Knowledge (XXG)

Spinterface

Source 📝

341: 798: 438: 22: 71: 1869:
Picone, Andrea; Giannotti, Dario; Riva, Michele; Calloni, Alberto; Bussetti, Gianlorenzo; Berti, Giulia; Duò, Lamberto; Ciccacci, Franco; Finazzi, Marco; Brambilla, Alberto (22 September 2016). "Controlling the Electronic and Structural Coupling of C Nano Films on Fe(001) through Oxygen Adsorption at
760:
If an organic material is inserted as tunneling barrier, the picture becomes more complex, as the formation of spin-hybridization-induced polarized states occurs. These states may affect the tunneling transmission coefficient, which is usually kept constant in the Jullière model. Barraud et al., in a
289:
to stimuli (typically impossible to achieve in inorganic materials) there is the hope of being able to easily change the character of the hybridization, hence tuning the properties of the spinterface. This could give rise to a new class of spintronic devices, where the spinterface plays a fundamental
961:
for the two electrodes (pseudo spin valves). The proposed use of spinterfaces in spin valve applications is to interface one of the electrodes with a molecular layer, which is capable of tuning the magnetization properties of the electrode with a change in hybridization. This change of hybridization
433:
the interfaces. The physical principle behind MTJs is that the tunneling of the junction is dependent on the relative orientation of the magnetization of the ferromagnetic electrodes. In fact, in the Jullière model, the tunneling current that passes through the junction is proportional to the sum of
765:
paper, develop a spin transport model that takes into account the effect of the spinterface hybridization. What they observed is that the role of this hybridization in the spin tunneling process is not only relevant, but also capable of inverting the sign of the TMR. This opens the door to a new
400:
schematizes an antiparallel spin polarization of the current injected in the semiconductor. In this way, the injected current will be polarized accordingly to the interface DOS at the Fermi Level and exploiting the fact that molecules usually have intrinsically weak spin-relaxation mechanisms,
1673:
Barraud, Clément; Seneor, Pierre; Mattana, Richard; Fusil, Stéphane; Bouzehouane, Karim; Deranlot, Cyrile; Graziosi, Patrizio; Hueso, Luis; Bergenti, Ilaria; Dediu, Valentin; Petroff, Frédéric; Fert, Albert (13 June 2010). "Unravelling the role of the interface for spin injection into organic
817:: if the alignment of the magnetizations is parallel, the spin valve will exhibit a low resistance state, while, in the case of antiparallel alignment, reflection and spin flip scattering events give rise to a high resistance state. From these considerations one can define and evaluate the 181:. Only more recently, spintronics has been extended to the organic world, with the idea of exploiting the weak spin-relaxation mechanisms of molecules in order to use them for spin transport. Research in this field started off with hybrid replicas of inorganic spintronic devices, such as 201:. Because of this, the interest on ferromagnet/organic interfaces rapidly increased in the scientific community and the term "spinterface" was born. The research is currently aimed at building devices with interfaces engineered in order to tailor the spin injection. 808:
The spin-polarized current, coming from one ferromagnetic electrode, can travel in a non-magnetic metal for a certain distance, given by the spin diffusion length of that metal. When the current enters another ferromagnetic material, the relative orientation of the
647: 545: 651:
The picture of spin-dependent tunneling is represented in figure, and what is observed is that usually there is a larger tunneling current in the case of parallel alignment of the electrode magnetizations. This is given by the fact that, in this case, the term
1825:
Steil, Sabine; Großmann, Nicolas; Laux, Martin; Ruffing, Andreas; Steil, Daniel; Wiesenmayer, Martin; Mathias, Stefan; Monti, Oliver L. A.; Cinchetti, Mirko; Aeschlimann, Martin (17 February 2013). "Spin-dependent trapping of electrons at spinterfaces".
1905:
Zamborlini, Giovanni; Lüftner, Daniel; Feng, Zhijing; Kollmann, Bernd; Puschnig, Peter; Dri, Carlo; Panighel, Mirko; Di Santo, Giovanni; Goldoni, Andrea; Comelli, Giovanni; Jugovac, Matteo; Feyer, Vitaliy; Schneider, Claus Michael (25 August 2017).
265:. With the final aim of being able to tune and change the electronic and magnetic behavior of the interface, spinterfaces are studied both by inserting them into spintronic devices and, on a more basic level, by investigating the growth of 1502:
Kalappattil, V.; Geng, R.; Liang, S.H.; Mukherjee, D.; Devkota, J.; Roy, A.; Luong, M.H.; Lai, N.D.; Hornak, L.A.; Nguyen, T.D.; Zhao, W.B.; Li, X.G.; Duc, N.H.; Das, R.; Chandra, S.; Srikanth, H.; Phan, M.H. (September 2017).
