Knowledge (XXG)

Spin echo

Source 📝

413:
echoes. The FSE/TSE pulse sequence superficially resembles a conventional spin-echo (CSE) sequence in that it uses a series of 180º-refocusing pulses after a single 90º-pulse to generate a train of echoes. The FSE/TSE technique, however, changes the phase-encoding gradient for each of these echoes (a conventional multi-echo sequence collects all echoes in a train with the same phase encoding). As a result of changing the phase-encoding gradient between echoes, multiple lines of k-space (i.e., phase-encoding steps) can be acquired within a given repetition time (TR). As multiple phase-encoding lines are acquired during each TR interval, FSE/TSE techniques may significantly reduce imaging time.
420: 204: 450: 435: 232:
Due to local magnetic field inhomogeneities (variations in the magnetic field at different parts of the sample that are constant in time), as the net moment precesses, some spins slow down due to lower local field strength (and so begin to progressively trail behind) while some speed up due to higher
412:
Fast spin echo (RARE, FAISE or FSE), also called turbo spin echo (TSE) is an MRI sequence that results in fast scan times. In this sequence, several 180 refocusing radio-frequency pulses are delivered during each echo time (TR) interval, and the phase-encoding gradient is briefly switched on between
174:
In 2020 two teams demonstrated that when strongly coupling an ensemble of spins to a resonator, the Hahn pulse sequence does not just lead to a single echo, but rather to a whole train of periodic echoes. In this process the first Hahn echo acts back on the spins as a refocusing pulse, leading to
331:
Hahn's 1950 paper showed that another method for generating spin echoes is to apply three successive 90° pulses. After the first 90° pulse, the magnetization vector spreads out as described above, forming what can be thought of as a "pancake" in the x-y plane. The spreading continues for a time
286:
is included and each spin experiences perfect pulses during which the environment provides no spreading. Six spins are shown above and these are not given the chance to dephase significantly. The spin-echo technique is more useful when the spins have dephased more significantly such as in the
187:
when he applied two successive 90° pulses separated by short time period, but detected a signal, the echo, when no pulse was applied. This phenomenon of spin echo was explained by Erwin Hahn in his 1950 paper, and further developed by
449: 419: 170:
introduced spin-echo neutron scattering, a technique that can be used to study magnons and phonons in single crystals. The technique is now applied in research facilities using triple axis spectrometers.
217:
The vertical red arrow is the average magnetic moment of a group of spins, such as protons. All are vertical in the vertical magnetic field and spinning on their long axis, but this illustration is in a
307:
time, as shown in the animation below. The size of the echo is recorded for different spacings of the two pulses. This reveals the decoherence which is not refocused by the π pulse. In simple cases, an
434: 291: 247:
Progressively, the fast moments catch up with the main moment and the slow moments drift back toward the main moment. At some moment between E and F the sampling of the echo starts.
196:
who pointed out the advantages of using a 180° refocusing pulse for the second pulse. The pulse sequence may be better understood by breaking it down into the following steps:
404:
absorption resonance. Instead of using two spin states in a magnetic field, photon echoes use two energy levels that are present in the material even in zero magnetic field.
81:
at different rates. The first of these, relaxation, leads to an irreversible loss of magnetisation. But the inhomogeneous dephasing can be removed by applying a 180°
390: 350: 370: 321: 774:
Debnath, Kamanasish; Dold, David; Morton, John J. L.; Mølmer, Klaus (2020). "Self-Stimulated Pulse Echo Trains from Inhomogeneously Broadened Spin Ensembles".
1169: 490: 510:
J. E. Tanner & E. O. Stejskal (2003). "Restricted Self-Diffusion of Protons in Colloidal Systems by the Pulsed-Gradient, Spin-Echo Method".
1113: 1092: 1067: 1024: 1154: 1149: 709:
Weichselbaumer, Stefan; Zens, Matthias; Zollitsch, Christoph W.; Brandt, Martin S.; Rotter, Stefan; Gross, Rudolf; Huebl, Hans (2020).
20: 290: 485: 1164: 835:
Carr, H. Y.; Purcell, E. M. (1954). "Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments".
