Knowledge (XXG)

Cleavage (embryo)

Source πŸ“

388:. At the 4-cell stage, the A and C macromeres meet at the animal pole, creating the animal cross-furrow, while the B and D macromeres meet at the vegetal pole, creating the vegetal cross-furrow. With each successive cleavage cycle, the macromeres give rise to quartets of smaller micromeres at the animal pole. The divisions that produce these quartets occur at an oblique angle, an angle that is not a multiple of 90 degrees, to the animal-vegetal axis. Each quartet of micromeres is rotated relative to their parent macromere, and the chirality of this rotation differs between odd- and even-numbered quartets, meaning that there is alternating symmetry between the odd and even quartets. In other words, the orientation of divisions that produces each quartet alternates between being clockwise and counterclockwise with respect to the animal pole. The alternating cleavage pattern that occurs as the quartets are generated produces quartets of micromeres that reside in the cleavage furrows of the four macromeres. When viewed from the animal pole, this arrangement of cells displays a spiral pattern. 415:, the first two cell divisions produce four macromeres that are indistinguishable from one another. Each macromere has the potential of becoming the D macromere. After the formation of the third quartet, one of the macromeres initiates maximum contact with the overlying micromeres in the animal pole of the embryo. This contact is required to distinguish one macromere as the official D quadrant blastomere. In equally cleaving spiral embryos, the D quadrant is not specified until after the formation of the third quartet, when contact with the micromeres dictates one cell to become the future D blastomere. Once specified, the D blastomere signals to surrounding micromeres to lay out their cell fates. 432:, in which both macromeres inherit part of the animal region of the egg, but only the bigger macromere inherits the vegetal region. The second mechanism of unequal cleavage involves the production of an enucleate, membrane bound, cytoplasmic protrusion, called a polar lobe. This polar lobe forms at the vegetal pole during cleavage, and then gets shunted to the D blastomere. The polar lobe contains vegetal cytoplasm, which becomes inherited by the future D macromere. 437: 393: 424:, the first two cell divisions are unequal producing four cells in which one cell is bigger than the other three. This larger cell is specified as the D macromere. Unlike equally cleaving spiralians, the D macromere is specified at the four-cell stage during unequal cleavage. Unequal cleavage can occur in two ways. One method involves asymmetric positioning of the cleavage spindle. This occurs when the 406:, the secondary axis, dorsal-ventral, is determined by the specification of the D quadrant. The D macromere facilitates cell divisions that differ from those produced by the other three macromeres. Cells of the D quadrant give rise to dorsal and posterior structures of the spiralian. Two known mechanisms exist to specify the D quadrant. These mechanisms include equal cleavage and unequal cleavage. 673: 384:. Spiral cleavage can vary between species, but generally the first two cell divisions result in four macromeres, also called blastomeres, (A, B, C, D) each representing one quadrant of the embryo. These first two cleavages are not oriented in planes that occur at right angles parallel to the animal-vegetal axis of the 396:
D quadrant specification through equal and unequal cleavage mechanisms. At the 4-cell stage of equal cleavage, the D macromere has not been specified yet. It will be specified after the formation of the third quartet of micromeres. Unequal cleavage occurs in two ways: asymmetric positioning of the
688:
Compared to other fast developing animals, mammals have a slower rate of division that is between 12 and 24 hours. Initially synchronous, these cellular divisions progressively become more and more asynchronous. Zygotic transcription starts at the two-, four-, or eight-cell stage depending on the
282:
The first cleavage results in bisection of the zygote into left and right halves. The following cleavage planes are centered on this axis and result in the two halves being mirror images of one another. In bilateral holoblastic cleavage, the divisions of the blastomeres are complete and separate;
272:
holoblastic, cleavage. These holoblastic cleavage planes pass all the way through isolecithal zygotes during the process of cytokinesis. Coeloblastula is the next stage of development for eggs that undergo these radial cleavages. In holoblastic eggs, the first cleavage always occurs along the
689:
species (for example, mouse zygotic transcription begins towards the end of the zygote stage and becomes significant at the two-cell stage, whereas human embryos begin zygotic transcription at the eight-cell stage). Cleavage is holoblastic and rotational.
509:, resulting in a polynuclear cell. With the yolk positioned in the center of the egg cell, the nuclei migrate to the periphery of the egg, and the plasma membrane grows inward, partitioning the nuclei into individual cells. Superficial cleavage occurs in 251:
In holoblastic cleavage, the zygote and blastomeres are completely divided during the cleavage, so the number of blastomeres doubles with each cleavage. In the absence of a large concentration of yolk, four major cleavage types can be observed in
319:
Rotational cleavage involves a normal first division along the meridional axis, giving rise to two daughter cells. The way in which this cleavage differs is that one of the daughter cells divides meridionally, whilst the other divides
273:
vegetal-animal axis of the egg, the second cleavage is perpendicular to the first. From here, the spatial arrangement of blastomeres can follow various patterns, due to different planes of cleavage, in various organisms.
112:
mass. This means that with each successive subdivision, there is roughly half the cytoplasm in each daughter cell than before that division, and thus the ratio of nuclear to cytoplasmic material increases.