384:(LUMO), with zero DOS at the Fermi Level. When the two materials are put into contact they influence each other's DOS at the interface: the main effects are a broadening of the molecular orbitals and a possible shift of their 1536:
Santos, T. S.; Lee, J. S.; Migdal, P.; Lekshmi, I. C.; Satpati, B.; Moodera, J. S. (5 January 2007). "Room-Temperature Tunnel Magnetoresistance and Spin-Polarized Tunneling through an Organic Semiconductor Barrier".
284:
in the molecular layer and, on the other hand, to influence the magnetic character of the ferromagnetic layer by means of hybridization. Combining this with the fact that usually molecules have a very high
745:. By changing the relative orientation of the magnetization of the electrodes it is possible to control the conductance state of the tunneling junction and use this principle for applications, for example 889: 700: 388:. These effects are in general spin-dependent, since they arise from the hybridization, which is strictly dependent on the DOS of the two materials, which is itself spin-unbalanced in the case of the 1580:
Vinzelberg, H.; Schumann, J.; Elefant, D.; Gangineni, R. B.; Thomas, J.; Büchner, B. (May 2008). "Low temperature tunneling magnetoresistance on (La,Sr)MnO3/Co junctions with organic spacer layers".
1615:
Ciudad, David; Gobbi, Marco; Kinane, Christy J.; Eich, Marius; Moodera, Jagadeesh S.; Hueso, Luis E. (December 2014). "Sign Control of Magnetoresistance Through Chemically Engineered Interfaces".
549: 450: 105:, since the role of interfaces plays a huge part in the functioning of a device. In particular, spinterfaces are widely studied in the scientific community because of their hybrid 743: 970:. If this process is reversible, there is the possibility of switching from high to low resistance in a very effective way, making the devices faster and more efficient. 421:
events to be relevant. The idea of using spinterfaces consists in replacing the inorganic insulating barrier with an organic one. The motivation for this is given by the
921: 948: 417:(TMR) in hybrid magnetic tunneling junctions (MTJs). Conventional MTJs are composed by two ferromagnetic electrodes separated by an insulating layer, thin enough for 372:
governing the spin polarization of the current flow; the DOS of the organic semiconductor will have no unbalance between the spin channels and will display localized
352:
The physical principle that is mainly exploited when talking about spinterfaces is the spin-filtering. This is simply schematized in figure: when one considers the
280:
approach. The scope of building such interfaces is on one side to exploit the spin-polarized character of the electronic structure of the ferromagnet to induce a
189:, trying to obtain spin transport in molecular films. However some devices didn't behave as expected, for example vertical spin valves displaying a negative 1441:
Gobbi, Marco; Golmar, Federico; Llopis, Roger; Casanova, Fèlix; Hueso, Luis E. (12 April 2011). "Room-Temperature Spin Transport in C60-Based Spin Valves".
161:
devices, emerged in the last decades of the 20th century, first with the observation of the injection of a spin-polarized current from a ferromagnetic to a
1233:
Baibich, M. N.; Broto, J. M.; Fert, A.; Van Dau, F. Nguyen; Petroff, F.; Etienne, P.; Creuzet, G.; Friederich, A.; Chazelas, J. (21 November 1988).
953:
The usual way of creating the possibility of having both parallel and antiparallel alignment is either pinning one of the electrodes by means of
786:
are this time separated by a non-magnetic metal instead of an insulator. The physical principle exploited in this case is no longer related to
1155:
Johnson, Mark; Silsbee, R. H. (21 October 1985). "Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals".
2015: 1768: 766:
research front, aimed at tailoring the properties of spintronic devices through the right combination of ferromagnetic metals and molecules.
324:
applications, there are no available commercial devices yet, but the applied research is headed towards the use of spinterfaces mainly for
381: 1341:
Sánchez, J. C. Rojas; Vila, L.; Desfonds, G.; Gambarelli, S.; Attané, J. P.; De Teresa, J. M.; Magén, C.; Fert, A. (17 December 2013).
