Knowledge (XXG)

Sphere packing in a cylinder

Source 📝

101: 176: 824: 1186: 939: 595: 386:, adopted from botany. It is used to describe arrangements of leaves of a plant, pine cones, or pineapples, but also planar patterns of florets in a sunflower head. While the arrangement in the former are cylindrical, the spirals in the latter are arranged on a disk. For columnar structures phyllotaxis in the context of cylindrical structures is adopted. 1071:
They calculated the packing fraction for all these structures as a function of the diameter ratio. At the peaks of this curve lie the uniform structures. In-between these discrete diameter ratios are the line slips at a lower packing density. Their packing fraction is significantly smaller than that
187:
structures confined inside a glass tube. They can be realised experimentally with equal-sized soap bubbles inside a glass tube, produced by blowing air of constant gas flow through a needle dipped in a surfactant solution. By putting the resulting foam column under forced drainage (feeding it with
842:
All spheres in a uniform structure have the same number of contacts, but the number of contacts for spheres in a line slip may differ from sphere to sphere. For the example line slip in the image on the right side, some spheres count five and others six contacts. Thus a line slip structure is
76:
The book "Columnar Structures of Spheres: Fundamentals and Applications" serves as a notable contributions to this field of study. Authored by Winkelmann and Chan, the book reviews theoretical foundations and practical applications of densely packed spheres within cylindrical confinements.
894:
By shearing the row of spheres below the loss of contact against a row above the loss of contact, one can regenerate two uniform structures related to this line slip. Thus, each line slip is related to two adjacent uniform structures, one at a higher and one at a lower diameter ratio
531:
describes a family of spirals in the 3-dimensional packing. They count the number of spirals in each direction until the spiral repeats. This notation, however, only applies to triangular lattices and is therefore restricted to the ordered structures without internal spheres.
159:
form a columnar structure in autumn. Its berries are similar to that of the corpse flower, since the titan arum is its larger relative. However, the cuckoo-pint is much smaller in height (height ≈ 20 cm). The berry arrangement varies with the stem to berry size.
1120:
also discovered that such structures can be related to disk packings on a surface of a cylinder. The contact network of both packings are identical. For both packing types, it was found that different uniform structures are connected with each other by line slips.
268:
built rods of the size of several microns. These microrods are created by densely packing silica colloidal particles inside cylindrical pores. By solidifying the assembled structures the microrods were imaged and examined using scanning electron microscopy (SEM).
838:
The differences between uniform and line-slip structures are marginal and difficult to spot from images of the sphere packings. However, by comparing their rolled-out contact networks, one can spot that certain lines (which represent contacts) are missing.
606:
A uniform structure is identified by each sphere having the same number of contacting neighbours. This gives each sphere an identical neighbourhood. In the example image on the side each sphere has six neighbouring contacts.
195:
Due to this simple experimental set-up, many columnar structures have been discovered and investigated in the context of foams with experiments as well as simulation. Many simulations have been carried out using the
233:
in the centre of the tube. For many more arrangements of this type, it was observed that the outside bubble layer is ordered, with each internal layer resembling a different, simpler columnar structure by using
1283: 207:
In the zigzag structure the bubbles are stacked on top of each other in a continuous w-shape. For this particular structure a moving interface with increasing liquid fraction was reported by Hutzler
261:
examined the morphologies of virus capsid proteins self-assembled around metal nanorods. Drug particles were coated as densely as possible on a spherocylinder to provide the best medical treatment.
225:
Further discovered structures include complex structures with internal spheres/foam cells. Some dry foam structures with interior cells were found to consist of a chain of pentagonal
364: 85:
Columnar structures appear in various research fields on a broad range of length scales from metres down to the nanoscale. On the largest scale, such structures can be found in
755: 1079:
The rich variety of such ordered structures can also be obtained by sequential depositioning the spheres into the cylinder. Chan reproduced all dense sphere packings up to
437: 1111: 689: 469: 1726:
Norman, James; Sorrell, Emma L.; Hu, Yi; Siripurapu, Vaishnavi; Garcia, Jamie; Bagwell, Jennifer; Charbonneau, Patrick; Lubkin, Sharon R.; Bagnat, Michel (2018-11-05).
1475: 1160: 813: 727: 1026: 2044:
Troche, Karla S.; Coluci, Vitor R.; Braga, Scheila F.; Chinellato, David D.; Sato, Fernando; Legoas, Sergio B.; Rurali, Riccardo; Galvão, Douglas S. (2005-02-01).
1343: 889: 648: 584: 1370: 250:. Their physical or chemical properties can be altered by trapping identical particles inside them. These are usually done by self-assembling fullerenes such as 3098: 980: 960: 509: 322: 921: 1323: 1303: 1066: 1046: 775: 628: 529: 489: 302: 846:
Such a structure is termed line slip because the losses of contacts occur along a line in the rolled-out contact network. It was first identified by Picket
691:, the regular hexagonal lattice is its characterising feature since this lattice type has the maximum number of contacts. For different uniform structures 20: 3044: 2099:
Sanwaria, Sunita; Horechyy, Andriy; Wolf, Daniel; Chu, Che-Yi; Chen, Hsin-Lung; Formanek, Petr; Stamm, Manfred; Srivastava, Rajiv; Nandan, Bhanu (2014).
1441: 1929:"Corrected Article: Simulation and observation of line-slip structures in columnar structures of soft spheres [Phys. Rev. E 96, 012610 (2017)]" 1379:
Depending on number of spheres and rotational speed, a variety of ordered structures that are comparable to the dense sphere packings were discovered.
3094: 42:
of specified diameter and length. For cylinders with diameters on the same order of magnitude as the spheres, such packings result in what are called
1222: 610:
The number of contacts is best visualised in the rolled-out contact network. It is created by rolling out the contact network into a plane of height
1177:. Such packings include achiral structures with specific spheroid orientations and chiral helical structures with rotating spheroid orientations. 257:
Such structures also assemble when particles are coated on the surface of a spherocylinder as in the context of pharmaceutical research. Lazáro
1856: 1459: 280:
are constructing such a resonator by self-assembling nanospheres on the surface of the cylinder. The nanospheres are suspended in an
1650: 2209:
Chopra, Nasreen G.; Luyken, R. J.; Cherrey, K.; Crespi, Vincent H.; Cohen, Marvin L.; Louie, Steven G.; Zettl, A. (1995-08-18).
891:, since each number represents one of the lattice vectors in the hexagonal lattice. This is usually indicated by a bold number. 3231: 602:
structure and its corresponding rolled-out contact network. The identical vicinity of each sphere defines a uniform structure.