778:
fluid. As a consequence to increased osmotic pressure, the accumulation of fluid raises the hydrostatic pressure inside the embryo. Hydrostatic pressure breaks open cell-cell contacts within the embryo by
1652:
Dumortier JG, Le Verge-Serandour M, Tortorelli AF, Mielke A, de Plater L, Turlier H, et al. (2 August 2019). "Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst".
1519:
Korotkevich E, Niwayama R, Courtois A, Friese S, Berger N, Buchholz F, et al. (February 2017). "The Apical Domain Is Required and Sufficient for the First Lineage Segregation in the Mouse Embryo".
1906:
Lee SC, Mietchen D, Cho JH, Kim YS, Kim C, Hong KS, et al. (January 2007). "In vivo magnetic resonance microscopy of differentiation in Xenopus laevis embryos from the first cleavage onwards".
188:. Karyokinesis and cytokinesis are independent but spatially and temporally coordinated processes. While mitosis can occur in the absence of cytokinesis, cytokinesis requires the mitotic apparatus. 704:
are initially round, and only loosely adhered. With further division in the process of compaction the cells flatten onto one another. At the 16–cell stage the compacted embryo is called a
471:
In discoidal cleavage, the cleavage furrows do not penetrate the yolk. The embryo forms a disc of cells, called a blasto-disc, on top of the yolk. Discoidal cleavage is commonly found in
491:
egg cells (egg cells with the yolk concentrated at one end). The layer of cells that have incompletely divided and are in contact with the yolk are called the "syncytial layer".
454:
In the presence of a large concentration of yolk in the fertilized egg cell, the cell can undergo partial, or meroblastic, cleavage. Two major types of meroblastic cleavage are
239:
A cell can only be indeterminate (also called regulative) if it has a complete set of undisturbed animal/vegetal cytoarchitectural features. It is characteristic of
517:
egg cells (egg cells with the yolk located in the center of the cell). This type of cleavage can work to promote synchronicity in developmental timing, such as in
243:β€”when the original cell in a deuterostome embryo divides, the two resulting cells can be separated, and each one can individually develop into a whole organism. 58:
with no significant overall growth, producing a cluster of cells the same size as the original zygote. The different cells derived from cleavage are called
402:
Specification of the D macromere and is an important aspect of spiralian development. Although the primary axis, animal-vegetal, is determined during
256:
cells (cells with a small, even distribution of yolk) or in mesolecithal cells or microlecithal cells (moderate concentration of yolk in a gradient)β€”
1828: 1705: 1574: 1446: 1370: 1297: 1272: 1247: 947: 916: 887: 850: 1957: 1313:
Firmin J, Ecker N, Rivet Danon D, Γ–zgΓΌΓ§ Γ–, Barraud Lange V, Turlier H, et al. (16 May 2024). "Mechanics of human embryo compaction".
332:
distribution of yolk (sparsely and evenly distributed). Because the cells have only a small concentration of yolk, they require immediate
759:. The morula is now watertight, to contain the fluid that the cells will later pump into the embryo to transform it into the blastocyst. 1764:"Outcomes of preimplantation genetic diagnosis using either zona drilling with acidified Tyrode's solution or partial zona dissection" 428:
at one pole attaches to the cell membrane, causing it to be much smaller than the aster at the other pole. This results in an unequal
811: 696:
at the eight-cell stage, having undergone three cleavages the embryo starts to change shape as it develops into a morula and then a
2274: 121:
The rapid cell cycles are facilitated by maintaining high levels of proteins that control cell cycle progression such as the
728:
that provides distinct characteristics and functions to their cell-cell and cell-medium interfaces. As surface cells become
191:
The end of cleavage coincides with the beginning of zygotic transcription. This point in non-mammals is referred to as the
372:. Most spiralians undergo equal spiral cleavage, although some undergo unequal cleavage (see below). This group includes 2242: 2187: 1966: 693: 138: 1723:"Preimplantation genetic diagnosis and chromosome analysis of blastomeres using comparative genomic hybridization" 783:. Initially dispersed in hundreds of water pockets throughout the embryo, the fluid collects into a single large 333: 2247: 2159: 2044: 1950: 227:. Each blastomere produced by early embryonic cleavage does not have the capacity to develop into a complete 2011: 784: 666: 126: 2232: 2131: 345: 744:
are developed with the other blastomeres. With further compaction the individual outer blastomeres, the
2237: 2227: 2071: 767: 1935: 1139:"Evolutionary implications of the mode of D quadrant specification in coelomates with spiral cleavage" 803:. The trophoblasts will eventually give rise to the embryonic contribution to the placenta called the 1851: 1662: 1603: 1475: 1322: 981: 875: 780: 425: 157: 89:(partial cleavage). The pole of the egg with the highest concentration of yolk is referred to as the 1464:"Polarity-Dependent Distribution of Angiomotin Localizes Hippo Signaling in Preimplantation Embryos" 1981: 1943: 799:
on one side of the cavity that will go on to produce the embryo proper. The embryo is now termed a
1892: 1160: 1104: 999: 283:
compared with bilateral meroblastic cleavage, in which the blastomeres stay partially connected.
