Knowledge (XXG)

Splitting circle method

Source 📝

899: 538: 1196: 265:
Repeating this process for the factors found, one finally arrives at an approximative factorization of the polynomial at a required precision. The factors are either linear polynomials representing well isolated zeros or higher order polynomials representing clusters of zeros.
894:{\displaystyle {\begin{aligned}&a_{n-1}+2\,a_{n-2}\,u+\cdots +(n-1)\,a_{1}\,u^{n-2}+n\,a_{0}\,u^{n-1}\\&\quad =-(1+a_{n-1}\,u+\cdots +a_{1}\,u^{n-1}+a_{0}\,u^{n})\cdot (t_{1}+t_{2}\,u+t_{3}\,u^{2}+\dots +t_{n}\,u^{n-1}+\cdots ).\end{aligned}}} 2048:
inside as outside of it. Any annulus of this characteristic can be transformed, by translation and scaling of the polynomial, into the annulus between the radii 1/2 and 2 around the origin. But, not every polynomial admits such a splitting annulus.
954: 2197: 2725: 1366:). Repeating this procedure on the factors using different circles yields finer and finer factorizations. This recursion stops after a finite number of proper splits with all factors being nontrivial powers of linear polynomials. 1369:
The challenge now consists in the conversion of this analytical procedure into a numerical algorithm with good running time. The integration is approximated by a finite sum of a numerical integration method, making use of the
425: 1843: 526: 2469: 226:. To avoid numerical instability one has to demand that all roots are well separated from the boundary circle of the disk. So to obtain a good splitting circle it should be embedded in a root free annulus 3359: 3234: 543: 1924: 173: 3146: 1607: 3002: 2930: 1283: 2581: 1200:
The identity of the left to the right side of this equation also holds for zeros with multiplicities. By using the Newton identities one is able to compute from those sums of powers the factor
2348: 2059: 929: 2026: 1977: 2795: 2590: 1465: 3507: 175:
for any region of the complex plane with a piecewise smooth boundary. Most of those factors will be trivial, that is constant polynomials. Only regions that contain roots of
3406: 3049:
Graeffe iterations, the corresponding annulus of the iterated polynomial has a relative width greater than 11 > 4, as required for the initial splitting described above (
3047: 2861: 3691: 3452: 2233: 284: 2496: 2260: 1685: 1676: 1637: 1520: 1191:{\displaystyle {\frac {1}{2\pi \,i}}\oint _{C}{\frac {p'(z)}{p(z)}}z^{m}\,dz=\sum _{z\in G:\,p(z)=0}{\frac {p'(z)z^{m}}{p'(z)}}=\sum _{z\in G:\,p(z)=0}z^{m}.} 430: 3910: 222:) in two parts, hence the name of the method. To a given disk one computes approximate factors following the analytical theory and refines them using 3258: 3684: 1529: 1203: 3889: 3815: 2353: 3151: 3677: 3879: 278: 1848: 3537: 2747:
Making use of the Graeffe iteration and any known estimate for the absolute value of the largest root one can find estimates
82: 281:
of a tuple of complex numbers and its sums of powers. Therefore, it is possible to compute the coefficients of a polynomial
3056: 2866: 56: 2935: 2508: 1927: 3843: 3848: 3365: 79:, to construct factors of polynomials. With those methods it is possible to construct a factor of a given polynomial 2269: 1342:
The commonly used regions are circles in the complex plane. Each circle gives raise to a split of the polynomial
3833: 3777: 3792: 3736: 3708: 3700: 2751:
of this absolute value of any precision. Now one computes estimates for the largest and smallest distances
906: 47:(Technical report, Mathematisches Institut der UniversitĂ€t TĂŒbingen). A revised algorithm was presented by 3782: 1982: 1933: 1371: 274: 2754: 3874: 1433: 3457: 1398:) that results will only be an approximate factor. To ensure that its zeros are close to the zeros of 3853: 3828: 3592: 3371: 2583:
is now to be lifted back to the original polynomial. To this end an alternation of Newton steps and
1647:
large enough. However, one can improve this approximation faster using a Newton method. Division of
52: 3838: 3767: 3759: 2732: 2584: 2053: 533: 40: 2350:
into even and odd parts, the succeeding polynomial is obtained by purely arithmetic operations as
2932:
for at least one center. For such a center there has to be a root-free annulus of relative width
2824: 36: 25: 3884: 3805: 3749: 3744: 3415: 3007: 223: 2192:{\displaystyle p_{0}=p,\qquad p_{j+1}(x)=(-1)^{\deg p}p_{j}({\sqrt {x}})\,p_{j}(-{\sqrt {x}}),} 3800: 3662: 3652:
Univariate Polynomials: Nearly Optimal Algorithms for Numerical Factorization and Root-finding
3531: 3244: 2202: 1612:
Since the zeros of a polynomial are continuous in its coefficients, one can make the zeros of
3716: 3625: 3600: 3569: 214:) in the complex plane as regions. The boundary circle of a disk splits the set of roots of 72: 3523:
The fundamental theorem of algebra in terms of computational complexity. Preliminary Report
2720:{\displaystyle {\frac {p_{j-1}(x)}{g_{j}(x^{2})}}\approx {\frac {f_{j-1}(x)}{g_{j-1}(-x)}}} 2474: 2238: 1654: 1615: 1498: 3521: 2502:
large enough one finally finds a splitting annulus of relative width 4 around the origin.