167:. It assembles its seed capsules around a branch of the plant. The structure depends on the seed capsule size to branch size. 3163: 3037: 1404: 2146:
Yamazaki, T; Kuramochi, K; Takagi, D; Homma, Y; Nishimura, F; Hori, N; Watanabe, K; Suzuki, S; Kobayashi, Y (2008-01-30).
1189:
Columnar structures are assembled by using rapid rotations around a central axis to drive the spheres towards this axis.
124: 276:(i.e. materials with a negative refractive index) which find applications in super lenses or optical cloaking. Tanjeem 230: 3262: 3148: 3102: 3090: 89:
where seeds of a plant assemble around the stem. On a smaller scale bubbles of equal size crystallise to columnar
3252: 3138: 3030: 835:
For each uniform structure, there also exists a related but different structure, called a line-slip arrangement.
2101:"Helical Packing of Nanoparticles Confined in Cylindrical Domains of a Self-Assembled Block Copolymer Structure" 930:
were the first to experimentally realise such a structure using soap bubbles in a system of deformable spheres.
654:. Each dot in this pattern represents a sphere of the packing and each line a contact between adjacent spheres. 3267: 3153: 831:
structure and its corresponding rolled-out contact network. A line slip is identified by the loss of contacts.
1166:
and discovered 17 new dense structures with internal spheres that are not in contact with the cylinder wall.
327: 215: 97:
such structures can be found in man-made objects which are on length scales from a micron to the nanoscale.
986:
Columnar structures arise naturally in the context of dense hard sphere packings inside a cylinder. Mughal
3112: 281: 150:. This flower can be up to 3m in height and is natively solely found in western Sumatra and western Java. 147: 2888:"Non-Equilibrium Self-Assembly of Monocomponent and Multicomponent Tubular Structures in Rotating Fluids" 3143: 273: 70: 1786:. A Collection of Papers Presented at the 10th Eufoam Conference, Thessaloniki, Greece,7-10 July 2014. 3010: 1204:
When the lathe is static, the beads float on top of the liquid. With increasing rotational speed, the
1068:. This includes some structures with internal spheres that are not in contact with the cylinder wall. 650:
of each sphere. For a uniform structure such as the one in the example image, this leads to a regular
100: 2964: 2850: 2787: 2722: 2657: 2593: 2456: 2285: 2222: 2159: 2057: 1999: 1950: 1890: 1779: 1630: 1575: 1502: 1169:
A similar variety of dense crystalline structures have also been discovered for columnar packings of
1073: 251: 2765: 2147: 1836: 732: 3205: 3067: 2764:
Fu, Lin; Steinhardt, William; Zhao, Hao; Socolar, Joshua E. S.; Charbonneau, Patrick (2016-02-23).
1373: 991: 2499: 2385: 2988: 2954: 2923: 2887: 2819: 2777: 2746: 2712: 2681: 2647: 2480: 2446: 2254: 2191: 2100: 2023: 1940: 1817: 1708: 1565: 1534: 1469: 1174: 1163: 392: 128: 111: 660: 540:
Ordered columnar structures without internal spheres are categorised into two separate classes:
131:" (1917). But they are also of interest in other biological areas, including bacteria, viruses, 1680: 1082: 853:
The direction, in which the loss of contacts occur can be denoted in the phyllotactic notation
442: 211:
in 1997. This included an unexpected 180° twist interface, whose explanation is still lacking.
188:
surfactant solution from the top), the foam can be adjusted to either a dry (bubbles shaped as
175: 3210: 3107: 2980: 2915: 2907: 2868: 2811: 2803: 2738: 2673: 2609: 2472: 2415: 2366: 2358: 2319: 2301: 2246: 2238: 2183: 2175: 2128: 2120: 2081: 2073: 2015: 1968: 1906: 1852: 1809: 1757: 1700: 1656: 1646: 1611: 1593: 1526: 1518: 1455: 1217: 1205: 1113:
using an algorithm, in which the spheres are placed sequentially dropped inside the cylinder.
651: 58: 2433:
Cai, Wenshan; Chettiar, Uday K.; Kildishev, Alexander V.; Shalaev, Vladimir M. (April 2007).
1197:. Here, polymeric beads are placed together with a fluid of higher density inside a rotating 780: 694: 123:
Columnar structures were first studied in botany due to their diverse appearances in plants.
3257: 3053: 2972: 2899: 2858: 2795: 2730: 2665: 2601: 2562: 2464: 2405: 2397: 2350: 2309: 2293: 2230: 2167: 2112: 2065: 2007: 1958: 1898: 1844: 1799: 1791: 1747: 1739: 1692: 1638: 1601: 1583: 1510: 1447: 1409: 1131: 2210: 1490: 997: 2337:
Wu, Gaoxiang; Cho, Hyesung; Wood, Derek A.; Dinsmore, Anthony D.; Yang, Shu (2017-04-12).
1387: 367: 197: 146:
One of the largest flowers where the berries arrange in a regular cylindrical form is the
31: 2171: 1328: 856: 633: 551: 2968: 2854: 2791: 2726: 2661: 2597: 2460: 2289: 2226: 2163: 2061: 2046:"Prediction of Ordered Phases of Encapsulated C60, C70, and C78 Inside Carbon Nanotubes" 2003: 1954: 1894: 1579: 1506: 1216:
the central axis. Hence, the beads are essentially confined by a potential given by the
3189: 3168: 3130: 3117: 3082: 2581: 2314: 2273: 1752: 1727: 1606: 1553: 1399: 1348: 965: 945: 494: 307: 155: 106: 94: 62: 2942: 2700: 2635: 1778:
Meagher, A. J.; García-Moreno, F.; Banhart, J.; Mughal, A.; Hutzler, S. (2015-05-20).
1642: 1633:, in Lauffer, Max A.; Bang, Frederik B.; Maramorosch, Karl; Smith, Kenneth M. (eds.), 1386:
It is based on analytic energy calculations using a generic sphere model and predicts
389:
The phyllotactic notation describes such structures by a triplet of positive integers
3246: 3226: 3173: 2525: 2027: 898: 2992: 2927: 2823: 2750: 2685: 2484: 2258: 2195: 1821: 1538: 2941:
Winkelmann, J.; Mughal, A.; Williams, D. B.; Weaire, D.; Hutzler, S. (2019-02-25).
2863: 2838: 2561:(Thesis thesis). Trinity College Dublin. School of Physics. Discipline of Physics. 1795: 1308: 1288: 1051: 1031: 760: 613: 514: 474: 287: 226: 201: 132: 2434: 2234: 1514: 3072: 2605: 1185: 823: 383: 164: 54: 2976: 2734: 2669: 1963: 1928: 1927:
Winkelmann, J.; Haffner, B.; Weaire, D.; Mughal, A.; Hutzler, S. (2017-07-31).