2210: 1986: 1923: 1879: 1824: 1793: 1744: 1701: 1678: 1631: 1570: 1547: 1501: 1442: 1417: 1366: 1338: 1293: 1268: 1243: 1220: 1058: 1017: 943: 912: 883: 846: 1436: 867: 2149: 2112: 2093: 1915: 1869: 1859: 1783: 1775: 1734: 1670: 1621: 1611: 1592:"Mechanics of mouse blastocyst hatching revealed by a hydrogel-based microdeformation assay" 1537: 1529: 1491: 1483: 1407: 1399: 1330: 1210: 1150: 1094: 1048: 1007: 989: 788: 588: 436: 177: 392: 2026: 1462:
Hirate Y, Hirahara S, Inoue Ki, Suzuki A, Alarcon VB, Akimoto K, et al. (July 2013).
792: 752: 153: 1855: 1666: 1607: 1479: 1326: 985: 879: 2205: 2103: 1897: 1788: 1763: 1626: 1591: 1496: 1463: 1412: 1387: 1155: 1138: 756: 749: 741: 677: 528: 514: 365: 351: 217: 39: 2268: 2154: 2098: 1919: 1874: 1839: 1817: 1647: 1645: 1590:
Leonavicius K, Royer C, Preece C, Davies B, Biggins JS, Srinivas S (9 October 2018).
1542: 1037:"Conserved mechanism of dorsoventral axis determination in equal-cleaving spiralians" 1012: 969: 733: 725: 305:, in which the spindle axes are parallel or at right angles to the polar axis of the 224: 185: 172:
and the centrosomes are organized by centrioles brought into the egg by the sperm as
101: 47: 1164: 2169: 2124: 2119: 737: 681: 555: 488: 294: 240: 173: 145: 105: 90: 810:
A single cell can be removed from a pre-compaction eight-cell embryo and used for
1533: 2164: 2089: 2031: 1215: 1198: 818: 745: 622: 506: 429: 329: 253: 192: 165: 149: 94: 1844:
Proceedings of the National Academy of Sciences of the United States of America
1779: 1762:
Kim HJ, Kim CH, Lee SM, Choe SA, Lee JY, Jee BC, et al. (September 2012).
1403: 1334: 974:
Proceedings of the National Academy of Sciences of the United States of America
904: 676:
First stages of cleavage in a fertilized mammalian egg. Semidiagrammatic. z.p.
17: 2220: 2107: 2081: 2021: 2016: 2001: 1487: 838: 800: 775: 729: 701: 697: 633: 551: 302: 298: 213: 169: 71: 59: 55: 31: 1893:"What are the 'advantages' of developing a deuterostome pattern of embryonic" 1700:(11th ed.). Philadelphia: Lippincott William & Wilkins. p. 45. 2053: 1864: 1739: 1722: 1674: 1616: 970:"Evolution of the bilaterian body plan: what have we learned from annelids?" 637: 608: 596: 559: 510: 472: 403: 381: 109: 1927: 1797: 1748: 1682: 1635: 1551: 1505: 1421: 1365:(Fifth ed.). Philadelphia, PA: Churchill Livingstone. pp. 35–36. 1342: 1224: 1099: 1082: 1062: 1053: 1036: 1021: 994: 684:
a. Two-cell stage b. Four-cell stage c. Eight-cell stage d, e. Morula stage
152:
work together to result in cleavage. The mitotic apparatus is made up of a
1883: 2197: 2179: 2141: 2058: 1569:(Forty-first ed.). Philadelphia, PA: Elsevier Limited. p. 165. 1242:(Eleventh ed.). Sunderland, Massachusetts: Sinauer Associates, Inc. 748:, become indistinguishable as they become organised into a thin sheet of 721: 709: 592: 581: 574: 369: 342: 196: 130: 67: 1108: 804: 771: 570: 566: 502: 480: 442: 377: 373: 161: 1003: 2215: 2006: 1991: 770:
on the trophoblasts pump sodium into the morula, drawing in water by
763: 708:. Once the embryo has divided into 16 cells, it begins to resemble a 649: 385: 325: 306: 228: 221: 122: 63: 51: 43: 1386:
Gauster M, Moser G, Wernitznig S, Kupper N, Huppertz B (June 2022).
524: 1083:"Evolutionary Modifications of the Spiralian Developmental Program" 1388:"Early human trophoblast development: from morphology to function" 713: 671: 435: 391: 181: 1840:"Cleavage patterns and the topology of the metazoan tree of life" 672: 629: 484: 476: 134: 78: 1939: 397:
mitotic spindle, or through the formation of a polar lobe (PL).
212:
Determinate cleavage (also called mosaic cleavage) is in most
1435:
Larsen WJ (2001). Sherman LS, Potter SS, Scott WJ (eds.).
905:"Early Development of the Nematode Caenorhabditis elegans" 766:
after three or four days, and begins to take in fluid, as
1567:
Gray's anatomy: the anatomical basis of clinical practice
364:
Spiral cleavage is conserved between many members of the
1199:"The MAPK cascade in equally cleaving spiralian embryos" 1441:(3rd ed.). Elsevier Health Sciences. p. 20. 1290:
Vertebrates: Comparative Anatomy, Function, Evolution
617:
A. Telolecithal (dense yolk throughout most of cell)
603:
B. Mesolecithal (moderate vegetal yolk disposition)
336:
into the uterine wall in order to receive nutrients.