948: 76: 3613: 3596: 3583:
Pan, V. Y. (1997). "Solving a polynomial equation: Some history and recent progresses".
3650: 33: 3630: 3904: 3823: 3772: 3574: 3557: 3721: 2736: 2028:. This is repeated until the increments are zero relative to the chosen precision. 3640: 420:{\displaystyle p(x)=x^{n}+p_{n-1}x^{n-1}+\cdots +p_{0}=(x-z_{1})\cdots (x-z_{n})} 3148:
Graeffe iterations, the corresponding annulus has a relative width greater than
17: 3726: 3604: 1838:{\displaystyle p-f_{0}g_{0}=(f-f_{0})g_{0}+(g-g_{0})f_{0}+(f-f_{0})(g-g_{0}),} 48: 29: 1609:
where the norm of a polynomial is the sum of the moduli of its coefficients.
528:
by solving the triangular system that is obtained by comparing the powers of
2471:. The ratios of the absolute moduli of the roots increase by the same power 3546: 3669: 3558:"Optimal and nearly optimal algorithms for approximating polynomial zeros" 71:
The fundamental idea of the splitting circle method is to use methods of
2036:
The crucial step in this method is to find an annulus of relative width
521:{\displaystyle t_{m}=z_{1}^{m}+\cdots +z_{n}^{m}\,,\quad m=0,1,\dots ,n} 60: 45:
The fundamental theorem of algebra in terms of computational complexity
3243:
To locate the best root-free annulus one uses a consequence of the
2863:
between the two. By this construction it can be guaranteed that
183:) result in nontrivial factors that have exactly those roots of 3673: 1491:
large enough, the approximation of the contour integrals using
2464:{\displaystyle p_{j+1}(x)=(-1)^{\deg p}(e(x)^{2}-x\,o(x)^{2})} 3354:{\displaystyle \,0=\sum _{j\neq k}|p_{j}|u^{j}-|p_{k}|u^{k},} 3229:{\textstyle 2^{13{.}8}\cdot n^{6{.}9}>(64\cdot n^{3})^{2}} 1307:. By polynomial division one also obtains the second factor 427:(or of a factor of it) from the sums of powers of its zeros 194:
In the numerical realization of this method one uses disks
2727:
holds. The polynomials on the left side are known in step
1845:
so discarding the last second order term one has to solve
2262:-th dyadic powers of the roots of the initial polynomial 1919:{\displaystyle p-f_{0}g_{0}=f_{0}\Delta g+g_{0}\Delta f} 3614:"A fast and stable algorithm for splitting polynomials" 2731:, the polynomials on the right side can be obtained as 168:{\displaystyle p(x)=x^{n}+p_{n-1}x^{n-1}+\cdots +p_{0}} 3548:
Combinatoire, Algorithmique et Geometrie des Polynomes
3154: 3059: 3010: 2938: 3460: 3418: 3374: 3261: 3141:{\textstyle 4+\log _{2}(n)+\log _{2}(2+\log _{2}(n))} 2869: 2827: 2757: 2593: 2511: 2477: 2356: 2272: 2241: 2205: 2062: 1985: 1936: 1851: 1688: 1657: 1618: 1602:{\displaystyle \|f-f_{0}\|\leq 2^{2k-N}\,nk\,100/98,} 1532: 1501: 1436: 1406:
and only to those, one must demand that all zeros of
1206: 957: 909: 541: 433: 287: 85: 3642:
Algorithm for Approximating Complex Polynomial Zeros
2997:{\textstyle e^{0{.}3/n}\approx 1+{\frac {0{.}3}{n}}} 2925:{\displaystyle R_{j}/r_{j}>e^{0{.}3}\approx 1.35} 3867: 3814: 3791: 3758: 3735: 3707: 1278:{\displaystyle f(x):=\prod _{z\in G:\,p(z)=0}(x-z)} 3501: 3446: 3400: 3353: 3228: 3140: 3041: 2996: 2924: 2855: 2789: 2719: 2576:{\displaystyle p_{j}(x)\approx f_{j}(x)\,g_{j}(x)} 2575: 2490: 2463: 2342: 2254: 2227: 2191: 2056:is applied. It computes a sequence of polynomials 2020: 1971: 1918: 1837: 1670: 1631: 1601: 1514: 1459: 1277: 1190: 923: 893: 520: 419: 167: 3237: 3612:Malajovich, Gregorio; Zubelli, Jorge P. (1997). 