242:
A 180 degree pulse is now applied so that the slower spins lead ahead of the main moment and the fast ones trail behind.
400:
Hahn echos have also been observed at optical frequencies. For this, resonant light is applied to a material with an
1159: 475: 470: 156: 152: 59: 55: 35: 203: 51: 304: 425: 352:, and then a second 90° pulse is applied such that the "pancake" is now in the x-z plane. After a further time 219: 919:"Partial RF echo planar imaging with the FAISE method. I. Experimental and theoretical assessment of artifact" 266:
effects removed. Quite separately, return of the red arrow towards the vertical (not shown) would reflect the
966:"Partial RF echo-planar imaging with the FAISE method. II. Contrast equivalence with spin-echo sequences" 455:
T1-weighted turbo spin echo MRI confirms a fracture, as the surrounding bone marrow has low signal from
320: 844: 793: 732: 666: 626: 561: 519: 193: 66: 89:
vectors. Examples of inhomogeneous effects include a magnetic field gradient and a distribution of
993: 946: 899: 817: 783: 756: 722: 128: 870:
Melki, Philippe S.; Mulkern, Robert V.; Panych, Lawrence P.; Jolesz, Ferenc A. (May–June 1991).
1109: 1088: 1063: 1020: 985: 938: 891: 871: 809: 748: 691:
Mezei, F. (1972), "Neutron spin echo: A new concept in polarized thermal neutron techniques",
480: 309: 167: 132: 1017:
How does MRI work?: An Introduction to the Physics and Function of Magnetic Resonance Imaging
1012: 965: 918: 977: 930: 883: 852: 801: 740: 674: 634: 569: 527: 70: 375: 335: 401: 101:. In simple cases, the intensity of the echo relative to the initial signal is given by 848: 797: 736: 670: 630: 565: 523: 545: 355: 160: 90: 47: 28: 617:
Kurnit, N. A.; Abella, I. D.; Hartmann, S. R. (1964). "Observation of a photon echo".
1143: 821: 760: 573: 86: 997: 950: 903: 372:
a third pulse is applied and a stimulated echo is observed after waiting for a time
805: 744: 711:"Echo Trains in Pulsed Electron Spin Resonance of a Strongly Coupled Spin Ensemble" 233:
field strength and start getting ahead of the others. This makes the signal decay.
124: 24: 710: 227:
A 90° pulse has been applied that flips the arrow into the horizontal (x–y) plane.
1081: 69:
observed following an initial excitation pulse decays with time due to both spin
549: 283: 189: 97:
of dephasing, the inhomogeneous evolution will rephase to form an echo at time 2
1134: 638: 23:
Animation of spin echo, showing the response of spins (red arrows) in the blue
1040: 593: 273:
relaxation. 180 degrees is π radians so 180° pulses are often called π pulses.
184: 144: 78: 588: 887: 981: 934: 856: 813: 752: 678: 989: 942: 895: 19: 964:
Melki, Philippe S.; Jolesz, Ferenc A.; Mulkern, Robert V. (August 1992).
917:
Melki, Philippe S.; Jolesz, Ferenc A.; Mulkern, Robert V. (August 1992).