2196: 2178: 2140: 2080: 2067: 2040: 1974: 1816: 839:"An Introduction to Early Developmental Processes" 1908:Differentiation; Research in Biological Diversity 787:, called blastocoel, following a process akin to 546:A. Isolecithal (sparse, evenly distributed yolk) 354:, undergoes holoblastic rotational cell cleavage. 1768:Clinical and Experimental Reproductive Medicine 1596:Proceedings of the National Academy of Sciences 1292:(4th ed.). McGraw-Hill. pp. 158–64. 216:. It results in the developmental fate of the 1951: 724:). Concomitantly, they develop an inside-out 665:"Morula" redirects here. For other uses, see 527:Summary of the main patterns of cleavage and 440:Spiral cleavage in marine snail of the genus 104:in that it increases the number of cells and 8: 963: 961: 959: 872:Biological physics of the developing embryo 2077: 1958: 1944: 1936: 874:. Cambridge University Press. p. 27. 644:B. Centrolecithal (yolk in center of egg) 66:. Cleavage ends with the formation of the 1873: 1863: 1787: 1738: 1625: 1615: 1541: 1495: 1411: 1356: 1354: 1352: 1214: 1192: 1190: 1188: 1186: 1184: 1182: 1180: 1178: 1176: 1174: 1154: 1132: 1130: 1128: 1126: 1124: 1122: 1120: 1118: 1098: 1052: 1011: 993: 293:Radial cleavage is characteristic of the 93:while the opposite is referred to as the 77:Depending mostly on the concentration of 774:from the maternal environment to become 1076: 1074: 1072: 942:(11th ed.). Sinauer. p. 268. 829: 1267:(7th ed.). Sinauer. p. 214. 817:Differences exist between cleavage in 791:. Embryoblast cells also known as the 540:II. Meroblastic (incomplete) cleavage 1197:Lambert JD, Nagy LM (November 2003). 968:Shankland M, Seaver EC (April 2000). 755:. They are still enclosed within the 100:Cleavage differs from other forms of 27:Division of cells in the early embryo 7: 1392:Cellular and Molecular Life Sciences 845:(6th ed.). Sinauer Associates. 795:form a compact mass of cells at the 328:display rotational cleavage, and an 195:and appears to be controlled by the 1819:Principles of Developmental Biology 1087:Integrative and Comparative Biology 537:I. Holoblastic (complete) cleavage 62:and form a compact mass called the 1156:10.1046/j.1420-9101.1992.5020205.x 25: 868:"Cleavage and blastula formation" 762:In humans, the morula enters the 176:. Cytokinesis is mediated by the 1920:10.1111/j.1432-0436.2006.00114.x 1137:Freeman G, Lundelius JW (1992). 81:in the egg, the cleavage can be 1238:Gilbert SF, Barresi MJ (2016). 1143:Journal of Evolutionary Biology 814:, and the embryo will recover. 141:) promotes entry into mitosis. 700:. At the eight-cell stage the 168:. The asters are nucleated by 85:(total or entire cleavage) or 54:of many species undergo rapid 1: 866:ForgΓ‘cs G, Newman SA (2005). 1698:Langman's medical embryology 1534:10.1016/j.devcel.2017.01.006 628:2. Discoidal cleavage (some 108:mass without increasing the 2243:Splanchnopleuric mesenchyme 2188:Splanchnopleuric mesenchyme 1967:Human embryonic development 1891:Onken M (4 February 1999). 1216:10.1016/j.ydbio.2003.07.006 1081:Boyer BC, Henry JQ (1998). 694:human embryonic development 648:Superficial cleavage (most 607:Displaced radial cleavage ( 139:maturation promoting factor 2291: 1838:Valentine JW (July 1997). 1780:10.5653/cerm.2012.39.3.118 1404:10.1007/s00018-022-04377-0 1335:10.1038/s41586-024-07351-x 664: 543: 350:, a popular developmental 1727:Human Reproduction Update 1543:21.11116/0000-0002-8C77-B 1488:10.1016/j.cub.2013.05.014 1363:Larsen's human embryology 712:, hence the name morula ( 501:In superficial cleavage, 197:nuclear-cytoplasmic ratio 44:development of the embryo 2248:Somatopleuric mesenchyme 2160:Somatopleuric mesenchyme 1969:in the first three weeks 732:, they begin to tightly 587:4. Rotational cleavage ( 127:cyclin-dependent kinases 1865:10.1073/pnas.94.15.8001 1815:Wilt F, Hake S (2004). 