3236:, allowing a much simplified initial splitting ( 943:) are pairwise distinct and not on the boundary 3526:, Math. Inst. Univ. TĂŒbingen. 49 pages. (ps.gz) 2040:in the complex plane that contains no zeros of 191:) as their own roots, preserving multiplicity. 3685: 3618:Computers & Mathematics with Applications 2343:{\displaystyle p_{j}(x)=e(x^{2})+x\,o(x^{2})} 8: 2739:expansion of the fraction on the left side. 2044:and contains approximately as many zeros of 1552: 1533: 3663:Real and Complex Fields: Element Operations 2821:and selects the one with the largest ratio 931:is a domain with piecewise smooth boundary 51:in 1998. An implementation was provided by 3692: 3678: 3670: 3629: 3573: 3490: 3477: 3459: 3435: 3417: 3392: 3379: 3373: 3342: 3333: 3327: 3318: 3309: 3300: 3294: 3285: 3273: 3262: 3260: 3220: 3210: 3184: 3180: 3163: 3159: 3153: 3117: 3095: 3070: 3058: 3050: 3021: 3009: 2980: 2974: 2955: 2947: 2943: 2937: 2906: 2902: 2889: 2880: 2874: 2868: 2847: 2838: 2832: 2826: 2775: 2762: 2756: 2690: 2663: 2656: 2641: 2628: 2601: 2594: 2592: 2558: 2553: 2538: 2516: 2510: 2482: 2476: 2452: 2438: 2426: 2398: 2361: 2355: 2331: 2320: 2305: 2277: 2271: 2246: 2240: 2210: 2204: 2176: 2164: 2159: 2149: 2140: 2124: 2087: 2067: 2061: 2003: 1990: 1984: 1954: 1941: 1935: 1930:to obtain the incremented approximations 1904: 1885: 1872: 1862: 1850: 1823: 1801: 1779: 1766: 1744: 1731: 1709: 1699: 1687: 1662: 1656: 1623: 1617: 1588: 1584: 1577: 1562: 1546: 1531: 1506: 1500: 1444: 1443: 1435: 1427: 1239: 1226: 1205: 1179: 1154: 1141: 1106: 1082: 1061: 1048: 1034: 1028: 987: 981: 970: 958: 956: 917: 916: 908: 863: 858: 852: 833: 828: 822: 811: 805: 792: 773: 768: 762: 743: 738: 732: 715: 703: 664: 659: 653: 648: 630: 625: 619: 614: 586: 574: 569: 551: 542: 540: 486: 480: 475: 456: 451: 438: 432: 408: 383: 361: 336: 320: 307: 286: 159: 134: 118: 105: 84: 3408:. In the latter case, there are exactly 3255: âˆ’ 1 the polynomial equation 2805:) to any of the five center points 0, 2 1651:with remainder yields an approximation 3529: 1374:for the evaluation of the polynomials 270:Details of the analytical construction 2735:of the corresponding degrees for the 924:{\displaystyle G\subset \mathbb {C} } 277:are a bijective relation between the 28:for the numerical factorization of a 7: 2498:and thus tend to infinity. Choosing 2021:{\displaystyle g_{1}=g_{0}+\Delta g} 1972:{\displaystyle f_{1}=f_{0}+\Delta f} 3911:Polynomial factorization algorithms 2790:{\displaystyle R_{j}>r_{j}>0} 1639:as close as wanted to the zeros of 1495:points results in an approximation 1483:zeros outside the circle of radius 2587:is used. It is easy to check that 2012: 1963: 1910: 1891: 1475:zeros inside the circle of radius 14: 2505:The approximate factorization of 1460:{\displaystyle p\in \mathbb {C} } 32:and, ultimately, for finding its 3890:Sidi's generalized secant method 3502:{\displaystyle A(0,u_{k},v_{k})} 1295:) corresponding to the zeros of 279:elementary symmetric polynomials 3880:Inverse quadratic interpolation 3509:is a root-free (open) annulus. 