826: 655: 310: 642:{\displaystyle \qquad J^{ap}\propto D_{1}^{\uparrow }\cdot D_{2}^{\downarrow }+D_{1}^{\downarrow }\cdot D_{2}^{\uparrow }} 193:. It was then quickly understood that the molecular layers don't just play a transport role but they can also act on the 540:{\displaystyle J^{p}\propto D_{1}^{\uparrow }\cdot D_{2}^{\uparrow }+D_{1}^{\downarrow }\cdot D_{2}^{\downarrow }\qquad } 1390:
Xiong, Z. H.; Wu, Di; Valy Vardeny, Z.; Shi, Jing (26 February 2004). "Giant magnetoresistance in organic spin-valves".
368:(DOS) of the metal will be unbalanced between the two spin channels, with the difference of the up and down DOS at the 340: 237:
is interfaced with another solid, the terminations of the two different materials influence each other by means of
746: 422: 314: 989: 779: 414: 325: 186: 166: 994: 818: 273: 170: 133:
to electrical and optical stimuli than metals. This gives rise to the possibility of efficiently tuning the
1963:
Bogani, Lapo; Wernsdorfer, Wolfgang (1 March 2008). "Molecular spintronics using single-molecule magnets".
1077:
Cinchetti, Mirko; Dediu, V. Alek; Hueso, Luis E. (25 April 2017). "Activating the molecular spinterface".
174: 1004: 999: 791: 357: 345: 298: 262: 254: 114: 98: 75: 1294:"Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange" 2037: 1972: 1919: 1835: 1797: 1693: 1624: 1589: 1546: 1450: 1399: 1354: 1305: 1246: 1207: 1164: 1086: 1036: 754: 705: 430: 258: 814: 217:, which play a fundamental role in the functioning of many applications. The breaking of the bulk 32: 1851: 1709: 1683: 1648: 1484: 1423: 1343:"Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials" 405:
applications. By a good material choice one is then able to filter the spins at the spinterface.
242: 198: 110: 90: 896: 926: 2011: 1988: 1945: 1887: 1764: 1640: 1562: 1476: 1415: 1372: 1323: 1274: 1180: 1137: 1102: 1052: 787: 442: 418: 365: 281: 230: 226: 194: 190: 1980: 1935: 1927: 1879: 1843: 1805: 1741: 1701: 1632: 1597: 1554: 1516: 1466: 1458: 1407: 1362: 1313: 1264: 1254: 1215: 1172: 1129: 1094: 1044: 750: 426: 277: 214: 1976: 1923: 1839: 1801: 1697: 1628: 1593: 1550: 1454: 1403: 1358: 1309: 1250: 1211: 1168: 1090: 1040: 1940: 1907: 958: 762: 389: 353: 270: 210: 150: 122: 106: 94: 79: 2031: 1855: 1786:"Nobel Lecture: Quasielectric fields and band offsets: teaching electrons new tricks" 1713: 1488: 1219: 954: 810: 238: 233:, which are sometimes impossible to find in the bulk material. In particular, when a 178: 162: 1652: 797: 1427: 385: 373: 286: 130: 1558: 1027:
Cornia, Andrea; Seneor, Pierre (25 April 2017). "Spintronics: The molecular way".
813:
with respect to the first electrode can lead to a change in the resistance of the
51: 1521: 1504: 1259: 1234: 1176: 979: 402: 369: 329: 146: 102: 1931: 437: 305:
displays, which can be flexible, thinner, faster and more power efficient than
1810: 1785: 984: 950:
are respectively the resistances for the antiparallel and parallel alignment.
802: 775: 321: 182: 1318: 1293: 783: 377: 266: 134: 41: 1992: 1949: 1908:"Multi-orbital charge transfer at highly oriented organic/metal interfaces" 1891: 1883: 1644: 1636: 1566: 1480: 1462: 1419: 1376: 1278: 1184: 1141: 1133: 1106: 1056: 21: 1327: 213:
consumption applications has led to an ever-growing attention towards the
246: 218: 154: 126: 1471: 1411: 1198:
Julliere, M. (September 1975). "Tunneling between ferromagnetic films".
70: 1367: 1342: 1269: 967: 222: 1847: 1745: 1705: 1601: 1984: 1098: 1048: 1732:
Sanvito, Stefano (13 June 2010). "The rise of spinterface science".
1292:
Binasch, G.; Grünberg, P.; Saurenbach, F.; Zinn, W. (1 March 1989).
396:
represents the case of a parallel injection of current, while panel
1235:"Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices" 1763:(Third ed.). Berlin, Heidelberg: Springer Berlin Heidelberg. 1688: 963: 796: 436: 413:
Applied research on spinterfaces is often focused on studying the
339: 250: 234: 158: 118: 69: 2008:
Ultrathin magnetic structures III fundamentals of nano magnetism
966:(making these systems suitable for ultra-fast applications) and 302: 306: 15: 1120:
Cinchetti, Mirko (1 December 2014). "Topology communicates".