428:
showing a suspected compressive subcapital fracture as a radiodense line
440: 127:
which have been used in fields other than magnetic resonance including
120:) is the time between the excitation pulse and the peak of the signal. 531: 443:
shows the same, atypical for a fracture since the cortex is coherent
1019:(2nd ed.). Springer Science & Business Media. p. 64. 788: 727: 872:"Comparing the FAISE method with conventional dual-echo sequences" 456: 18: 252:
Complete refocusing has occurred and at this time, an accurate
552:(1979). "NMR population inversion using a composite pulse". 289: 202: 143:
Echoes were first detected in nuclear magnetic resonance by
303:
A Hahn-echo decay experiment can be used to measure the
282:
Several simplifications are used in this sequence: no
147:
in 1950, and spin echoes are sometimes referred to as
1060:
Spin Choreography: Basic Steps in High Resolution NMR
378: 358: 338: 1106:
Principles of Pulse Electron Paramagnetic Resonance
1083:
Spin Dynamics: Basics of Nuclear Magnetic Resonance
112:is the time constant for spin–spin relaxation. The 93:. If the inversion pulse is applied after a period 1080: 384: 364: 344: 123:Echo phenomena are important features of coherent 294:A spin echo with more spins and more dephasing 16:Response of spin to electromagnetic radiation 8: 612: 610: 198: 1011:Weishaupt D, Köchli VD, Marincek B (2008). 77:effects which cause spins in the sample to 222:where the spins are stationary on average. 1104:Arthur Schweiger; Gunnar Jeschke (2001). 1041:"What is Fast (Turbo) Spin Echo imaging?" 787: 726: 377: 357: 337: 502: 415: 312:is measured which is described by the T 183:The spin-echo effect was discovered by 652: 650: 648: 876:Journal of Magnetic Resonance Imaging 491:Photon echoes in semiconductor optics 50:magnetisation by a pulse of resonant 7: 1135:Spin Echo Simulation scratch.mit.edu 657:Hahn, E.L. (1950). "Spin echoes". 175:self-stimulated secondary echoes. 14: 1013:"Chapter 8: Fast Pulse sequences" 163:radiation is most commonly used. 448: 433: 418: 319: 1170:Electron paramagnetic resonance 512:The Journal of Chemical Physics 486:Electron paramagnetic resonance 62:(MRI) make use of this effect. 970:Magnetic Resonance in Medicine 923:Magnetic Resonance in Medicine 806:10.1103/PhysRevLett.125.137702 745:10.1103/PhysRevLett.125.137701 259:echo can be measured with all 1: 554:Journal of Magnetic Resonance 574:10.1016/0022-2364(79)90265-8 1108:. Oxford University Press. 1062:. Oxford University Press. 1186: 1155:Nuclear magnetic resonance 1150:Magnetic resonance imaging 1129:Animations and simulations 1079:Malcolm H. Levitt (2001). 639:10.1103/PhysRevLett.13.567 476:Magnetic resonance imaging 471:Nuclear magnetic resonance 212: 157:magnetic resonance imaging 153:nuclear magnetic resonance 60:magnetic resonance imaging 56:nuclear magnetic resonance 402:inhomogeneously broadened 238: 213: 201: 52:electromagnetic radiation 587:Dan J Bell and J Yeung. 220:rotating reference frame 888:10.1002/jmri.1880010310 776:Physical Review Letters 715:Physical Review Letters 619:Physical Review Letters 239: 85:pulse that inverts the 982:10.1002/mrm.1910260213 935:10.1002/mrm.1910260212 857:10.1103/PhysRev.94.630 693:Zeitschrift für Physik 679:10.1103/PhysRev.80.580 392:after the last pulse. 