1675:10.1126/science.aaw7709 1617:10.1073/pnas.1719930115 1035:Henry J (August 2002). 667:Morula (disambiguation) 621:1. Bilateral cleavage ( 580:3. Bilateral cleavage ( 220:being set early in the 180:made up of polymers of 160:made up of polymers of 2132:Regional specification 1361:Schoenwolf GC (2015). 1054:10.1006/dbio.2002.0741 995:10.1073/pnas.97.9.4434 768:sodium-potassium pumps 685: 446: 398: 193:midblastula transition 2275:Developmental biology 2238:Intraembryonic coelom 1740:10.1093/humupd/dmh050 1265:Developmental biology 1240:Developmental Biology 1203:Developmental Biology 1041:Developmental Biology 940:Developmental biology 909:Developmental Biology 843:Developmental Biology 675: 439: 395: 368:taxa, referred to as 297:, which include some 125:and their associated 1565:Standring S (2016). 1100:10.1093/icb/38.4.621 781:hydraulic fracturing 565:2. Spiral cleavage ( 550:1. Radial cleavage ( 129:(CDKs). The complex 1856:1997PNAS...94.8001V 1667:2019Sci...365..465D 1608:2018PNAS..11510375L 1602:(41): 10375–10380. 1480:2013CBio...23.1181H 1327:2024Natur.629..646F 1288:Kardong KV (2006). 1263:Gilbert SF (2003). 986:2000PNAS...97.4434S 938:Gilbert SF (2016). 903:Gilbert SF (2000). 880:2005bpde.book.....F 837:Gilbert SF (2000). 821:and other mammals. 623:cephalopod molluscs 533: 137:also known as MPF ( 38:is the division of 1696:Sadler TW (2010). 1522:Developmental Cell 686: 525: 447: 399: 2262: 2261: 2258: 2257: 1987:Oocyte activation 1850:(15): 8001–8005. 1830:978-0-393-97430-0 1721:Wilton L (2005). 1707:978-0-7817-9069-7 1661:(6452): 465–468. 1576:978-0-7020-5230-9 1528:(3): 235–247.e7. 1474:(13): 1181–1194. 1448:978-0-443-06583-5 1372:978-1-4557-0684-6 1321:(8012): 646–651. 1299:978-0-07-060750-7 1274:978-0-87893-258-0 1249:978-1-60535-470-5 949:978-1-60535-470-5 918:978-0-87893-243-6 889:978-0-521-78337-8 852:978-0-87893-243-6 819:placental mammals 812:genetic screening 658: 657: 589:placental mammals 529:yolk accumulation 268:holoblastic, and 203:Types of cleavage 144:The processes of 16:(Redirected from 2282: 2150:Surface ectoderm 2113:Primitive groove 2094:Primitive streak 2078: 1960: 1953: 1946: 1937: 1931: 1902: 1887: 1877: 1867: 1834: 1822: 1802: 1801: 1791: 1759: 1753: 1752: 1742: 1718: 1712: 1711: 1693: 1687: 1686: 1649: 1640: 1639: 1629: 1619: 1587: 1581: 1580: 1562: 1556: 1555: 1545: 1516: 1510: 1509: 1499: 1459: 1453: 1452: 1438:Human embryology 1432: 1426: 1425: 1415: 1383: 1377: 1376: 1358: 1347: 1346: 1310: 1304: 1303: 1285: 1279: 1278: 1260: 1254: 1253: 1235: 1229: 1228: 1218: 1194: 1169: 1168: 1158: 1134: 1113: 1112: 1102: 1078: 1067: 1066: 1056: 1032: 1026: 1025: 1015: 997: 980:(9): 4434–4437. 965: 954: 953: 935: 929: 928: 926: 925: 911:(6th ed.). 900: 894: 893: 863: 857: 856: 834: 789:Ostwald ripening 753:epithelial cells 740:are formed, and 534: 422:unequal cleavage 178:contractile ring 21: 2290: 2289: 2285: 2284: 2283: 2281: 2280: 2279: 2265: 2264: 2263: 2254: 2192: 2174: 2136: 2069: 2063: 2042: 2036: 2027:Inner cell mass 1970: 1964: 1934: 1905: 1890: 1837: 1831: 1823:. W.W. Norton. 