Knowledge

Sperner property of a partially ordered set

Source 📝

249: 39:
within it is larger than the largest rank level (one of the sets of elements of the same rank) in the poset. Since every rank level is itself an antichain, the Sperner property is equivalently the property that some rank level is a maximum antichain. The Sperner property and Sperner posets are named
52:
of a finite set (partially ordered by set inclusion) has this property. The lattice of partitions of a finite set typically lacks the Sperner property.
290: 201: 177: 314: 283: 309: 24: 276: 45: 226: 153: 125: 76: 210: 137: 222: 193: 149: 218: 145: 41: 178:
Handbook of discrete and combinatorial mathematics, by Kenneth H. Rosen, John G. Michaels
260: 303: 256: 230: 189: 248: 157: 21: 17: 36: 49: 214: 141: 90:
is a graded poset in which all maximum antichains are rank levels.
75:
largest rank levels, or, equivalently, the poset has a maximum
264: 284: 194:"Maximum antichains in the partition lattice" 8: 71:antichains is larger than the union of the 291: 277: 120: 118: 67:is a graded poset in which no union of 173: 171: 169: 167: 114: 7: 245: 243: 128:(1984), "Quotients of Peck posets", 14: 247: 202:The Mathematical Intelligencer 105:up to the largest rank value. 1: 263:. You can help Knowledge by 97:is a graded poset which is 18:order-theoretic mathematics 331: 242: 31:(and hence is called a 259:-related article is a 95:strongly Sperner poset 50:family of all subsets 25:partially ordered set 88:strict Sperner poset 27:is said to have the 315:Combinatorics stubs 215:10.1007/BF03023067 142:10.1007/BF00396271 101:for all values of 272: 271: 48:stating that the 46:Sperner's theorem 322: 293: 286: 279: 251: 244: 234: 233: 198: 186: 180: 175: 162: 160: 126:Stanley, Richard 122: 29:Sperner property 330: 329: 325: 324: 323: 321: 320: 319: 300: 299: 298: 297: 240: 238: 237: 196: 188: 187: 183: 176: 165: 124: 123: 116: 111: 58: 42:Emanuel Sperner 12: 11: 5: 328: 326: 318: 317: 312: 302: 301: 296: 295: 288: 281: 273: 270: 269: 252: 236: 235: 181: 163: 113: 112: 110: 107: 83:rank levels. 79:consisting of 65:-Sperner poset 57: 54: 13: 10: 9: 6: 4: 3: 2: 327: 316: 313: 311: 308: 307: 305: 294: 289: 287: 282: 280: 275: 274: 268: 266: 262: 258: 257:combinatorics 253: 250: 246: 241: 232: 228: 224: 220: 216: 212: 208: 204: 203: 195: 192:(June 1978), 191: 190:Graham, R. L. 185: 182: 179: 174: 172: 170: 168: 164: 159: 155: 151: 147: 143: 139: 135: 131: 127: 121: 119: 115: 108: 106: 104: 100: 96: 91: 89: 84: 82: 78: 74: 70: 66: 64: 55: 53: 51: 47: 44:, who proved 43: 38: 34: 33:Sperner poset 30: 26: 23: 19: 310:Order theory 265:expanding it 254: 239: 209:(2): 84–86, 206: 200: 184: 136:(1): 29–34, 133: 129: 102: 98: 94: 92: 87: 85: 80: 72: 68: 62: 61: 59: 32: 28: 15: 304:Categories 109:References 56:Variations 231:120190991 99:k-Sperner 37:antichain 35:), if no 158:14857863 77:k-family 223:0505555 150:0745587 229:  221:  156:  148:  40:after 22:graded 255:This 227:S2CID 197:(PDF) 154:S2CID 130:Order 261:stub 20:, a 211:doi 138:doi 16:In 306:: 225:, 219:MR 217:, 205:, 199:, 166:^ 152:, 146:MR 144:, 132:, 117:^ 93:A 86:A 60:A 292:e 285:t 278:v 267:. 213:: 207:1 161:. 140:: 134:1 103:k 81:k 73:k 69:k 63:k

Index

order-theoretic mathematics
graded
partially ordered set
antichain
Emanuel Sperner
Sperner's theorem
family of all subsets
k-family


Stanley, Richard
doi
10.1007/BF00396271
MR
0745587
S2CID
14857863




Handbook of discrete and combinatorial mathematics, by Kenneth H. Rosen, John G. Michaels
Graham, R. L.
"Maximum antichains in the partition lattice"
The Mathematical Intelligencer
doi
10.1007/BF03023067
MR
0505555
S2CID

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.