2011: 1902: 1848: 757:
plane. Each uniform structure is thus distinguished by its periodicity vector
594: 189: 140: 2911: 2807: 2476: 2419: 2401: 2362: 2339:"Confined Assemblies of Colloidal Particles with Soft Repulsive Interactions" 2305: 2242: 2179: 2124: 2077: 2019: 1910: 1813: 1704: 1597: 1522: 3015: 2468: 1987: 1878: 1780:"An experimental study of columnar crystals using monodisperse microbubbles" 1588: 247: 163:
Another plant that can be found in many gardens of residential areas is the
136: 2984: 2919: 2903: 2872: 2815: 2742: 2677: 2613: 2556: 2370: 2323: 2250: 2187: 2132: 2116: 2085: 1972: 1761: 1743: 1637:, Advances in Virus Research, vol. 20, Academic Press, pp. 1–32, 1615: 1193:
A further dynamic method to assemble such structures was introduced by Lee
183:
A further occurrence of ordered columnar arrangement on the macroscale are
19: 1530: 1451: 1076:, bcc, or hcp due to the free volume left by the cylindrical confinement. 938: 2354: 1660: 1372:
proportionality, the confining potential resembles that of a cylindrical
1170: 246:
Columnar structures have also been studied intensively in the context of
39: 2701:"Densest columnar structures of hard spheres from sequential deposition" 2451: 2799: 2410: 2338: 2297: 2272:
Lázaro, Guillermo R.; Dragnea, Bogdan; Hagan, Michael F. (2018-07-18).
1712: 548:
structures. For each structure that can be identified with the triplet
272:
Columnar arrangements are also investigated as a possible candidate of
235: 50: 2839:"Shape-Anisotropy-Induced Ordered Packings in Cylindrical Confinement" 2566: 2069: 1804: 1732:
Philosophical Transactions of the Royal Society B: Biological Sciences
1382:
A comprehensive theory to this experiment was developed by Winkelmann
254:, C70, or C78 into carbon nanotubes, but also boron nitride nanotubes 127:
analysed such arrangement of plant parts around the stem in his book "
61:, and so forth due to the analogous assembly of small particles (like 86: 35: 2148:"Ordered fullerene nanocylinders in large-diameter carbon nanotubes" 2045: 1696: 3022: 2959: 2782: 1945: 1728:"Tissue self-organization underlies morphogenesis of the notochord" 366:). The nanospheres then stick to the surface of the cylinders by a 2717: 2652: 1570: 1198: 174: 66: 18: 2274:"Self-assembly of convex particles on spherocylindrical surfaces" 1986:
Saadatfar, M.; Barry, J.; Weaire, D.; Hutzler, S. (2008-09-01).
1784:
Colloids and Surfaces A: Physicochemical and Engineering Aspects
729:
the rolled-out contact pattern only varies by a rotation in the
184: 90: 3026: 2886:
Lee, Taehoon; Gizynski, Konrad; Grzybowski, Bartosz A. (2017).
2634:
Mughal, A.; Chan, H. K.; Weaire, D.; Hutzler, S. (2012-05-11).
1278:{\displaystyle E_{\text{rot}}={\frac {1}{2}}mR^{2}\omega ^{2},} 2580:
Pickett, Galen T.; Gross, Mark; Okuyama, Hiroko (2000-10-23).
586:, there exist a uniform structure and at least one line slip. 1443:
Columnar Structures of Spheres: Fundamentals and Applications
536:
Types of ordered columnar structures without internal spheres
23:
Illustration of a columnar structure assembled by golf balls.
179:
Spherical soap bubbles confined in a cylindrical glass tube.
1988:"Ordered cylindrical foam structures with internal bubbles" 2943:"Theory of rotational columnar structures of soft spheres" 2558:
Structures of columnar packings with soft and hard spheres
1879:"Moving boundaries in ordered cylindrical foam structures" 34:
with the objective of packing a given number of identical
1835:
Weaire, D.; Hutzler, S.; Verbist, G.; Peters, E. (2007),
1491:"Tubular Packing of Spheres in Biological Fine Structure" 49:
These problems are studied extensively in the context of
2837:
Jin, Weiwei; Chan, Ho-Kei; Zhong, Zheng (2020-06-16).
1351: 1331: 1311: 1291: 1134: 1085: 1054: 1034: 1000: 942:
Optimal packing fraction for hard spheres of diameter
901: 859: 763: 735: 636: 616: 554: 517: 477: 445: 330: 290: 2636:"Dense packings of spheres in cylinders: Simulations" 1554:"Dislocation-mediated growth of bacterial cell walls" 1225: 968: 948: 783: 697: 663: 657:
For all uniform structures above a diameter ratio of
497: 395: 310: 1877:
Hutzler, S.; Weaire, D.; Crawford, R. (1997-06-01).