1814: 1810: 1808:Further reading 1805: 1761: 1760: 1756: 1720: 1719: 1715: 1708: 1695: 1694: 1690: 1651: 1650: 1643: 1589: 1588: 1584: 1577: 1564: 1563: 1559: 1518: 1517: 1513: 1468:Current Biology 1461: 1460: 1456: 1449: 1434: 1433: 1429: 1385: 1384: 1380: 1373: 1360: 1359: 1350: 1312: 1311: 1307: 1300: 1287: 1286: 1282: 1275: 1262: 1261: 1257: 1250: 1237: 1236: 1232: 1196: 1195: 1172: 1136: 1135: 1116: 1080: 1079: 1070: 1034: 1033: 1029: 967: 966: 957: 950: 937: 936: 932: 923: 921: 919: 902: 901: 897: 890: 865: 864: 860: 853: 836: 835: 831: 827: 793:inner cell mass 750:tightly adhered 742:tight junctions 670: 663: 505:occurs but not 452: 366:lophotrochozoan 361: 316: 290: 279: 249: 237: 210: 205: 184:protein called 164:protein called 154:central spindle 119: 28: 23: 22: 18:Spiral cleavage 15: 12: 11: 5: 2288: 2286: 2278: 2277: 2267: 2266: 2260: 2259: 2256: 2255: 2253: 2252: 2251: 2250: 2245: 2240: 2230: 2225: 2224: 2223: 2218: 2208: 2206:Axial mesoderm 2202: 2200: 2194: 2193: 2191: 2190: 2184: 2182: 2176: 2175: 2173: 2172: 2167: 2162: 2157: 2152: 2146: 2144: 2138: 2137: 2135: 2134: 2129: 2128: 2127: 2117: 2116: 2115: 2110: 2104:Primitive node 2101: 2086: 2084: 2075: 2065: 2064: 2062: 2061: 2056: 2050: 2048: 2038: 2037: 2035: 2034: 2029: 2024: 2019: 2014: 2009: 2004: 1999: 1994: 1989: 1984: 1978: 1976: 1972: 1971: 1965: 1963: 1962: 1955: 1948: 1940: 1933: 1932: 1903: 1898:MadSci Network 1888: 1835: 1829: 1811: 1809: 1806: 1804: 1803: 1774:(3): 118–124. 1754: 1713: 1706: 1688: 1641: 1582: 1575: 1557: 1511: 1454: 1447: 1427: 1378: 1371: 1348: 1305: 1298: 1280: 1273: 1255: 1248: 1230: 1209:(2): 231–241. 1170: 1114: 1068: 1047:(2): 343–355. 1027: 955: 948: 930: 917: 895: 888: 858: 851: 828: 826: 823: 797:embryonic pole 757:zona pellucida 678:Zona pellucida 662: 659: 656: 655: 654: 653: 642: 641: 626: 614: 613: 612: 601: 600: 585: 578: 563: 542: 541: 538: 531:(after and ). 523: 522: 515:centrolecithal 498: 497: 493: 492: 468: 467: 451: 448: 434: 433: 417: 416: 413:equal cleavage 408: 407: 390: 389: 360: 357: 356: 355: 352:model organism 338: 337: 322: 321: 315: 312: 311: 310: 289: 286: 285: 284: 278: 275: 248: 245: 236: 233: 209: 206: 204: 201: 186:microfilaments 148:(mitosis) and 118: 115: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2287: 2276: 2273: 2272: 2270: 2249: 2246: 2244: 2241: 2239: 2236: 2235: 2234: 2233:Lateral plate 2231: 2229: 2226: 2222: 2219: 2217: 2214: 2213: 2212: 2209: 2207: 2204: 2203: 2201: 2199: 2195: 2189: 2186: 2185: 2183: 2181: 2177: 2171: 2168: 2166: 2163: 2161: 2158: 2156: 2155:Neuroectoderm 2153: 2151: 2148: 2147: 2145: 2143: 2139: 2133: 2130: 2126: 2123: 2122: 2121: 2118: 2114: 2111: 2109: 2105: 2102: 2100: 2099:Primitive pit 2097: 2096: 2095: 2091: 2088: 2087: 2085: 2083: 2079: 2076: 2073: 2066: 2060: 2057: 2055: 2052: 2051: 2049: 2046: 2039: 2033: 2030: 2028: 2025: 2023: 2020: 2018: 2015: 2013: 2010: 2008: 2005: 2003: 2000: 1998: 1995: 1993: 1990: 1988: 1985: 1983: 1982:Fertilization 1980: 1979: 1977: 1973: 1968: 1961: 1956: 1954: 1949: 1947: 1942: 1941: 1938: 1929: 1925: 1921: 1917: 1913: 1909: 1904: 1900: 1899: 1894: 1889: 1885: 1881: 1876: 1871: 1866: 1861: 1857: 1853: 1849: 1845: 1841: 1836: 1832: 1826: 1821: 1820: 1813: 1812: 1807: 1799: 1795: 1790: 1785: 1781: 1777: 1773: 1769: 1765: 1758: 1755: 1750: 1746: 1741: 1736: 1732: 1728: 1724: 1717: 1714: 1709: 1703: 1699: 1692: 1689: 1684: 1680: 1676: 1672: 1668: 1664: 1660: 1656: 1648: 1646: 1642: 1637: 1633: 1628: 1623: 1618: 1613: 1609: 1605: 1601: 1597: 1593: 1586: 1583: 1578: 1572: 1568: 1561: 1558: 1553: 1549: 1544: 1539: 1535: 1531: 1527: 1523: 1515: 1512: 1507: 1503: 1498: 1493: 1489: 1485: 1481: 1477: 1473: 1469: 1465: 1458: 1455: 1450: 1444: 1440: 1439: 1431: 1428: 1423: 1419: 1414: 1409: 1405: 1401: 1397: 1393: 1389: 1382: 1379: 1374: 1368: 1364: 1357: 1355: 1353: 1349: 1344: 1340: 1336: 1332: 1328: 1324: 1320: 1316: 1309: 1306: 1301: 1295: 1291: 1284: 1281: 1276: 1270: 1266: 1259: 1256: 1251: 1245: 1241: 1234: 1231: 1226: 1222: 1217: 1212: 1208: 1204: 1200: 1193: 1191: 1189: 1187: 1185: 1183: 1181: 1179: 1177: 1175: 1171: 1166: 1162: 1157: 1152: 1149:(2): 205–47. 