3412:roots inside the (closed) disk 2082: 1410:are far away from the boundary 683: 490: 3496: 3464: 3441: 3422: 3401:{\displaystyle u_{k}<v_{k}} 3334: 3319: 3301: 3286: 3217: 3197: 3135: 3132: 3126: 3104: 3085: 3079: 3036: 3030: 2711: 2702: 2681: 2675: 2647: 2634: 2619: 2613: 2570: 2564: 2550: 2544: 2528: 2522: 2458: 2449: 2442: 2423: 2416: 2410: 2395: 2385: 2379: 2373: 2337: 2324: 2311: 2298: 2289: 2283: 2222: 2216: 2183: 2170: 2156: 2146: 2121: 2111: 2105: 2099: 2052:To remedy this situation, the 1829: 1810: 1807: 1788: 1772: 1753: 1737: 1718: 1454: 1448: 1272: 1260: 1249: 1243: 1216: 1210: 1164: 1158: 1128: 1122: 1099: 1093: 1071: 1065: 1018: 1012: 1004: 998: 951:of residual calculus one gets 881: 785: 779: 690: 611: 599: 414: 395: 389: 370: 297: 291: 254:) with a large relative width 95: 89: 1: 3631:10.1016/S0898-1221(96)00233-7 3551:. Paris: Ecole Polytechnique. 3238:Malajovich & Zubelli 1997 532:in the following identity of 3575:10.1016/0898-1221(96)00080-6 1928:extended Euclidean algorithm 3368:zero or two positive roots 3042:{\textstyle 3+\log _{2}(n)} 2856:{\displaystyle R_{j}/r_{j}} 1422:Basic numerical observation 3927: 3709:Bracketing (no derivative) 3536:: CS1 maint: postscript ( 3520:Schönhage, Arnold (1982), 3447:{\displaystyle D(0,u_{k})} 1467:be a polynomial of degree 63:computer algebra systems. 3605:10.1137/S0036144595288554 1926:using any variant of the 3545:Gourdon, Xavier (1996). 3366:Descartes' rule of signs 2228:{\displaystyle p_{j}(x)} 1678:of the remaining factor 3859:Splitting circle method 3844:Jenkins–Traub algorithm 3701:Root-finding algorithms 39:. It was introduced by 22:splitting circle method 3849:Lehmer–Schur algorithm 3503: 3448: 3402: 3355: 3230: 3142: 3043: 2998: 2926: 2857: 2791: 2721: 2577: 2492: 2465: 2344: 2256: 2229: 2193: 2022: 1973: 1920: 1839: 1672: 1633: 1603: 1516: 1461: 1372:fast Fourier transform 1279: 1192: 925: 895: 522: 421: 169: 3875:Fixed-point iteration 3661:Magma documentation. 3504: 3449: 3403: 3356: 3231: 3143: 3044: 2999: 2927: 2858: 2792: 2743:Finding a good circle 2722: 2578: 2493: 2491:{\displaystyle 2^{j}} 2466: 2345: 2257: 2255:{\displaystyle 2^{j}} 2230: 2194: 2023: 1974: 1921: 1840: 1673: 1671:{\displaystyle g_{0}} 1634: 1632:{\displaystyle f_{0}} 1604: 1517: 1515:{\displaystyle f_{0}} 1462: 1280: 1193: 926: 896: 523: 422: 170: 75:, more precisely the 3834:Durand–Kerner method 3778:Newton–Krylov method 3649:Pan, Victor (2002), 3639:Pan, Victor (1998), 3458: 3416: 3372: 3259: 3152: 3057: 3008: 2936: 2867: 2825: 2755: 2591: 2509: 2475: 2354: 2270: 2239: 2203: 2060: 1983: 1934: 1849: 1686: 1655: 1616: 1530: 1499: 1434: 1204: 955: 935:and if the zeros of 907: 539: 431: 285: 83: 3783:Steffensen's method 3597:1997SIAMR..39..187P 3556:Pan, V. Y. (1996). 2585:PadĂ© approximations 2199:where the roots of 534:formal power series 485: 461: 275:Newton's identities 67:General description 26:numerical algorithm 3816:Polynomial methods 3562:Comput. Math. Appl 3499: 3444: 3398: 3351: 3284: 3226: 3138: 3039: 2994: 2922: 2853: 2787: 2717: 2573: 2488: 2461: 2340: 2252: 2225: 2189: 2018: 1969: 1916: 1835: 1668: 1629: 1599: 1512: 1479:and the remaining 1457: 1390:). The polynomial 1275: 1259: 1188: 1174: 1081: 921: 891: 889: 518: 471: 447: 417: 165: 43:in his 1982 paper 3898: 3897: 3854:Laguerre's method 3829:Bairstow's method 3269: 2992: 2733:PadĂ© approximants 2715: 2651: 2181: 2154: 2054:Graeffe iteration 2032:Graeffe iteration 1222: 1137: 1132: 1044: 1022: 975: 3918: 3839:Graeffe's method 3768:Broyden's method 3717:Bisection method 3694: 3687: 3680: 3671: 3658: 3657: 3645: 3635: 3633: 3608: 3579: 3577: 3552: 3541: 3535: 3527: 3508: 3506: 3505: 3500: 3495: 3494: 3482: 3481: 3453: 3451: 3450: 3445: 3440: 3439: 3407: 3405: 3404: 3399: 3397: 3396: 3384: 3383: 3364:> 0, has, by 