3219: 3198: 3182: 3129: 3081: 3060: 304:, much larger than the diameter of the nanospheres 204:for the wet limit where the bubbles are spherical. 1364: 1337: 1317: 1297: 1277: 1154: 1105: 1060: 1040: 1020: 974: 954: 915: 883: 807: 769: 749: 721: 683: 642: 622: 578: 523: 503: 483: 463: 431: 358: 316: 296: 843:characterised by these gaps or loss of contacts. 1843:, John Wiley & Sons, Ltd, pp. 315–374, 1558:Proceedings of the National Academy of Sciences 777:, which is defined by the phyllotactic triplet 1181:Columnar structures created by rapid rotations 284:solution together with a cylinder of diameter 3038: 2386:"The Magical World of Photonic Metamaterials" 1128:extended this work to higher diameter ratios 153:On smaller length scales, the berries of the 93:structures when confined in a glass tube. In 8: 1474:: CS1 maint: multiple names: authors list ( 1440:Chan, Jens Winkelmann, Ho-Kei (2023-03-31). 3045: 3031: 3023: 374:Classification using phyllotactic notation 2958: 2862: 2781: 2716: 2651: 2582:"Spontaneous Chirality in Simple Systems" 2450: 2409: 2313: 1962: 1944: 1803: 1751: 1605: 1587: 1569: 1356: 1350: 1330: 1310: 1290: 1266: 1256: 1239: 1230: 1224: 1138: 1133: 1089: 1084: 1072:of an unconfined lattice packing such as 1053: 1033: 1004: 999: 967: 947: 905: 900: 858: 782: 762: 739: 734: 696: 667: 662: 635: 615: 553: 516: 496: 476: 444: 394: 348: 334: 329: 309: 289: 2343:Journal of the American Chemical Society 1325:the distance from the central axis, and 1184: 937: 822: 593: 214:The first experimental observation of a 192:) or wet (spherical bubbles) structure. 99: 2766:"Hard sphere packings within cylinders" 2105:Angewandte Chemie International Edition 1446:. New York: Jenny Stanford Publishing. 1421: 359:{\textstyle D/d\approx 3{\text{ to }}5} 3011:"Packing spheres into a Thin Cylinder" 1552:Amir, A.; Nelson, D. R. (2012-06-19). 1467: 2629: 2627: 2625: 2623: 2550: 2548: 2546: 2544: 2542: 2435:"Optical cloaking with metamaterials" 2039: 2037: 1922: 1920: 7: 1773: 1771: 1635:Advances in Virus Research Volume 20 1435: 1433: 1431: 1429: 1427: 1425: 200:to investigate dry structure or the 378:The most common way of classifying 1631:"The Structure of Tubular Viruses" 934:Dense sphere packings in cylinders 14: 1345:the rotational speed. Due to the 16:Three-dimensional packing problem 3009:Becker, Aaron T. and Huang, L. 750:{\textstyle z{\text{-}}\theta } 3174:Sphere-packing (Hamming) bound 2864:10.1103/PhysRevLett.124.248002 2172:10.1088/0957-4484/19/04/045702 1992:Philosophical Magazine Letters 1796:10.1016/j.colsurfa.2014.12.020 1489:Erickson, R. O. (1973-08-24). 1405:Close-packing of equal spheres 962:inside a cylinder of diameter 878: 860: 802: 784: 716: 698: 573: 555: 426: 396: 1: 2500:"Self-assembled metamaterial" 1643:10.1016/s0065-3527(08)60500-x 382:columnar structures uses the 218:was discovered by Winkelmann 2235:10.1126/science.269.5226.966 1841:Advances in Chemical Physics 1679:Bryan, Joseph (1974-12-01). 1515:10.1126/science.181.4101.705 994:up to the diameter ratio of 990:studied such packings using 850:, but not termed line slip. 28:Sphere packing in a cylinder 2699:Chan, Ho-Kei (2011-11-14). 2606:10.1103/PhysRevLett.85.3652 2384:Ozbay, Ekmel (2008-11-01). 1837:"A Review of Foam Drainage" 432:{\displaystyle (l=m+n,m,n)} 110:form a columnar structure ( 3284: 2977:10.1103/PhysRevE.99.020602 2735:10.1103/PhysRevE.84.050302 2670:10.1103/PhysRevE.85.051305 1964:10.1103/PhysRevE.97.059902 1629:Hull, Roger (1976-01-01), 1305:is the mass of the beads, 1106:{\textstyle D/d<2.7013} 684:{\displaystyle D/d>2.0} 464:{\textstyle l\geq m\geq n} 2555:Winkelmann, Jens (2020). 2390:Optics and Photonics News 2211:"Boron Nitride Nanotubes" 2012:10.1080/09500830802307658 1903:10.1080/13642819708205711 1849:10.1002/9780470141618.ch5 3099:isosceles right triangle 2402:10.1364/OPN.19.11.000022 1883:Philosophical Magazine B 222:in a system of bubbles. 2843:Physical Review Letters 2586:Physical Review Letters 2469:10.1038/nphoton.2007.28 1589:10.1073/pnas.1207105109 1390:structure transitions. 1175:Monte Carlo simulations 1155:{\textstyle D/d<4.0} 808:{\displaystyle (l,m,n)} 722:{\displaystyle (l,m,n)} 30:is a three-dimensional 3113:Circle packing theorem 2904:10.1002/adma.201704274 2117:10.1002/anie.201403565 1744:10.1098/rstb.2017.0320 1366: 1339: 1319: 1299: 1279: 1208:then pushes the fluid 1190: 1156: 1107: 1062: 1042: 1028:for cylinder diameter 1022: 1021:{\textstyle D/d=2.873} 983: 976: 956: 917: 885: 832: 809: 771: 751: 723: 685: 644: 624: 603: 580: 525: 505: 485: 465: 433: 360: 318: 298: 180: 165:Australian bottlebrush 115: 71:crystalline structures 24: 2498:Manoharan, Vinothan. 