884:{\displaystyle MR={\frac {\rho _{ap}-\rho _{p}}{\rho _{p}}}} 695:{\displaystyle D_{1}^{\downarrow }\cdot D_{2}^{\downarrow }} 209:
The shrinking of device sizes and the attention towards low
1505:"Role of the magnetic anisotropy in organic spin valves" 782:
junctions, the difference is that the two ferromagnetic
301:
are currently used in various applications, for example
962:
at the spinterface can be induced in principle both by
313:, intended for large, low-cost electronic products and 149:, which is the scientific field that aims to study the 46: 36: 434:
the products of the DOS of the single spin channels:
957:
or directly using different materials with different
929: 899: 829: 708: 658: 552: 453: 702:
will be way larger than all the other terms, making
101:. This is a widely investigated topic in molecular 1509:Journal of Science: Advanced Materials and Devices 942: 915: 883: 737: 694: 641: 539: 778:are built in a very similar way with respect to 261:, are interfaced and they usually form a strong 1072: 1070: 1068: 1066: 245:is highly influenced by the properties of the 165:metal and subsequently with the discovery of 8: 1761:Surfaces and Interfaces of Solid Materials 1727: 1725: 1723: 1668: 1666: 1664: 1662: 401:molecular layers are great candidates for 1939: 1809: 1687: 1520: 1470: 1366: 1317: 1268: 1258: 934: 928: 904: 898: 873: 862: 846: 839: 828: 726: 713: 707: 686: 681: 668: 663: 657: 633: 628: 615: 610: 597: 592: 579: 574: 558: 551: 530: 525: 512: 507: 494: 489: 476: 471: 458: 452: 1022: 1020: 1016: 1872:ACS Applied Materials & Interfaces 137:of the interface at the atomic scale. 441:Simplified picture of spin-dependent 7: 2006:Bland, J.A.C.; Heinrich, B. (2005). 1784:Kroemer, Herbert (22 October 2001). 429:of molecules and the possibility of 249:. In particular, in spinterfaces, a 173:. The field evolved turning towards 382:lowest unoccupied molecular orbital 125:can be controlled by acting on the 378:highest occupied molecular orbital 215:physics of surfaces and interfaces 14: 392:. As a matter of example, panel 311:organic field-effect transistors 89:is a term coined to indicate an 20: 738:{\displaystyle J^{p}>J^{ap}} 553: 536: 257:, which display very different 687: 669: 634: 616: 598: 580: 531: 513: 495: 477: 1: 1559:10.1103/PhysRevLett.98.016601 1220:10.1016/0375-9601(75)90174-7 326:magnetic tunneling junctions 187:magnetic tunneling junctions 1522:10.1016/j.jsamd.2017.07.010 1260:10.1103/physrevlett.61.2472 1177:10.1103/PhysRevLett.55.1790 409:Magnetic Tunneling Junction 177:related phenomena, such as 2054: 1932:10.1038/s41467-017-00402-0 1582:Journal of Applied Physics 916:{\displaystyle \rho _{ap}} 197:of the ferromagnet at the 113:composition. In fact, the 1811:10.1103/RevModPhys.73.783 1790:Reviews of Modern Physics 943:{\displaystyle \rho _{p}} 315:biodegradable electronics 1319:10.1103/physrevb.39.4828 990:Tunnel magnetoresistance 415:tunnel magnetoresistance 294:Physics and applications 167:tunnel magnetoresistance 1539:Physical Review Letters 1239:Physical Review Letters 1157:Physical Review Letters 995:Giant magnetoresistance 171:giant magnetoresistance 35:, as no other articles 1884:10.1021/acsami.6b09641 1637:10.1002/adma.201401283 1588:(9): 093720–093720–5. 