386: 366: 346: 295: 208: 207:The spin-echo sequence 31: 1165:Scientific techniques 387: 385:{\displaystyle \tau } 367: 347: 345:{\displaystyle \tau } 293: 206: 46:is the refocusing of 22: 1058:Ray Freeman (1999). 376: 356: 336: 305:spin–spin relaxation 849:1954PhRv...94..630C 798:2020PhRvL.125m7702D 737:2020PhRvL.125m7701W 671:1950PhRv...80..580H 631:1964PhRvL..13..567K 566:1979JMagR..33..473L 524:1968JChPh..49.1768T 382: 362: 342: 296: 209: 133:neutron scattering 129:laser spectroscopy 36:magnetic resonance 32: 1160:Quantum mechanics 1115:978-0-19-850634-8 1094:978-0-471-48922-1 1069:978-0-19-850481-8 1026:978-3-540-37845-7 699:(2), pp. 146–160. 546:Malcolm H. Levitt 532:10.1063/1.1670306 481:Neutron spin echo 365:{\displaystyle T} 310:exponential decay 287:animation below: 280: 279: 1177: 1119: 1098: 1086: 1073: 1045: 1044: 1037: 1031: 1030: 1008: 1002: 1001: 961: 955: 954: 914: 908: 907: 867: 861: 860: 832: 826: 825: 791: 771: 765: 764: 730: 706: 700: 689: 683: 682: 654: 643: 642: 614: 605: 604: 602: 601: 584: 578: 577: 542: 536: 535: 507: 452: 437: 422: 391: 389: 388: 383: 371: 369: 368: 363: 351: 349: 348: 343: 323: 274: 248: 243: 234: 228: 223: 199: 1185: 1184: 1180: 1179: 1178: 1176: 1175: 1174: 1140: 1139: 1126: 1116: 1103: 1095: 1078: 1070: 1057: 1054: 1052:Further reading 1049: 1048: 1039: 1038: 1034: 1027: 1010: 1009: 1005: 963: 962: 958: 916: 915: 911: 869: 868: 864: 837:Physical Review 834: 833: 829: 773: 772: 768: 708: 707: 703: 690: 686: 659:Physical Review 656: 655: 646: 625:(19): 567–568. 616: 615: 608: 599: 597: 586: 585: 581: 544: 543: 539: 509: 508: 504: 499: 467: 460: 453: 444: 438: 429: 423: 410: 398: 374: 373: 354: 353: 334: 333: 329: 327:Stimulated echo 315: 301: 299:Spin-echo decay 272: 265: 258: 251: 246: 241: 231: 226: 216: 181: 141: 111: 91:chemical shifts 17: 12: 11: 5: 1183: 1181: 1173: 1172: 1167: 1162: 1157: 1152: 1142: 1141: 1138: 1137: 1131: 1130: 1125: 1124:External links 1122: 1121: 1120: 1114: 1100: 1099: 1093: 1075: 1074: 1068: 1053: 1050: 1047: 1046: 1032: 1025: 1003: 976:(2): 342–354. 956: 929:(2): 328–341. 909: 882:(3): 319–326. 862: 843:(3): 630–638. 827: 782:(13): 137702. 766: 721:(13): 137701. 701: 684: 665:(4): 580–594. 644: 606: 579: 560:(2): 473–476. 537: 501: 500: 498: 495: 494: 493: 488: 483: 478: 473: 466: 463: 462: 461: 454: 447: 445: 439: 432: 430: 424: 417: 409: 408:Fast spin echo 406: 397: 394: 381: 361: 341: 328: 325: 313: 300: 297: 278: 277: 276: 275: 270: 263: 256: 249: 244: 237: 236: 235: 229: 224: 211: 210: 180: 177: 161:radiofrequency 140: 137: 109: 29:pulse sequence 15: 13: 10: 9: 6: 4: 3: 2: 1182: 1171: 1168: 1166: 1163: 1161: 1158: 1156: 1153: 1151: 1148: 1147: 1145: 1136: 1133: 1132: 1128: 1127: 1123: 1117: 1111: 1107: 1102: 1101: 1096: 1090: 1085: 1084: 1077: 1076: 1071: 1065: 1061: 1056: 1055: 1051: 1042: 1036: 1033: 1028: 1022: 1018: 1014: 1007: 1004: 999: 995: 991: 987: 983: 979: 975: 971: 967: 960: 957: 952: 948: 944: 940: 936: 932: 928: 924: 920: 913: 910: 905: 901: 897: 893: 889: 885: 881: 877: 873: 866: 863: 858: 854: 850: 846: 842: 838: 831: 828: 823: 819: 815: 811: 807: 803: 799: 795: 790: 785: 781: 777: 770: 767: 762: 758: 754: 750: 746: 742: 738: 734: 729: 724: 720: 716: 712: 705: 702: 698: 694: 688: 685: 680: 676: 672: 668: 664: 660: 653: 651: 649: 645: 640: 636: 632: 628: 624: 620: 613: 611: 607: 596: 595: 