1452:10.1201/9780429092114 1367: 1340: 1320: 1300: 1280: 1188: 1157: 1108: 1063: 1043: 1023: 977: 957: 941: 918: 886: 826: 810: 772: 752: 724: 686: 645: 625: 597: 581: 526: 506: 486: 466: 434: 384:phyllotactic notation 361: 319: 299: 274:optical metamaterials 178: 103: 81:Appearance in science 22: 3095:equilateral triangle 2355:10.1021/jacs.6b12975 1349: 1338:{\textstyle \omega } 1329: 1309: 1289: 1223: 1132: 1083: 1052: 1032: 998: 966: 946: 899: 884:{\textstyle (l,m,n)} 857: 781: 761: 733: 695: 661: 643:{\textstyle \theta } 634: 630:and azimuthal angle 614: 579:{\textstyle (l,m,n)} 552: 515: 495: 475: 443: 393: 328: 308: 288: 3232:Slothouber–Graatsma 2969:2019PhRvE..99b0602W 2855:2020PhRvL.124x8002J 2792:2016SMat...12.2505F 2727:2011PhRvE..84e0302C 2662:2012PhRvE..85e1305M 2598:2000PhRvL..85.3652P 2526:"Tanjeem's website" 2461:2007NaPho...1..224C 2290:2018SMat...14.5728L 2227:1995Sci...269..966C 2164:2008Nanot..19d5702Y 2062:2005NanoL...5..349T 2004:2008PMagL..88..661S 1955:2017PhRvE..97e9902W 1895:1997PMagB..75..845H 1580:2012PNAS..109.9833A 1507:1973Sci...181..705E 1374:harmonic oscillator 1048:to sphere diameter 992:simulated annealing 819:Line-slip structure 216:line-slip structure 104:The berries of the 69:) into cylindrical 44:columnar structures 2892:Advanced Materials 2800:10.1039/C5SM02875B 2298:10.1039/C8SM00129D 1738:(1759): 20170320. 1365:{\textstyle R^{2}} 1362: 1335: 1315: 1295: 1275: 1191: 1164:linear programming 1152: 1103: 1058: 1038: 1018: 984: 972: 952: 913: 881: 833: 805: 767: 747: 719: 681: 640: 620: 604: 576: 521: 501: 481: 461: 429: 356: 314: 294: 181: 129:On Growth and Form 116: 25: 3263:Discrete geometry 3240: 3239: 3199:Other 3-D packing 3183:Other 2-D packing 3108:Apollonian gasket 2947:Physical Review E 2705:Physical Review E 2640:Physical Review E 2592:(17): 3652–3655. 2524:Tanjeem, Nabila. 2349:(14): 5095–5101. 2284:(28): 5728–5740. 2221:(5226): 966–967. 2111:(34): 9090–9093. 2070:10.1021/nl047930r 1998:(9–10): 661–668. 1933:Physical Review E 1858:978-0-470-14161-8 1564:(25): 9833–9838. 1501:(4101): 705–716. 1461:978-0-429-09211-4 1247: 1233: 1218:rotational energy 1206:centripetal force 975:{\displaystyle D} 955:{\displaystyle d} 742: 652:hexagonal lattice 590:Uniform structure 504:{\displaystyle m} 351: 317:{\displaystyle d} 202:hard sphere model 59:materials science 3275: 3253:Packing problems 3121: 3061:Abstract packing 3054:Packing problems 3047: 3040: 3033: 3024: 2997: 2996: 2962: 2938: 2932: 2931: 2883: 2877: 2876: 2866: 2834: 2828: 2827: 2785: 2776:(9): 2505–2514. 2761: 2755: 2754: 2720: 2696: 2690: 2689: 2655: 2631: 2618: 2617: 2577: 2571: 2570: 2552: 2537: 2536: 2534: 2532: 2521: 2515: 2514: 2512: 2510: 2495: 2489: 2488: 2454: 2439:Nature Photonics 2430: 2424: 2423: 2413: 2381: 2375: 2374: 2334: 2328: 2327: 2317: 2269: 2263: 2262: 2206: 2200: 2199: 2143: 2137: 2136: 2096: 2090: 2089: 2041: 2032: 2031: 1983: 1977: 1976: 1966: 1948: 1924: 1915: 1914: 1874: 1868: 1867: 1866: 1865: 1832: 1826: 1825: 1807: 1775: 1766: 1765: 1755: 1723: 1717: 1716: 1676: 1670: 1669: 1668: 1667: 1626: 1620: 1619: 1609: 1591: 1573: 1549: 1543: 1542: 1486: 1480: 1479: 1473: 1465: 1437: 1410:Packing problems 1371: 1369: 1368: 1363: 1361: 1360: 1344: 1342: 1341: 1336: 1324: 1322: 1321: 1316: 1304: 1302: 1301: 1296: 1284: 1282: 1281: 1276: 1271: 1270: 1261: 1260: 1248: 1240: 1235: 1234: 1231: 1161: 1159: 1158: 1153: 1142: 1112: 1110: 1109: 1104: 1093: 1067: 1065: 1064: 1059: 1047: 1045: 1044: 1039: 1027: 1025: 1024: 1019: 1008: 981: 979: 978: 973: 961: 959: 958: 953: 922: 920: 919: 916:{\textstyle D/d} 914: 909: 890: 888: 887: 882: 814: 812: 811: 806: 776: 774: 773: 768: 756: 754: 753: 748: 743: 740: 728: 726: 725: 720: 690: 688: 687: 682: 671: 649: 647: 646: 641: 629: 627: 626: 621: 585: 583: 582: 577: 530: 528: 527: 522: 510: 508: 507: 502: 490: 488: 487: 482: 470: 468: 467: 462: 438: 436: 435: 430: 365: 363: 362: 357: 352: 349: 338: 323: 321: 320: 315: 303: 301: 300: 295: 236:X-ray tomography 3283: 3282: 3278: 3277: 3276: 3274: 3273: 3272: 3268:Crystallography 3243: 3242: 3241: 3236: 3215: 3194: 3178: 3125: 3119: 3118:Tammes problem 3077: 3056: 3051: 3006: 3001: 3000: 2940: 2939: 2935: 2898:(47): 1704274. 2885: 2884: 2880: 2836: 2835: 2831: 2763: 2762: 2758: 2698: 2697: 2693: 2633: 2632: 2621: 2579: 2578: 2574: 2554: 2553: 2540: 2530: 2528: 2523: 2522: 2518: 2508: 2506: 2497: 2496: 2492: 2452:physics/0611242 2432: 2431: 2427: 2383: 2382: 2378: 2336: 2335: 2331: 2271: 2270: 2266: 2208: 2207: 2203: 2145: 2144: 2140: 2098: 2097: 2093: 2043: 2042: 2035: 1985: 1984: 1980: 1926: 1925: 1918: 1876: 1875: 1871: 1863: 1861: 1859: 1834: 1833: 1829: 1777: 1776: 1769: 1725: 1724: 1720: 1697:10.2307/1297089 1691:(12): 701–711. 