3360: 3358: 3357: 3352: 3347: 3346: 3337: 3332: 3331: 3322: 3314: 3313: 3304: 3299: 3298: 3289: 3283: 3235: 3233: 3232: 3227: 3225: 3224: 3215: 3214: 3193: 3192: 3188: 3172: 3171: 3167: 3147: 3145: 3144: 3139: 3122: 3121: 3100: 3099: 3075: 3074: 3048: 3046: 3045: 3040: 3026: 3025: 3003: 3001: 3000: 2995: 2993: 2988: 2984: 2975: 2964: 2963: 2959: 2951: 2931: 2929: 2928: 2923: 2915: 2914: 2910: 2894: 2893: 2884: 2879: 2878: 2862: 2860: 2859: 2854: 2852: 2851: 2842: 2837: 2836: 2796: 2794: 2793: 2788: 2780: 2779: 2767: 2766: 2726: 2724: 2723: 2718: 2716: 2714: 2701: 2700: 2684: 2674: 2673: 2657: 2652: 2650: 2646: 2645: 2633: 2632: 2622: 2612: 2611: 2595: 2582: 2580: 2579: 2574: 2563: 2562: 2543: 2542: 2521: 2520: 2497: 2495: 2494: 2489: 2487: 2486: 2470: 2468: 2467: 2462: 2457: 2456: 2431: 2430: 2409: 2408: 2372: 2371: 2349: 2347: 2346: 2341: 2336: 2335: 2310: 2309: 2282: 2281: 2261: 2259: 2258: 2253: 2251: 2250: 2234: 2232: 2231: 2226: 2215: 2214: 2198: 2196: 2195: 2190: 2182: 2177: 2169: 2168: 2155: 2150: 2145: 2144: 2135: 2134: 2098: 2097: 2072: 2071: 2027: 2025: 2024: 2019: 2008: 2007: 1995: 1994: 1978: 1976: 1975: 1970: 1959: 1958: 1946: 1945: 1925: 1923: 1922: 1917: 1909: 1908: 1890: 1889: 1877: 1876: 1867: 1866: 1844: 1842: 1841: 1836: 1828: 1827: 1806: 1805: 1784: 1783: 1771: 1770: 1749: 1748: 1736: 1735: 1714: 1713: 1704: 1703: 1677: 1675: 1674: 1669: 1667: 1666: 1638: 1636: 1635: 1630: 1628: 1627: 1608: 1606: 1605: 1600: 1592: 1576: 1575: 1551: 1550: 1521: 1519: 1518: 1513: 1511: 1510: 1466: 1464: 1463: 1458: 1447: 1284: 1282: 1281: 1276: 1258: 1197: 1195: 1194: 1189: 1184: 1183: 1173: 1133: 1131: 1121: 1112: 1111: 1110: 1092: 1083: 1080: 1033: 1032: 1023: 1021: 1007: 997: 988: 986: 985: 976: 974: 959: 947:, then from the 930: 928: 927: 922: 920: 900: 898: 897: 892: 890: 874: 873: 857: 856: 838: 837: 827: 826: 810: 809: 797: 796: 778: 777: 767: 766: 754: 753: 737: 736: 714: 713: 679: 675: 674: 658: 657: 641: 640: 624: 623: 585: 584: 562: 561: 545: 527: 525: 524: 519: 484: 479: 460: 455: 443: 442: 426: 424: 423: 418: 413: 412: 388: 387: 366: 365: 347: 346: 331: 330: 312: 311: 174: 172: 171: 166: 164: 163: 145: 144: 129: 128: 110: 109: 73:complex analysis 55:in 1996 for the 41:Arnold Schönhage 3926: 3925: 3921: 3920: 3919: 3917: 3916: 3915: 3901: 3900: 3899: 3894: 3885:Muller's method 3863: 3810: 3806:Ridders' method 3787: 3754: 3750:Halley's method 3745:Newton's method 3731: 3703: 3698: 3668: 3655: 3648: 3638: 3611: 3582: 3555: 3544: 3528: 3519: 3515: 3486: 3473: 3456: 3455: 3431: 3414: 3413: 3388: 3375: 3370: 3369: 3338: 3323: 3305: 3290: 3257: 3256: 3216: 3206: 3176: 3155: 3150: 3149: 3113: 3091: 3066: 3055: 3054: 3017: 3006: 3005: 2976: 2939: 2934: 2933: 2898: 2885: 2870: 2865: 2864: 2843: 2828: 2823: 2822: 2797:of any root of 2771: 2758: 2753: 2752: 2745: 2686: 2685: 2659: 2658: 2637: 2624: 2623: 2597: 2596: 2589: 2588: 2554: 2534: 2512: 2507: 2506: 2478: 2473: 2472: 2448: 2422: 2394: 2357: 2352: 2351: 2327: 2301: 2273: 2268: 2267: 2266:. By splitting 2242: 2237: 2236: 2206: 2201: 2200: 2160: 2136: 2120: 2083: 2063: 2058: 2057: 2034: 1999: 1986: 1981: 1980: 1950: 1937: 1932: 1931: 1900: 1881: 1868: 1858: 1847: 1846: 1819: 1797: 1775: 1762: 1740: 1727: 1705: 1695: 1684: 1683: 1658: 1653: 1652: 1619: 1614: 1613: 1558: 1542: 1528: 1527: 1502: 1497: 1496: 1432: 1431: 1424: 1202: 1201: 1175: 1114: 1113: 1102: 1085: 1084: 1024: 1008: 990: 989: 