1148: 1144: 1140: 1133: 1131: 1129: 1127: 1125: 1123: 1121: 1119: 1115: 1110: 1106: 1101: 1096: 1093:(4): 621–33. 1092: 1088: 1084: 1077: 1075: 1073: 1069: 1064: 1060: 1055: 1050: 1046: 1042: 1038: 1031: 1028: 1023: 1019: 1014: 1009: 1005: 1001: 996: 991: 987: 983: 979: 975: 971: 964: 962: 960: 956: 951: 945: 941: 934: 931: 920: 914: 910: 906: 899: 896: 891: 885: 881: 877: 873: 869: 862: 859: 854: 848: 844: 840: 833: 830: 824: 822: 820: 815: 813: 808: 806: 802: 798: 794: 790: 786: 782: 777: 773: 769: 765: 760: 758: 754: 751: 747: 743: 739: 738:gap junctions 735: 731: 727: 723: 719: 715: 711: 707: 703: 699: 695: 690: 683: 679: 674: 668: 660: 651: 647: 646: 645: 639: 635: 631: 627: 624: 620: 619: 618: 615: 611:, some fish ) 610: 606: 605: 604: 598: 594: 590: 586: 583: 579: 576: 572: 568: 564: 561: 557: 556:hemichordates 553: 549: 548: 547: 544: 539: 536: 535: 532: 530: 520: 516: 512: 508: 504: 500: 499: 495: 494: 490: 486: 482: 478: 474: 470: 469: 465: 464: 463: 461: 457: 449: 445: 444: 438: 431: 427: 423: 419: 418: 414: 410: 409: 405: 401: 400: 394: 387: 383: 379: 375: 371: 367: 363: 362: 358: 353: 349: 348: 344: 340: 339: 335: 331: 327: 324: 323: 320:equatorially. 318: 317: 313: 308: 304: 300: 296: 295:deuterostomes 292: 291: 287: 281: 280: 276: 274: 271: 267: 264:holoblastic, 263: 260:holoblastic, 259: 255: 246: 244: 242: 241:deuterostomes 235:Indeterminate 234: 232: 230: 226: 223: 219: 215: 207: 202: 200: 199:(about 1:6). 198: 194: 189: 187: 183: 179: 175: 171: 167: 163: 159: 155: 151: 147: 142: 140: 136: 132: 128: 124: 116: 114: 111: 107: 103: 102:cell division 98: 96: 92: 88: 84: 80: 75: 73: 69: 65: 61: 57: 53: 49: 48:fertilization 45: 42:in the early 41: 37: 33: 19: 2228:Intermediate 2170:Neural crest 2125:Gastrulation 1996: 1914:(1): 84–92. 1911: 1907: 1896: 1847: 1843: 1818: 1771: 1767: 1757: 1733:(1): 33–41. 1730: 1726: 1716: 1697: 1691: 1658: 1654: 1599: 1595: 1585: 1566: 1560: 1525: 1521: 1514: 1471: 1467: 1457: 1437: 1430: 1395: 1391: 1381: 1362: 1318: 1314: 1308: 1289: 1283: 1264: 1258: 1239: 1233: 1206: 1202: 1146: 1142: 1090: 1086: 1044: 1040: 1030: 977: 973: 939: 933: 922:. Retrieved 908: 898: 871: 861: 842: 832: 816: 809: 796: 776:blastocoelic 761: 746:trophoblasts 717: 705: 691: 687: 682:Polar bodies 643: 616: 602: 545: 526: 518: 489:telolecithal 459: 455: 453: 441: 421: 412: 346: 334:implantation 269: 265: 261: 257: 250: 238: 211: 190: 174:basal bodies 166:microtubules 146:karyokinesis 143: 120: 99: 91:vegetal pole 86: 82: 76: 74:in mammals. 70:, or of the 46:, following 35: 29: 2165:Neurulation 2090:Archenteron 2082:Germ layers 2032:Trophoblast 702:blastomeres 552:echinoderms 507:cytokinesis 496:Superficial 460:superficial 450:Meroblastic 430:cytokinesis 330:isolecithal 303:echinoderms 299:vertebrates 254:isolecithal 247:Holoblastic 225:development 214:protostomes 208:Determinate 170:centrosomes 150:cytokinesis 110:cytoplasmic 95:animal pole 87:meroblastic 83:holoblastic 60:blastomeres 56:cell cycles 2221:Somitomere 2108:Blastopore 2072:Trilaminar 2022:Blastocyst 2017:Blastocoel 2012:Cavitation 2002:Blastomere 1398:(6): 345. 