1678: 1677: 1673: 1665: 1663: 1653: 1628: 1627: 1623: 1551: 1550: 1546: 1488: 1487: 1483: 1466: 1462: 1439: 1438: 1423: 1418: 1396: 1352: 1347: 1346: 1327: 1326: 1307: 1306: 1287: 1286: 1262: 1252: 1226: 1221: 1220: 1183: 1130: 1129: 1081: 1080: 1050: 1049: 1030: 1029: 996: 995: 964: 963: 944: 943: 936: 897: 896: 855: 854: 821: 779: 778: 759: 758: 731: 730: 693: 692: 659: 658: 632: 631: 612: 611: 592: 550: 549: 538: 513: 512: 493: 492: 473: 472: 441: 440: 391: 390: 376: 368:depletion force 326: 325: 306: 305: 286: 285: 244: 198:Surface Evolver 173: 125:D'Arcy Thompson 121: 83: 32:packing problem 17: 12: 11: 5: 3281: 3279: 3271: 3270: 3265: 3260: 3255: 3245: 3244: 3238: 3237: 3235: 3234: 3229: 3223: 3221: 3217: 3216: 3214: 3213: 3208: 3202: 3200: 3196: 3195: 3193: 3192: 3190:Square packing 3186: 3184: 3180: 3179: 3177: 3176: 3171: 3169:Kissing number 3166: 3161: 3156: 3151: 3146: 3141: 3135: 3133: 3131:Sphere packing 3127: 3126: 3124: 3123: 3115: 3110: 3105: 3087: 3085: 3083:Circle packing 3079: 3078: 3076: 3075: 3070: 3064: 3062: 3058: 3057: 3052: 3050: 3049: 3042: 3035: 3027: 3021: 3020: 3005: 3004:External links 3002: 2999: 2998: 2933: 2878: 2849:(24): 248002. 2829: 2756: 2691: 2619: 2572: 2538: 2516: 2490: 2445:(4): 224–227. 2425: 2376: 2329: 2264: 2201: 2152:Nanotechnology 2138: 2091: 2056:(2): 349–355. 2033: 1978: 1916: 1889:(6): 845–857. 1869: 1857: 1827: 1767: 1718: 1681:"Microtubules" 1671: 1651: 1621: 1544: 1481: 1460: 1420: 1419: 1417: 1414: 1413: 1412: 1407: 1402: 1400:Sphere packing 1395: 1392: 1359: 1355: 1334: 1318:{\textstyle R} 1314: 1298:{\textstyle m} 1294: 1274: 1269: 1265: 1259: 1255: 1251: 1246: 1243: 1238: 1229: 1212:and the beads 1182: 1179: 1151: 1148: 1145: 1141: 1137: 1102: 1099: 1096: 1092: 1088: 1061:{\textstyle d} 1057: 1041:{\textstyle D} 1037: 1017: 1014: 1011: 1007: 1003: 971: 951: 935: 932: 912: 908: 904: 880: 877: 874: 871: 868: 865: 862: 820: 817: 804: 801: 798: 795: 792: 789: 786: 770:{\textstyle V} 766: 746: 738: 718: 715: 712: 709: 706: 703: 700: 680: 677: 674: 670: 666: 639: 623:{\textstyle z} 619: 591: 588: 575: 572: 569: 566: 563: 560: 557: 537: 534: 524:{\textstyle n} 520: 500: 484:{\textstyle l} 480: 471:. Each number 460: 457: 454: 451: 448: 428: 425: 422: 419: 416: 413: 410: 407: 404: 401: 398: 375: 372: 355: 350: to  347: 344: 341: 337: 333: 313: 297:{\textstyle D} 293: 243: 240: 172: 169: 156:Arum maculatum 120: 117: 107:Arum maculatum 82: 79: 15: 13: 10: 9: 6: 4: 3: 2: 3280: 3269: 3266: 3264: 3261: 3259: 3256: 3254: 3251: 3250: 3248: 3233: 3230: 3228: 3225: 3224: 3222: 3218: 3212: 3209: 3207: 3204: 3203: 3201: 3197: 3191: 3188: 3187: 3185: 3181: 3175: 3172: 3170: 3167: 3165: 3164:Close-packing 3162: 3160: 3159:In a cylinder 3157: 3155: 3152: 3150: 3147: 3145: 3142: 3140: 3137: 3136: 3134: 3132: 3128: 3122: 3116: 3114: 3111: 3109: 3106: 3104: 3100: 3096: 3092: 3089: 3088: 3086: 3084: 3080: 3074: 3071: 3069: 3066: 3065: 3063: 3059: 3055: 3048: 3043: 3041: 3036: 3034: 3029: 3028: 3025: 3018: 3017: 3012: 3008: 3007: 3003: 2994: 2990: 2986: 2982: 2978: 2974: 2970: 2966: 2961: 2956: 2953:(2): 020602. 2952: 2948: 2944: 2937: 2934: 2929: 2925: 2921: 2917: 2913: 2909: 2905: 2901: 2897: 2893: 2889: 2882: 2879: 2874: 2870: 2865: 2860: 2856: 2852: 2848: 2844: 2840: 2833: 2830: 2825: 2821: 2817: 2813: 2809: 2805: 2801: 2797: 2793: 2789: 2784: 2779: 2775: 2771: 2767: 2760: 2757: 2752: 2748: 2744: 2740: 2736: 2732: 2728: 2724: 2719: 2714: 2711:(5): 050302. 2710: 2706: 2702: 2695: 2692: 2687: 2683: 2679: 2675: 2671: 2667: 2663: 2659: 2654: 2649: 2646:(5): 051305. 2645: 2641: 2637: 2630: 2628: 2626: 2624: 2620: 2615: 2611: 2607: 2603: 2599: 2595: 2591: 2587: 2583: 2576: 2573: 2568: 2564: 2560: 2559: 2551: 2549: 2547: 2545: 2543: 2539: 2527: 2520: 2517: 2505: 2504:Manoharan lab 2501: 2494: 2491: 2486: 2482: 2478: 2474: 2470: 2466: 2462: 2458: 2453: 2448: 2444: 2440: 2436: 2429: 2426: 2421: 2417: 2412: 2407: 2403: 2399: 2396:(11): 22–27. 2395: 2391: 2387: 2380: 2377: 2372: 2368: 2364: 2360: 2356: 2352: 2348: 2344: 2340: 2333: 2330: 2325: 2321: 2316: 2311: 2307: 2303: 2299: 2295: 2291: 2287: 2283: 2279: 2275: 2268: 2265: 2260: 2256: 2252: 2248: 2244: 2240: 2236: 2232: 2228: 2224: 2220: 2216: 2212: 2205: 2202: 2197: 2193: 2189: 2185: 2181: 2177: 2173: 2169: 2165: 2161: 2158:(4): 045702. 2157: 2153: 2149: 2142: 2139: 2134: 2130: 2126: 2122: 2118: 2114: 2110: 2106: 2102: 2095: 2092: 2087: 2083: 2079: 2075: 2071: 2067: 2063: 2059: 2055: 2051: 2047: 2040: 2038: 2034: 2029: 2025: 2021: 2017: 2013: 2009: 2005: 2001: 1997: 1993: 1989: 1982: 1979: 1974: 1970: 1965: 1960: 1956: 1952: 1947: 1942: 1939:(5): 059902. 