1463:10.1002/adma.201004672 1134:10.1038/nnano.2014.284 944: 917: 885: 805: 801:Schematic of a pseudo 739: 696: 643: 541: 445: 431:chemically engineering 425:, low cost and higher 349: 299:Organic semiconductors 241:. The behavior of the 83: 1912:Nature Communications 1347:Nature Communications 1122:Nature Nanotechnology 1005:Orbital hybridisation 1000:Molecular electronics 945: 918: 886: 800: 792:electrical resistance 740: 697: 644: 542: 440: 427:spin-relaxation times 358:organic semiconductor 343: 259:electronic properties 255:organic semiconductor 99:organic semiconductor 76:organic semiconductor 73: 2010:. Berlin: Springer. 927: 897: 827: 706: 656: 550: 451: 360:on their own (panel 269:molecular layers on 235:solid-state material 1977:2008NatMa...7..179B 1924:2017NatCo...8..335Z 1878:(39): 26418–26424. 1840:2013NatPh...9..242S 1802:2001RvMP...73..783K 1759:Lüth, Hans (1995). 1698:2010NatPh...6..615B 1629:2014AdM....26.7561C 1594:2008JAP...103i3720V 1551:2007PhRvL..98a6601S 1455:2011AdM....23.1609G 1412:10.1038/nature02325 1404:2004Natur.427..821X 1359:2013NatCo...4.2944S 1310:1989PhRvB..39.4828B 1251:1988PhRvL..61.2472B 1212:1975PhLA...54..225J 1169:1985PhRvL..55.1790J 1091:2017NatMa..16..507C 1041:2017NatMa..16..505C 821:of the spin valve: 691: 673: 638: 620: 602: 584: 535: 517: 499: 481: 231:chemical properties 225:leads to different 205:Scientific interest 135:magnetic properties 1617:Advanced Materials 1443:Advanced Materials 1368:10.1038/ncomms3944 940: 913: 881: 806: 780:magnetic tunneling 735: 692: 677: 659: 639: 624: 606: 588: 570: 537: 521: 503: 485: 467: 446: 419:electron tunneling 350: 221:which occurs at a 84: 54:for suggestions. 44:to this page from 2017:978-3-540-27163-5 1848:10.1038/NPHYS2548 1770:978-3-662-03132-2 1746:10.1038/nphys1714 1706:10.1038/NPHYS1688 1674:semiconductors". 1623:(45): 7561–7567. 1602:10.1063/1.2924435 1449:(14): 1609–1613. 1398:(6977): 821–824. 1298:Physical Review B 1245:(21): 2472–2475. 1200:Physics Letters A 1163:(17): 1790–1793. 968:electric voltages 879: 819:magnetoresistance 366:density of states 290:and active role. 282:spin polarization 195:spin polarization 191:magnetoresistance 129:, which are more 78:layer grown on a 68: 67: 2045: 2022: 2021: 2003: 1997: 1996: 1985:10.1038/nmat2133 1965:Nature Materials 1960: 1954: 1953: 1943: 1902: 1896: 1895: 1870:the Interface". 1866: 1860: 1859: 1822: 1816: 1815: 1813: 1781: 1775: 1774: 1756: 1750: 1749: 1729: 1718: 1717: 1691: 1670: 1657: 1656: 1612: 1606: 1605: 1577: 1571: 1570: 1533: 1527: 1526: 1524: 1499: 1493: 1492: 1474: 1438: 1432: 1431: 1387: 1381: 1380: 1370: 1338: 1332: 1331: 1321: 1304:(7): 4828–4830. 