977: 963: 953: 952: 949:residue theorem 905: 904: 888: 887: 859: 848: 829: 818: 801: 788: 769: 758: 739: 728: 699: 677: 676: 660: 649: 626: 615: 570: 547: 537: 536: 434: 429: 428: 404: 379: 357: 332: 316: 303: 283: 282: 272: 250:, outer radius 246:, inner radius 224:Newton's method 155: 130: 114: 101: 81: 80: 77:residue theorem 69: 12: 11: 5: 3924: 3922: 3914: 3913: 3903: 3902: 3896: 3895: 3893: 3892: 3887: 3882: 3877: 3871: 3869: 3865: 3864: 3862: 3861: 3856: 3851: 3846: 3841: 3836: 3831: 3826: 3820: 3818: 3812: 3811: 3809: 3808: 3803: 3801:Brent's method 3797: 3795: 3793:Hybrid methods 3789: 3788: 3786: 3785: 3780: 3775: 3770: 3764: 3762: 3756: 3755: 3753: 3752: 3747: 3741: 3739: 3733: 3732: 3730: 3729: 3724: 3719: 3713: 3711: 3705: 3704: 3699: 3697: 3696: 3689: 3682: 3674: 3667: 3666: 3659: 3646: 3636: 3609: 3591:(2): 187–220. 3580: 3568:(12): 97–138. 3553: 3542: 3516: 3514: 3511: 3498: 3493: 3489: 3485: 3480: 3476: 3472: 3469: 3466: 3463: 3443: 3438: 3434: 3430: 3427: 3424: 3421: 3395: 3391: 3387: 3382: 3378: 3350: 3345: 3341: 3336: 3330: 3326: 3321: 3317: 3312: 3308: 3303: 3297: 3293: 3288: 3282: 3279: 3276: 3272: 3268: 3265: 3245:RouchĂ© theorem 3223: 3219: 3213: 3209: 3205: 3202: 3199: 3196: 3191: 3187: 3183: 3179: 3175: 3170: 3166: 3162: 3158: 3137: 3134: 3131: 3128: 3125: 3120: 3116: 3112: 3109: 3106: 3103: 3098: 3094: 3090: 3087: 3084: 3081: 3078: 3073: 3069: 3065: 3062: 3051:Schönhage 1982 3038: 3035: 3032: 3029: 3024: 3020: 3016: 3013: 2991: 2987: 2983: 2979: 2973: 2970: 2967: 2962: 2958: 2954: 2950: 2946: 2942: 2921: 2918: 2913: 2909: 2905: 2901: 2897: 2892: 2888: 2883: 2877: 2873: 2850: 2846: 2841: 2835: 2831: 2786: 2783: 2778: 2774: 2770: 2765: 2761: 2744: 2741: 2713: 2710: 2707: 2704: 2699: 2696: 2693: 2689: 2683: 2680: 2677: 2672: 2669: 2666: 2662: 2655: 2649: 2644: 2640: 2636: 2631: 2627: 2621: 2618: 2615: 2610: 2607: 2604: 2600: 2572: 2569: 2566: 2561: 2557: 2552: 2549: 2546: 2541: 2537: 2533: 2530: 2527: 2524: 2519: 2515: 2485: 2481: 2460: 2455: 2451: 2447: 2444: 2441: 2437: 2434: 2429: 2425: 2421: 2418: 2415: 2412: 2407: 2404: 2401: 2397: 2393: 2390: 2387: 2384: 2381: 2378: 2375: 2370: 2367: 2364: 2360: 2339: 2334: 2330: 2326: 2323: 2319: 2316: 2313: 2308: 2304: 2300: 2297: 2294: 2291: 2288: 2285: 2280: 2276: 2249: 2245: 2224: 2221: 2218: 2213: 2209: 2188: 2185: 2180: 2175: 2172: 2167: 2163: 2158: 2153: 2148: 2143: 2139: 2133: 2130: 2127: 2123: 2119: 2116: 2113: 2110: 2107: 2104: 2101: 2096: 2093: 2090: 2086: 2081: 2078: 2075: 2070: 2066: 2033: 2030: 2017: 2014: 2011: 2006: 2002: 1998: 1993: 1989: 1968: 1965: 1962: 1957: 1953: 1949: 1944: 1940: 1915: 1912: 1907: 1903: 1899: 1896: 1893: 1888: 1884: 1880: 1875: 1871: 1865: 1861: 1857: 1854: 1834: 1831: 1826: 1822: 1818: 1815: 1812: 1809: 1804: 1800: 1796: 1793: 1790: 1787: 1782: 1778: 1774: 1769: 1765: 1761: 1758: 1755: 1752: 1747: 1743: 1739: 1734: 1730: 1726: 1723: 1720: 1717: 1712: 1708: 1702: 1698: 1694: 1691: 1665: 1661: 1626: 1622: 1598: 1595: 1591: 1587: 1583: 1580: 1574: 1571: 1568: 1565: 1561: 1557: 1554: 1549: 1545: 1541: 1538: 1535: 1522:of the factor 1509: 1505: 1456: 1453: 1450: 1446: 1442: 1439: 1428:Schönhage 1982 1423: 1420: 1414:of the region 1274: 1271: 1268: 1265: 1262: 1257: 1254: 1251: 1248: 1245: 1242: 1238: 1235: 1232: 1229: 1225: 1221: 1218: 1215: 1212: 1209: 1187: 1182: 1178: 1172: 1169: 1166: 1163: 1160: 1157: 1153: 1150: 1147: 1144: 1140: 1136: 1130: 