1938: 1934: 1930: 1923: 1921: 1917: 1912: 1908: 1904: 1900: 1896: 1892: 1888: 1884: 1880: 1873: 1870: 1860: 1854: 1850: 1846: 1842: 1838: 1831: 1828: 1823: 1819: 1815: 1811: 1806: 1801: 1797: 1793: 1789: 1785: 1781: 1774: 1772: 1768: 1763: 1759: 1754: 1749: 1745: 1741: 1737: 1733: 1729: 1722: 1719: 1714: 1710: 1706: 1702: 1698: 1694: 1690: 1686: 1682: 1675: 1672: 1662: 1658: 1654: 1652:9780120398201 1648: 1644: 1640: 1636: 1632: 1625: 1622: 1617: 1613: 1608: 1603: 1599: 1595: 1590: 1585: 1581: 1577: 1572: 1567: 1563: 1559: 1555: 1548: 1545: 1540: 1536: 1532: 1528: 1524: 1520: 1516: 1512: 1508: 1504: 1500: 1496: 1492: 1485: 1482: 1477: 1471: 1463: 1457: 1453: 1449: 1445: 1444: 1436: 1434: 1432: 1430: 1428: 1426: 1422: 1415: 1411: 1408: 1406: 1403: 1401: 1398: 1397: 1393: 1391: 1389: 1385: 1380: 1377: 1375: 1357: 1353: 1332: 1312: 1292: 1272: 1267: 1263: 1257: 1253: 1249: 1244: 1241: 1236: 1227: 1219: 1215: 1211: 1207: 1202: 1200: 1196: 1187: 1180: 1178: 1176: 1172: 1167: 1165: 1149: 1146: 1143: 1139: 1135: 1127: 1122: 1119: 1114: 1100: 1097: 1094: 1090: 1086: 1077: 1075: 1069: 1055: 1035: 1015: 1012: 1009: 1005: 1001: 993: 989: 969: 949: 940: 933: 931: 929: 924: 910: 906: 902: 892: 875: 872: 869: 866: 863: 851: 849: 844: 840: 836: 830: 825: 818: 816: 799: 796: 793: 790: 787: 764: 744: 736: 713: 710: 707: 704: 701: 678: 675: 672: 668: 664: 655: 653: 637: 617: 608: 601: 596: 589: 587: 570: 567: 564: 561: 558: 547: 543: 535: 533: 518: 498: 478: 458: 455: 452: 449: 446: 423: 420: 417: 414: 411: 408: 405: 402: 399: 387: 385: 381: 373: 371: 369: 353: 345: 342: 339: 335: 331: 311: 291: 283: 279: 275: 270: 267: 262: 260: 255: 253: 249: 241: 239: 237: 232: 228: 223: 221: 217: 212: 210: 205: 203: 199: 193: 191: 186: 177: 170: 168: 166: 161: 158: 157: 151: 149: 144: 142: 138: 134: 130: 126: 118: 113: 109: 108: 102: 98: 96: 92: 88: 80: 78: 74: 72: 68: 64: 60: 56: 52: 47: 45: 41: 37: 33: 29: 21: 3158: 3101: / 3097: / 3093: / 3014: 2950: 2946: 2936: 2895: 2891: 2881: 2846: 2842: 2832: 2773: 2769: 2759: 2708: 2704: 2694: 2643: 2639: 2589: 2585: 2575: 2557: 2529:. Retrieved 2519: 2507:. Retrieved 2503: 2493: 2442: 2438: 2428: 2393: 2389: 2379: 2346: 2342: 2332: 2281: 2277: 2267: 2218: 2214: 2204: 2155: 2151: 2141: 2108: 2104: 2094: 2053: 2050:Nano Letters 2049: 1995: 1991: 1981: 1936: 1932: 1886: 1882: 1872: 1862:, retrieved 1840: 1830: 1787: 1783: 1735: 1731: 1721: 1688: 1684: 1674: 1664:, retrieved 1634: 1624: 1561: 1557: 1547: 1498: 1494: 1484: 1442: 1383: 1381: 1378: 1213: 1209: 1203: 1194: 1192: 1168: 1125: 1123: 1117: 1115: 1078: 1070: 987: 985: 927: 925: 893: 852: 847: 845: 841: 837: 834: 828: 656: 609: 605: 599: 545: 541: 539: 388: 379: 377: 277: 271: 265: 263: 258: 256: 245: 231:Kelvin cells 224: 219: 213: 208: 206: 194: 182: 162: 154: 152: 145: 133:microtubules 122: 105: 84: 75: 48: 43: 27: 26: 3206:Tetrahedron 3149:In a sphere 3120:(on sphere) 3091:In a circle 2770:Soft Matter 2411:11693/23249 2278:Soft Matter 1388:peritectoid 926:Winkelmann 827:An example 598:An example 242:Nanoscience 227:dodecahedra 190:polyhedrons 95:nanoscience 55:nanoscience 3247:Categories 3139:Apollonian 2960:1808.02952 2783:1511.08472 2567:2262/91733 1946:1703.00773 1864:2020-04-16 1805:2262/73757 1685:BioScience 1666:2020-04-13 1416:References 148:titan arum 141:zebra fish 135:, and the 112:Bushy Park 3211:Ellipsoid 3154:In a cube 3016:MathWorld 2912:1521-4095 2808:1744-6848 2718:1110.4956 2653:1203.3373 2477:1749-4893 2420:1541-3721 2363:0002-7863 2306:1744-6848 2243:0036-8075 2180:0957-4484 2125:1521-3773 2078:1530-6984 2028:135980011 2020:0950-0839 1911:1364-2812 1814:0927-7757 1790:: 55–59. 1705:0006-3568 1598:0027-8424 1571:1205.1519 1523:0036-8075 1470:cite book 1333:ω 1264:ω 1171:spheroids 829:line-slip 745:θ 638:θ 546:line-slip 456:≥ 450:≥ 343:≈ 248:nanotubes 137:notochord 38:inside a 2993:91189122 2985:30934268 2928:34381516 2920:29112327 2873:32639829 2824:29450753 2816:26843132 2751:14623570 2743:22181358 2686:14288041 2678:23004748 2614:11030973 2531:14 April 2509:13 April 2485:10554883 2371:28367624 2324:29796568 2259:28988094 2251:17807732 2196:23896974 2188:21817519 2133:24989683 2086:15794624 1973:29906839 1822:94219961 1762:30249771 1616:22660931 1539:23847202 1394:See also 1210:outwards 1173:through 40:cylinder 3258:Spheres 3220:Puzzles 2965:Bibcode 2851:Bibcode 2788:Bibcode 2723:Bibcode 2658:Bibcode 2594:Bibcode 2457:Bibcode 2315:6051892 2286:Bibcode 2223:Bibcode 2215:Science 2160:Bibcode 2058:Bibcode 2000:Bibcode 1951:Bibcode 1891:Bibcode 1753:6158209 1713:1297089 1607:3382501 1576:Bibcode 1531:4579682 