1289: 1283: 1282: 1272: 1262: 1230: 1224: 1223: 1195: 1189: 1188: 1152: 1146: 1145: 1117: 1111: 1110: 1099:10.1038/NMAT4902 1079:Nature Materials 1074: 1061: 1060: 1049:10.1038/nmat4900 1029:Nature Materials 1024: 949: 947: 946: 941: 939: 938: 922: 920: 919: 914: 912: 911: 890: 888: 887: 882: 880: 878: 877: 868: 867: 866: 854: 853: 840: 751:hard disk drives 744: 742: 741: 736: 734: 733: 718: 717: 701: 699: 698: 693: 690: 685: 672: 667: 648: 646: 645: 640: 637: 632: 619: 614: 601: 596: 583: 578: 566: 565: 546: 544: 543: 538: 534: 529: 516: 511: 498: 493: 480: 475: 463: 462: 348:in a spinterface 123:organic material 63: 60: 49: 47:related articles 24: 16: 2053: 2052: 2048: 2047: 2046: 2044: 2043: 2042: 2028: 2027: 2026: 2025: 2018: 2005: 2004: 2000: 1962: 1961: 1957: 1904: 1903: 1899: 1868: 1867: 1863: 1824: 1823: 1819: 1783: 1782: 1778: 1771: 1758: 1757: 1753: 1731: 1730: 1721: 1672: 1671: 1660: 1614: 1613: 1609: 1579: 1578: 1574: 1535: 1534: 1530: 1501: 1500: 1496: 1440: 1439: 1435: 1389: 1388: 1384: 1340: 1339: 1335: 1291: 1290: 1286: 1232: 1231: 1227: 1197: 1196: 1192: 1154: 1153: 1149: 1128:(12): 965–966. 1119: 1118: 1114: 1076: 1075: 1064: 1026: 1025: 1018: 1013: 976: 959:coercive fields 930: 925: 924: 900: 895: 894: 869: 858: 842: 841: 825: 824: 772: 722: 709: 704: 703: 654: 653: 554: 548: 547: 454: 449: 448: 411: 344:Spin-dependent 338: 296: 278:surface science 207: 143: 64: 58: 55: 45: 42:introduce links 25: 12: 11: 5: 2051: 2049: 2041: 2040: 2030: 2029: 2024: 2023: 2016: 1998: 1971:(3): 179–186. 1955: 1897: 1861: 1834:(4): 242–247. 1828:Nature Physics 1817: 1796:(3): 783–793. 1776: 1769: 1751: 1740:(8): 562–564. 1734:Nature Physics 1719: 1682:(8): 615–620. 1676:Nature Physics 1658: 1607: 1572: 1528: 1515:(3): 378–384. 1494: 1433: 1382: 1333: 1284: 1225: 1206:(3): 225–226. 1190: 1147: 1112: 1085:(5): 507–515. 1062: 1035:(5): 505–506. 1015: 1014: 1012: 1009: 1008: 1007: 1002: 997: 992: 987: 982: 975: 972: 937: 933: 910: 907: 903: 876: 872: 865: 861: 857: 852: 849: 845: 838: 835: 832: 771: 768: 763:Nature Physics 732: 729: 725: 721: 716: 712: 689: 684: 680: 676: 671: 666: 662: 636: 631: 627: 623: 618: 613: 609: 605: 600: 595: 591: 587: 582: 577: 573: 569: 564: 561: 557: 533: 528: 524: 520: 515: 510: 506: 502: 497: 492: 488: 484: 479: 474: 470: 466: 461: 457: 410: 407: 403:spin transport 337: 336:Spin-Filtering 334: 295: 292: 239:chemical bonds 206: 203: 142: 139: 66: 65: 52:Find link tool 28: 26: 19: 13: 10: 9: 6: 4: 3: 2: 2050: 2039: 2036: 2035: 2033: 2019: 2013: 2009: 2002: 1999: 1994: 1990: 1986: 1982: 1978: 1974: 1970: 1966: 1959: 1956: 1951: 1947: 1942: 1937: 1933: 1929: 1925: 1921: 1917: 1913: 1909: 1901: 1898: 1893: 1889: 1885: 1881: 1877: 1873: 1865: 1862: 1857: 1853: 1849: 1845: 1841: 1837: 1833: 1829: 1821: 1818: 1812: 1807: 1803: 1799: 1795: 1791: 1787: 1780: 1777: 1772: 1766: 1762: 1755: 1752: 1747: 1743: 1739: 1735: 1728: 1726: 1724: 1720: 1715: 1711: 1707: 1703: 1699: 1695: 1690: 1685: 1681: 1677: 1669: 1667: 1665: 1663: 1659: 1654: 1650: 1646: 1642: 1638: 1634: 1630: 1626: 1622: 1618: 1611: 1608: 1603: 1599: 1595: 1591: 1587: 1583: 1576: 1573: 1568: 1564: 1560: 1556: 1552: 1548: 1545:(1): 016601. 