590: 583: 580: 575: 571: 567: 563: 559: 555: 551: 547: 541: 538: 533: 529: 525: 521: 517: 513: 506: 503: 496: 492: 489: 487: 484: 482: 479: 477: 474: 472: 469: 468: 464: 458: 451: 446: 442: 436: 431: 427: 421: 416: 414: 407: 405: 403: 395: 393: 379: 359: 339: 326: 324: 322: 317: 311: 306: 298: 292: 288: 285: 269: 262: 255: 250: 245: 240: 230: 225: 221: 215: 214: 205: 200: 197: 195: 191: 186: 178: 176: 172: 169: 164: 162: 158: 154: 150: 146: 138: 136: 134: 130: 126: 121: 119: 115: 108: 104: 100: 96: 92: 88: 87:magnetisation 84: 80: 76: 75:inhomogeneous 72: 68: 63: 61: 57: 53: 49: 45: 41: 37: 30: 27:to the green 26: 21: 1105: 1082: 1059: 1035: 1016: 1006: 973: 969: 959: 926: 922: 912: 879: 875: 865: 840: 836: 830: 779: 775: 769: 718: 714: 704: 696: 692: 687: 662: 658: 622: 618: 598:. Retrieved 592: 582: 557: 553: 540: 515: 511: 505: 411: 399: 330: 318: 302: 281: 267: 260: 253: 182: 173: 165: 148: 142: 125:spectroscopy 122: 117: 113: 106: 102: 98: 94: 82: 74: 64: 43: 39: 33: 25:Bloch sphere 589:"Echo time" 550:Ray Freeman 518:(4): 1768. 396:Photon echo 284:decoherence 149:Hahn echoes 1144:Categories 789:2004.01116 728:1809.10116 600:2017-09-24 594:Radiopedia 497:References 185:Erwin Hahn 145:Erwin Hahn 71:relaxation 67:NMR signal 58:(NMR) and 1087:. Wiley. 822:214774750 761:119521123 380:τ 340:τ 179:Principle 114:echo time 83:inversion 54:. Modern 44:Hahn echo 40:spin echo 998:45145834 951:26351582 904:26083556 814:33034472 753:33034465 465:See also 168:F. Mezei 166:In 1972 73:and any 990:1513255 943:1513254 896:1802145 845:Bibcode 794:Bibcode 733:Bibcode 667:Bibcode 627:Bibcode 562:Bibcode 520:Bibcode 441:CT scan 194:Purcell 139:History 79:precess 1112:  1091:  1066:  1023:  996:  988:  949:  941:  902:  894:  820:  812:  759:  751:  316:time. 105:where 994:S2CID 947:S2CID 900:S2CID 818:S2CID 784:arXiv 757:S2CID 723:arXiv 457:edema 426:X-ray 151:. In 1110:ISBN 1089:ISBN 1064:ISBN 1021:ISBN 986:PMID 939:PMID 892:PMID 810:PMID 749:PMID 192:and 190:Carr 155:and 131:and 65:The 48:spin 38:, a 978:doi 931:doi 884:doi 853:doi 802:doi 780:125 741:doi 719:125 697:255 675:doi 635:doi 570:doi 528:doi 42:or 34:In 1146:: 1015:. 992:. 984:. 974:26 972:. 968:. 945:. 937:. 927:26 925:. 921:. 898:. 890:. 878:. 874:. 851:. 841:94 839:. 816:. 808:. 800:. 792:. 778:. 755:. 747:. 739:. 731:. 717:. 713:. 695:, 673:. 663:80 661:. 647:^ 633:. 623:13 621:. 609:^ 591:. 568:. 558:33 556:. 548:; 526:. 516:49 514:. 159:, 135:. 118:TE 1118:. 1097:. 1072:. 1043:. 1029:. 1000:. 980:: 953:. 933:: 906:. 886:: 880:1 859:. 855:: 847:: 824:. 804:: 796:: 786:: 763:. 743:: 735:: 725:: 681:. 677:: 669:: 641:. 637:: 629:: 603:. 576:. 572:: 564:: 534:. 530:: 522:: 459:. 360:T 314:2 271:1 268:T 264:2 261:T 257:2 254:T 116:( 110:2 107:T 103:e 99:t 95:t

Index


Bloch sphere
pulse sequence
magnetic resonance
spin
electromagnetic radiation
nuclear magnetic resonance
magnetic resonance imaging
NMR signal
relaxation
precess
magnetisation
chemical shifts
spectroscopy
laser spectroscopy
neutron scattering
Erwin Hahn
nuclear magnetic resonance
magnetic resonance imaging
radiofrequency
F. Mezei
Erwin Hahn
Carr
Purcell
The spin-echo sequence
rotating reference frame
decoherence
A spin echo with more spins and more dephasing
spin–spin relaxation
exponential decay

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.