924:2007-09-17 825:References 801:blastocyst 730:epithelial 698:blastocyst 638:monotremes 634:sauropsids 609:amphibians 597:marsupials 519:Drosophila 513:that have 511:arthropods 487:that have 473:monotremes 347:C. elegans 314:Rotational 266:rotational 156:and polar 72:blastocyst 32:embryology 2054:Hypoblast 2045:Bilaminar 593:nematodes 582:tunicates 575:flatworms 560:amphioxus 466:Discoidal 456:discoidal 404:oogenesis 382:sipuncula 277:Bilateral 258:bilateral 117:Mechanism 2269:Category 2211:Paraxial 2198:Mesoderm 2180:Endoderm 2142:Ectoderm 2120:Gastrula 2059:Epiblast 1997:Cleavage 1928:17244024 1798:23106043 1749:15569702 1683:31371608 1636:30232257 1552:28171747 1506:23791731 1422:35661923 1343:38693259 1225:14597198 1165:85304565 1063:12167409 1022:10781038 726:polarity 722:mulberry 710:mulberry 680:. p.gl. 571:mollusks 567:annelids 481:reptiles 378:molluscs 374:annelids 370:Spiralia 343:nematode 131:cyclin B 68:blastula 36:cleavage 2068:Week 3 2041:Week 2 1884:9223303 1852:Bibcode 1789:3479235 1663:Bibcode 1655:Science 1627:6187134 1604:Bibcode 1497:3742369 1476:Bibcode 1413:9167809 1323:Bibcode 1109:4620189 982:Bibcode 876:Bibcode 805:chorion 772:osmosis 661:Mammals 650:insects 569:, most 503:mitosis 443:Trochus 326:Mammals 162:tubulin 123:cyclins 106:nuclear 52:zygotes 2216:Somite 2007:Morula 1992:Zygote 1975:Week 1 1926:  1882:  1872:  1827:  1796:  1786:  1747:  1704:  1681:  1634:  1624:  1573:  1550:  1504:  1494:  1445:  1420:  1410:  1369:  1341:  1315:Nature 1296:  1271:  1246:  1223:  1163:  1107:  1061:  1020:  1010:  1004:122407 1002:  946:  915:  886:  849:  785:cavity 764:uterus 734:adhere 706:morula 483:, and 386:zygote 380:, and 359:Spiral 307:oocyte 288:Radial 270:spiral 262:radial 229:embryo 222:embryo 158:asters 64:morula 50:. The 1875:21545 1161:S2CID 1105:JSTOR 1013:34316 1000:JSTOR 718:morus 714:Latin 477:birds 426:aster 218:cells 182:actin 40:cells 1924:PMID 1880:PMID 1825:ISBN 1794:PMID 1745:PMID 1702:ISBN 1679:PMID 1632:PMID 1571:ISBN 1548:PMID 1502:PMID 1443:ISBN 1418:PMID 1367:ISBN 1339:PMID 1294:ISBN 1269:ISBN 1244:ISBN 1221:PMID 1059:PMID 1018:PMID 944:ISBN 913:ISBN 884:ISBN 847:ISBN 630:fish 485:fish 458:and 341:The 301:and 135:CDK1 79:yolk 1916:doi 1870:PMC 1860:doi 1784:PMC 1776:doi 1735:doi 1671:doi 1659:365 1622:PMC 1612:doi 1600:115 1538:hdl 1530:doi 1492:PMC 1484:doi 1408:PMC 1400:doi 1331:doi 1319:629 1211:doi 1207:263 1151:doi 1095:doi 1049:doi 1045:248 1008:PMC 990:doi 807:. 736:as 692:In 420:In 411:In 30:In 2271:: 1922:. 1912:75 1910:. 1895:. 1878:. 1868:. 1858:. 1848:94 1846:. 1842:. 1792:. 1782:. 1772:39 1770:. 1766:. 1743:. 1731:11 1729:. 1725:. 1677:. 1669:. 1657:. 1644:^ 1630:. 1620:. 1610:. 1598:. 1594:. 1546:. 1536:. 1526:40 1524:. 1500:. 1490:. 1482:. 1472:23 1470:. 1466:. 1416:. 1406:. 1396:79 1394:. 1390:. 1351:^ 1337:. 1329:. 1317:. 1219:. 1205:. 1201:. 1173:^ 1159:. 1145:. 1141:. 1117:^ 1103:. 1091:38 1089:. 1085:. 1071:^ 1057:. 1043:. 1039:. 1016:. 1006:. 998:. 988:. 978:97 976:. 972:. 958:^ 907:. 882:. 870:. 841:. 720:: 716:, 636:, 632:, 595:, 591:, 573:, 558:, 554:, 479:, 475:, 462:. 376:, 231:. 97:. 34:, 2106:/ 2092:/ 2074:) 2070:( 2047:) 2043:( 1959:e 1952:t 1945:v 1930:. 1918:: 1901:. 1886:. 1862:: 1854:: 1833:. 1800:. 1778:: 1751:. 1737:: 1710:. 1685:. 1673:: 1665:: 1638:. 1614:: 1606:: 1579:. 1554:. 1540:: 1532:: 1508:. 1486:: 1478:: 1451:. 1424:. 1402:: 1375:. 1345:. 1333:: 1325:: 1302:. 1277:. 1252:. 1227:. 1213:: 1167:. 1153:: 1147:5 1111:. 1097:: 1065:. 1051:: 1024:. 992:: 984:: 952:. 927:. 892:. 878:: 855:. 669:. 652:) 640:) 625:) 599:) 584:) 577:) 562:) 521:. 309:. 133:/ 20:)

Index

Spiral cleavage
embryology
cells
development of the embryo
fertilization
zygotes
cell cycles
blastomeres
morula
blastula
blastocyst
yolk
vegetal pole
animal pole
cell division
nuclear
cytoplasmic
cyclins
cyclin-dependent kinases
cyclin B
CDK1
maturation promoting factor
karyokinesis
cytokinesis
central spindle
asters
tubulin
microtubules
centrosomes
basal bodies

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