1544: 1540: 1532: 1529: 1523: 1518: 1514: 1510: 1506: 1498: 1495: 1490: 1486: 1482: 1478: 1473: 1468: 1464: 1460: 1456: 1452: 1448: 1444: 1437: 1434: 1429: 1425: 1421: 1417: 1413: 1409: 1405: 1401: 1397: 1393: 1386: 1383: 1378: 1374: 1369: 1364: 1360: 1356: 1352: 1348: 1344: 1337: 1334: 1329: 1325: 1320: 1315: 1311: 1307: 1303: 1299: 1295: 1288: 1285: 1280: 1276: 1271: 1266: 1261: 1256: 1252: 1248: 1244: 1240: 1236: 1229: 1226: 1221: 1217: 1213: 1209: 1205: 1201: 1194: 1191: 1186: 1182: 1178: 1174: 1170: 1166: 1162: 1158: 1151: 1148: 1143: 1139: 1135: 1131: 1127: 1123: 1116: 1113: 1108: 1104: 1100: 1096: 1092: 1088: 1084: 1080: 1073: 1071: 1069: 1067: 1063: 1058: 1054: 1050: 1046: 1042: 1038: 1034: 1030: 1023: 1021: 1017: 1010: 1006: 1003: 1001: 998: 996: 993: 991: 988: 986: 983: 981: 978: 977: 973: 971: 969: 965: 960: 956: 955:exchange bias 951: 935: 931: 908: 905: 901: 891: 874: 870: 863: 859: 855: 850: 847: 843: 836: 833: 830: 822: 820: 816: 812: 811:magnetization 804: 799: 795: 793: 789: 785: 781: 777: 774:Conventional 769: 767: 764: 758: 756: 752: 748: 730: 727: 723: 719: 714: 710: 682: 678: 674: 664: 660: 649: 629: 625: 621: 611: 607: 603: 593: 589: 585: 575: 571: 567: 562: 559: 555: 526: 522: 518: 508: 504: 500: 490: 486: 482: 472: 468: 464: 459: 455: 444: 439: 435: 432: 428: 424: 420: 416: 408: 406: 404: 399: 395: 391: 387: 383: 379: 375: 374:energy levels 371: 367: 363: 359: 355: 347: 346:hybridization 342: 335: 333: 331: 327: 323: 318: 316: 312: 309:screens, and 308: 304: 300: 293: 291: 288: 283: 279: 275: 272: 271:ferromagnetic 268: 264: 263:hybridization 260: 256: 252: 248: 244: 240: 236: 232: 228: 224: 220: 216: 212: 204: 202: 200: 196: 192: 188: 184: 180: 179:Rashba effect 176: 172: 168: 164: 160: 157:transport in 156: 152: 148: 145:The field of 140: 138: 136: 132: 128: 124: 120: 116: 115:hybridization 112: 108: 104: 100: 96: 92: 88: 81: 77: 74:Spinterface: 72: 62: 53: 48: 43: 39: 38: 34: 29:This article 27: 23: 18: 17: 2007: 2001: 1968: 1964: 1958: 1915: 1911: 1900: 1875: 1871: 1864: 1831: 1827: 1820: 1793: 1789: 1779: 1760: 1754: 1737: 1733: 1679: 1675: 1620: 1616: 1610: 1585: 1581: 1575: 1542: 1538: 1531: 1512: 1508: 1497: 1472:11336/189114 1446: 1442: 1436: 1395: 1391: 1385: 1350: 1346: 1336: 1301: 1297: 1287: 1242: 1238: 1228: 1203: 1199: 1193: 1160: 1156: 1150: 1125: 1121: 1115: 1082: 1078: 1032: 1028: 952: 892: 823: 807: 773: 759: 650: 447: 412: 397: 393: 361: 351: 328:and organic 320:In terms of 319: 297: 287:responsivity 208: 163:paramagnetic 144: 117:between the 86: 85: 56: 30: 2038:Spintronics 1353:(1): 2944. 1270:10183/99075 980:Spintronics 776:spin valves 770:Spin Valves 423:flexibility 390:ferromagnet 380:(HOMO) and 370:Fermi level 354:ferromagnet 330:spin valves 183:spin valves 159:solid-state 153:-dependent 147:spintronics 103:spintronics 95:ferromagnet 87:Spinterface 80:ferromagnet 1918:(1): 335. 1011:References 985:Spin valve 803:spin valve 784:electrodes 747:read-heads 322:spintronic 267:ultra-thin 175:spin-orbit 131:responsive 93:between a 50:; try the 37:link to it 1856:121907074 1714:119277260 1689:1005.1826 1489:205239750 932:ρ 902:ρ 871:ρ 860:ρ 856:− 844:ρ 788:tunneling 688:↓ 675:⋅ 670:↓ 635:↑ 622:⋅ 617:↓ 599:↓ 586:⋅ 581:↑ 568:∝ 532:↓ 519:⋅ 514:↓ 496:↑ 483:⋅ 478:↑ 465:∝ 443:tunneling 376:, namely 274:substates 247:materials 243:interface 199:interface 127:molecules 111:inorganic 91:interface 82:substrate 40:. Please 2032:Category 1993:18297126 1950:28839127 1892:27603203 1653:36408581 1645:25339373 1567:17358495 1481:21472786 1420:14985756 1377:24343336 