1127: 1124: 1120: 1117: 1109: 1105: 1101: 1098: 1095: 1091: 1088: 1079: 1076: 1073: 1070: 1067: 1064: 1060: 1057: 1054: 1051: 1047: 1043: 1040: 1037: 1031: 1027: 1020: 1017: 1014: 1011: 1006: 1003: 1000: 996: 993: 984: 980: 973: 969: 966: 962: 919: 915: 912: 886: 883: 880: 877: 872: 869: 866: 862: 855: 851: 847: 844: 841: 836: 832: 825: 821: 817: 814: 808: 804: 800: 795: 791: 787: 784: 781: 776: 772: 765: 761: 757: 752: 749: 746: 742: 735: 731: 727: 724: 721: 718: 712: 709: 706: 702: 698: 695: 692: 689: 686: 682: 680: 678: 673: 670: 667: 663: 656: 652: 647: 644: 639: 636: 633: 629: 622: 618: 613: 610: 607: 604: 601: 598: 595: 592: 589: 583: 580: 577: 573: 568: 565: 560: 557: 554: 550: 546: 544: 517: 514: 511: 508: 505: 502: 499: 496: 493: 489: 483: 478: 474: 470: 467: 464: 459: 454: 450: 446: 441: 437: 416: 411: 407: 403: 400: 397: 394: 391: 386: 382: 378: 375: 372: 369: 364: 360: 356: 353: 350: 345: 342: 339: 335: 329: 326: 323: 319: 315: 310: 306: 302: 299: 296: 293: 290: 271: 268: 162: 158: 154: 151: 148: 143: 140: 137: 133: 127: 124: 121: 117: 113: 108: 104: 100: 97: 94: 91: 88: 68: 65: 53:Xavier Gourdon 13: 10: 9: 6: 4: 3: 2: 3923: 3912: 3909: 3908: 3906: 3891: 3888: 3886: 3883: 3881: 3878: 3876: 3873: 3872: 3870: 3868:Other methods 3866: 3860: 3857: 3855: 3852: 3850: 3847: 3845: 3842: 3840: 3837: 3835: 3832: 3830: 3827: 3825: 3824:Aberth method 3822: 3821: 3819: 3817: 3813: 3807: 3804: 3802: 3799: 3798: 3796: 3794: 3790: 3784: 3781: 3779: 3776: 3774: 3773:Secant method 3771: 3769: 3766: 3765: 3763: 3761: 3757: 3751: 3748: 3746: 3743: 3742: 3740: 3738: 3734: 3728: 3725: 3723: 3720: 3718: 3715: 3714: 3712: 3710: 3706: 3702: 3695: 3690: 3688: 3683: 3681: 3676: 3675: 3672: 3664: 3660: 3654: 3653: 3647: 3644: 3643: 3637: 3632: 3627: 3623: 3619: 3615: 3610: 3606: 3602: 3598: 3594: 3590: 3586: 3581: 3576: 3571: 3567: 3563: 3559: 3554: 3550: 3549: 3543: 3539: 3533: 3525: 3524: 3518: 3517: 3512: 3510: 3491: 3487: 3483: 3478: 3474: 3470: 3467: 3461: 3436: 3432: 3428: 3425: 3419: 3411: 3393: 3389: 3385: 3380: 3376: 3367: 3363: 3348: 3343: 3339: 3328: 3324: 3315: 3310: 3306: 3295: 3291: 3280: 3277: 3274: 3270: 3266: 3263: 3254: 3250: 3246: 3241: 3239: 3221: 3211: 3207: 3203: 3200: 3194: 3189: 3185: 3181: 3177: 3173: 3168: 3164: 3160: 3156: 3129: 3123: 3118: 3114: 3110: 3107: 3101: 3096: 3092: 3088: 3082: 3076: 3071: 3067: 3063: 3060: 3052: 3033: 3027: 3022: 3018: 3014: 3011: 2989: 2985: 2981: 2977: 2971: 2968: 2965: 2960: 2956: 2952: 2948: 2944: 2940: 2919: 2916: 2911: 2907: 2903: 2899: 2895: 2890: 2886: 2881: 2875: 2871: 2848: 2844: 2839: 2833: 2829: 2820: 2816: 2812: 2808: 2804: 2800: 2784: 2781: 2776: 2772: 2768: 2763: 2759: 2750: 2742: 2740: 2738: 2734: 2730: 2708: 2705: 2697: 2694: 2691: 2687: 2678: 2670: 2667: 2664: 2660: 2653: 2642: 2638: 2629: 2625: 2616: 2608: 2605: 2602: 2598: 2586: 2567: 2559: 2555: 2547: 2539: 2535: 2531: 2525: 2517: 2513: 2503: 2501: 2483: 2479: 2453: 2445: 2439: 2435: 2432: 2427: 2419: 2413: 2405: 2402: 2399: 2391: 2388: 2382: 2376: 2368: 2365: 2362: 2358: 2332: 2328: 2321: 2317: 2314: 2306: 2302: 2295: 2292: 2286: 2278: 2274: 2265: 2247: 2243: 2219: 2211: 2207: 2186: 2178: 2173: 2165: 2161: 2151: 2141: 2137: 2131: 2128: 2125: 2117: 2114: 2108: 2102: 2094: 2091: 2088: 2084: 2079: 2076: 2073: 2068: 2064: 2055: 2050: 2047: 2043: 2039: 2031: 2029: 2015: 2009: 2004: 2000: 1996: 1991: 1987: 1966: 1960: 1955: 1951: 1947: 1942: 1938: 