1503:Bibcode 1495:Science 1116:Mughal 600:uniform 542:uniform 380:ordered 139:of the 51:biology 36:spheres 3227:Conway 3144:Finite 3103:square 2991:  2983:  2926:  2918:  2910:  2871:  2822:  2814:  2806:  2749:  2741:  2684:  2676:  2612:  2483:  2475:  2418:  2369:  2361:  2322:  2312:  2304:  2257:  2249:  2241:  2194:  2186:  2178:  2131:  2123:  2084:  2076:  2026:  2018:  1971:  1909:  1855:  1820:  1812:  1760:  1750:  1711:  1703:  1661:775945 1659:  1649:  1614:  1604:  1596:  1537:  1529:  1521:  1458:  1384:et al. 1285:where 1214:toward 1162:using 1126:et al. 1118:et al. 1101:2.7013 988:et al. 928:et al. 848:et al. 511:, and 278:et al. 266:et al. 259:et al. 220:et al. 209:et al. 119:Botany 87:botany 2989:S2CID 2955:arXiv 2924:S2CID 2820:S2CID 2778:arXiv 2747:S2CID 2713:arXiv 2682:S2CID 2648:arXiv 2481:S2CID 2447:arXiv 2255:S2CID 2192:S2CID 2024:S2CID 1941:arXiv 1818:S2CID 1709:JSTOR 1566:arXiv 1535:S2CID 1199:lathe 1195:et al 1016:2.873 439:with 171:Foams 67:atoms 63:cells 2981:PMID 2916:PMID 2908:ISSN 2869:PMID 2812:PMID 2804:ISSN 2739:PMID 2674:PMID 2610:PMID 2533:2020 2511:2020 2473:ISSN 2416:ISSN 2367:PMID 2359:ISSN 2320:PMID 2302:ISSN 2247:PMID 2239:ISSN 2184:PMID 2176:ISSN 2129:PMID 2121:ISSN 2082:PMID 2074:ISSN 2016:ISSN 1969:PMID 1907:ISSN 1853:ISBN 1810:ISSN 1758:PMID 1701:ISSN 1657:PMID 1647:ISBN 1612:PMID 1594:ISSN 1527:PMID 1519:ISSN 1476:link 1456:ISBN 1147:< 1098:< 676:> 544:and 185:foam 91:foam 65:and 3073:Set 3068:Bin 2973:doi 2900:doi 2859:doi 2847:124 2796:doi 2731:doi 2666:doi 2602:doi 2563:hdl 2465:doi 2406:hdl 2398:doi 2351:doi 2347:139 2310:PMC 2294:doi 2231:doi 2219:269 2168:doi 2113:doi 2066:doi 2008:doi 1959:doi 1899:doi 1845:doi 1800:hdl 1792:doi 1788:473 1748:PMC 1740:doi 1736:373 1693:doi 1639:doi 1602:PMC 1584:doi 1562:109 1511:doi 1499:181 1448:doi 1232:rot 1150:4.0 1124:Fu 1074:fcc 679:2.0 282:SDS 264:Wu 252:C60 229:or 3249:: 3013:. 2987:. 2979:. 2971:. 2963:. 2951:99 2949:. 2945:. 2922:. 2914:. 2906:. 2896:29 2894:. 2890:. 2867:. 2857:. 2845:. 2841:. 2818:. 2810:. 2802:. 2794:. 2786:. 2774:12 2772:. 2768:. 2745:. 2737:. 2729:. 2721:. 2709:84 2707:. 2703:. 2680:. 2672:. 2664:. 2656:. 2644:85 2642:. 2638:. 2622:^ 2608:. 2600:. 2590:85 2588:. 2584:. 2541:^ 2502:. 2479:. 2471:. 2463:. 2455:. 2441:. 2437:. 2414:. 2404:. 2394:19 2392:. 2388:. 2365:. 2357:. 2345:. 2341:. 2318:. 2308:. 2300:. 2292:. 2282:14 2280:. 2276:. 2253:. 2245:. 2237:. 2229:. 2217:. 2213:. 2190:. 2182:. 2174:. 2166:. 2156:19 2154:. 2150:. 2127:. 2119:. 2109:53 2107:. 2103:. 2080:. 2072:. 2064:. 2052:. 2048:. 2036:^ 2022:. 2014:. 2006:. 1996:88 1994:. 1990:. 1967:. 1957:. 1949:. 1937:97 1935:. 1931:. 1919:^ 1905:. 1897:. 1887:75 1885:. 1881:. 1851:, 1839:, 1816:. 1808:. 1798:. 1782:. 1770:^ 1756:. 1746:. 1734:. 1730:. 1707:. 1699:. 1689:24 1687:. 1683:. 1655:, 1645:, 1610:. 1600:. 1592:. 1582:. 1574:. 1560:. 1556:. 1533:. 1525:. 1517:. 1509:. 1497:. 1493:. 1472:}} 1468:{{ 1454:. 1424:^ 1376:. 1201:. 923:. 815:. 491:, 370:. 238:. 143:. 114:). 73:. 57:, 53:, 46:. 3046:e 3039:t 3032:v 3019:. 2995:. 2975:: 2967:: 2957:: 2930:. 2902:: 2875:. 2861:: 2853:: 2826:. 2798:: 2790:: 2780:: 2753:. 2733:: 2725:: 2715:: 2688:. 2668:: 2660:: 2650:: 2616:. 2604:: 2596:: 2569:. 2565:: 2535:. 2513:. 2487:. 2467:: 2459:: 2449:: 2443:1 2422:. 2408:: 2400:: 2373:. 2353:: 2326:. 2296:: 2288:: 2261:. 2233:: 2225:: 2198:. 2170:: 2162:: 2135:. 2115:: 2088:. 2068:: 2060:: 2054:5 2030:. 2010:: 2002:: 1975:. 1961:: 1953:: 1943:: 1913:. 1901:: 1893:: 1847:: 1824:. 1802:: 1794:: 1764:. 1742:: 1715:. 1695:: 1641:: 1618:. 1586:: 1578:: 1568:: 1541:. 1513:: 1505:: 1478:) 1464:. 1450:: 1358:2 1354:R 1313:R 1293:m 1273:, 1268:2 1258:2 1254:R 1250:m 1245:2 1242:1 1237:= 1228:E 1144:d 1140:/ 1136:D 1095:d 1091:/ 1087:D 1056:d 1036:D 1013:= 1010:d 1006:/ 1002:D 982:. 970:D 950:d 911:d 907:/ 903:D 879:) 876:n 873:, 870:m 867:, 864:l 861:( 803:) 800:n 797:, 794:m 791:, 788:l 785:( 765:V 741:- 737:z 717:) 714:n 711:, 708:m 705:, 702:l 699:( 673:d 669:/ 665:D 618:z 574:) 571:n 568:, 565:m 562:, 559:l 556:( 519:n 499:m 479:l 459:n 453:m 447:l 427:) 424:n 421:, 418:m 415:, 412:n 409:+ 406:m 403:= 400:l 397:( 354:5 346:3 340:d 336:/ 332:D 324:( 312:d 292:D

Index

SpherePacking
packing problem
spheres
cylinder
biology
nanoscience
materials science
cells
atoms
crystalline structures
botany
foam
nanoscience
arum maculatum
Arum maculatum
Bushy Park
D'Arcy Thompson
On Growth and Form
microtubules
notochord
zebra fish
titan arum
Arum maculatum
Australian bottlebrush
Foam
foam
polyhedrons
Surface Evolver
hard sphere model
line-slip structure

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.