1279:10039127 1185:10031924 1142:25466538 1107:28439116 1057:28439117 974:See also 815:junction 356:and the 227:physical 219:symmetry 155:electron 121:and the 59:May 2023 1973:Bibcode 1941:5570996 1920:Bibcode 1836:Bibcode 1798:Bibcode 1694:Bibcode 1625:Bibcode 1590:Bibcode 1547:Bibcode 1451:Bibcode 1428:4357882 1400:Bibcode 1355:Bibcode 1328:9948867 1306:Bibcode 1247:Bibcode 1208:Bibcode 1165:Bibcode 1087:Bibcode 1037:Bibcode 790:but to 364:), the 276:with a 253:and an 223:surface 141:History 107:organic 97:and an 2014:  1991:  1948:  1938:  1890:  1854:  1767:  1712:  1651:  1643:  1565:  1487:  1479:  1426:  1418:  1392:Nature 1375:  1326:  1277:  1183:  1140:  1105:  1055:  893:where 386:energy 33:orphan 31:is an 1852:S2CID 1710:S2CID 1684:arXiv 1649:S2CID 1485:S2CID 1424:S2CID 964:light 755:MRAMs 251:metal 211:power 119:metal 2012:ISBN 1989:PMID 1946:PMID 1888:PMID 1765:ISBN 1641:PMID 1563:PMID 1477:PMID 1416:PMID 1373:PMID 1324:PMID 1275:PMID 1181:PMID 1138:PMID 1103:PMID 1053:PMID 923:and 753:and 720:> 303:OLED 229:and 185:and 169:and 151:spin 1981:doi 1936:PMC 1928:doi 1880:doi 1844:doi 1806:doi 1742:doi 1702:doi 1633:doi 1598:doi 1586:103 1555:doi 1517:doi 1467:hdl 1459:doi 1408:doi 1396:427 1363:doi 1314:doi 1265:hdl 1255:doi 1216:doi 1173:doi 1130:doi 1095:doi 1045:doi 794:. 749:of 307:LCD 2034:: 1987:. 1979:. 1967:. 1944:. 1934:. 1926:. 1914:. 1910:. 1886:. 1874:. 1850:. 1842:. 1830:. 1804:. 1794:73 1792:. 1788:. 1736:. 1722:^ 1708:. 1700:. 1692:. 1678:. 1661:^ 1647:. 1639:. 1631:. 1621:26 1619:. 1596:. 1584:. 1561:. 1553:. 1543:98 1541:. 1511:. 1507:. 1483:. 1475:. 1465:. 1457:. 1447:23 1445:. 1422:. 1414:. 1406:. 1394:. 1371:. 1361:. 1349:. 1345:. 1322:. 1312:. 1302:39 1300:. 1296:. 1273:. 1263:. 1253:. 1243:61 1241:. 1237:. 1214:. 1204:54 1202:. 1179:. 1171:. 1161:55 1159:. 1136:. 1124:. 1101:. 1093:. 1083:16 1081:. 1065:^ 1051:. 1043:. 1033:16 1031:. 1019:^ 757:. 332:. 317:. 2020:. 1995:. 1983:: 1975:: 1969:7 1952:. 1930:: 1922:: 1916:8 1894:. 1882:: 1876:8 1858:. 1846:: 1838:: 1832:9 1814:. 1808:: 1800:: 1773:. 1748:. 1744:: 1738:6 1716:. 1704:: 1696:: 1686:: 1680:6 1655:. 1635:: 1627:: 1604:. 1600:: 1592:: 1569:. 1557:: 1549:: 1525:. 1519:: 1513:2 1491:. 1469:: 1461:: 1453:: 1430:. 1410:: 1402:: 1379:. 1365:: 1357:: 1351:4 1330:. 1316:: 1308:: 1281:. 1267:: 1257:: 1249:: 1222:. 1218:: 1210:: 1187:. 1175:: 1167:: 1144:. 1132:: 1126:9 1109:. 1097:: 1089:: 1059:. 1047:: 1039:: 936:p 909:p 906:a 875:p 864:p 851:p 848:a 837:= 834:R 831:M 731:p 728:a 724:J 715:p 711:J 683:2 679:D 665:1 661:D 630:2 626:D 612:1 608:D 604:+ 594:2 590:D 576:1 572:D 563:p 560:a 556:J 527:2 523:D 509:1 505:D 501:+ 491:2 487:D 473:1 469:D 460:p 456:J 398:c 394:b 362:a 109:/ 61:) 57:(

Index


orphan
link to it
introduce links
related articles
Find link tool

organic semiconductor
ferromagnet
interface
ferromagnet
organic semiconductor
spintronics
organic
inorganic
hybridization
metal
organic material
molecules
responsive
magnetic properties
spintronics
spin
electron
solid-state
paramagnetic
tunnel magnetoresistance
giant magnetoresistance
spin-orbit
Rashba effect

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.