t 432:( 423:K 414:( 409:= 406:) 403:t 400:( 391:L 375:L 371:L 367:K 360:t 346:) 343:t 340:( 331:K 314:I 310:A 306:A 304:/ 302:n 298:n 294:j 290:i 281:d 264:, 259:n 255:) 252:t 244:j 241:i 237:d 233:( 230:I 222:j 216:i 206:1 195:= 192:) 189:t 186:( 177:K 161:K 153:L 149:K 141:L 137:K

Index

spatial statistics
descriptive statistics
geography
quantitative data analyses
Geographic Information Systems (GIS)
satellite image
elm trees
centroid
variational problem
Euclidean space
Dispersion
covariance matrix
trace
determinant
eigenvalue
Poisson process
Brian D. Ripley
indicator function
Geostatistics
Variogram
Correlogram
Kriging
Cuzick–Edwards test
Spatial autocorrelation
doi
10.2307/1931034
JSTOR
1931034
"The second-order analysis of stationary point processes"
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