1929: 1913: 1905: 1901: 1897: 1894: 1886: 1882: 1878: 1873: 1869: 1863: 1859: 1855: 1852: 1832: 1824: 1820: 1816: 1813: 1802: 1798: 1794: 1791: 1785: 1780: 1776: 1767: 1763: 1759: 1756: 1750: 1745: 1741: 1732: 1728: 1724: 1721: 1715: 1710: 1706: 1700: 1696: 1692: 1689: 1681: 1663: 1659: 1650: 1646: 1642: 1624: 1620: 1610: 1596: 1593: 1589: 1585: 1581: 1578: 1572: 1569: 1566: 1563: 1559: 1555: 1547: 1543: 1539: 1536: 1525: 1507: 1503: 1494: 1490: 1486: 1482: 1478: 1474: 1470: 1451: 1440: 1437: 1429: 1421: 1419: 1417: 1413: 1409: 1405: 1401: 1397: 1393: 1389: 1385: 1381: 1377: 1373: 1367: 1365: 1361: 1357: 1353: 1350:) in factors 1349: 1345: 1340: 1338: 1334: 1330: 1326: 1322: 1318: 1314: 1310: 1306: 1302: 1298: 1294: 1290: 1285: 1269: 1266: 1263: 1255: 1252: 1246: 1240: 1236: 1233: 1230: 1227: 1223: 1219: 1213: 1207: 1198: 1185: 1180: 1176: 1170: 1167: 1161: 1155: 1151: 1148: 1145: 1142: 1138: 1134: 1125: 1118: 1115: 1107: 1103: 1096: 1089: 1086: 1077: 1074: 1068: 1062: 1058: 1055: 1052: 1049: 1045: 1041: 1038: 1035: 1029: 1025: 1015: 1009: 1001: 994: 991: 982: 978: 971: 967: 964: 960: 950: 946: 942: 938: 934: 913: 910: 901: 884: 878: 875: 870: 867: 864: 860: 853: 849: 845: 842: 839: 834: 830: 823: 819: 815: 812: 806: 802: 798: 793: 789: 782: 774: 770: 763: 759: 755: 750: 747: 744: 740: 733: 729: 725: 722: 719: 716: 710: 707: 704: 700: 696: 693: 687: 684: 681: 671: 668: 665: 661: 654: 650: 645: 642: 637: 634: 631: 627: 620: 616: 608: 605: 602: 596: 593: 590: 587: 581: 578: 575: 571: 566: 563: 558: 555: 552: 548: 535: 531: 515: 512: 509: 506: 503: 500: 497: 494: 491: 487: 481: 476: 472: 468: 465: 462: 457: 452: 448: 444: 439: 435: 409: 405: 401: 398: 392: 384: 380: 376: 373: 367: 362: 358: 354: 351: 348: 343: 340: 337: 333: 327: 324: 321: 317: 313: 308: 304: 300: 294: 288: 280: 276: 269: 267: 263: 261: 257: 253: 249: 245: 241: 237: 233: 229: 225: 221: 217: 213: 209: 205: 201: 197: 192: 190: 186: 182: 178: 160: 156: 152: 149: 146: 141: 138: 135: 131: 125: 122: 119: 115: 111: 106: 102: 98: 92: 86: 78: 74: 66: 64: 62: 58: 54: 50: 46: 42: 38: 35: 31: 27: 23: 19: 3858: 3760:Quasi-Newton 3722:Regula falsi 3651: 3641: 3621: 3617: 3588: 3584: 3565: 3561: 3547: 3522: 3409: 3361: 3252: 3248: 3242: 2818: 2814: 2810: 2806: 2802: 2798: 2748: 2746: 2737:power series 2728: 2504: 2499: 2263: 2051: 2045: 2041: 2037: 2035: 1679: 1648: 1644: 1643:by choosing 1640: 1611: 1523: 1492: 1488: 1484: 1480: 1476: 1472: 1468: 1425: 1415: 1411: 1407: 1403: 1399: 1395: 1391: 1387: 1383: 1379: 1375: 1368: 1363: 1359: 1355: 1351: 1347: 1343: 1341: 1336: 1332: 1328: 1324: 1320: 1316: 1312: 1308: 1304: 1300: 1296: 1292: 1288: 1286: 1199: 944: 940: 936: 932: 902: 529: 273: 264: 259: 255: 251: 247: 243: 239: 235: 231: 227: 219: 215: 211: 207: 203: 199: 195: 193: 188: 184: 180: 176: 70: 44: 21: 15: 3737:Householder 3624:(2): 1–23. 3585:SIAM Review 1526:with error 18:mathematics 3727:ITP method 3513:References 3251:= 1, ..., 1471:which has 242:) (center 206:) (center 49:Victor Pan 30:polynomial 3316:− 3278:≠ 3271:∑ 3204:⋅ 3174:⋅ 3124:⁡ 3102:⁡ 3077:⁡ 3053:). After 3028:⁡ 2966:≈ 2917:≈ 2706:− 2695:− 2668:− 2654:≈ 2606:− 2532:≈ 2433:− 2403:⁡ 2389:− 2174:− 2129:⁡ 2115:− 2013:Δ 1964:Δ 1911:Δ 1892:Δ 1856:− 1817:− 1795:− 1760:− 1725:− 1693:− 1570:− 1556:≤ 1553:‖ 1540:− 1534:‖ 1441:∈ 1303:) inside 1267:− 1231:∈ 1224:∏ 1146:∈ 1139:∑ 1053:∈ 1046:∑ 979:∮ 968:π 914:⊂ 879:⋯ 868:− 843:⋯ 783:⋅ 748:− 723:⋯ 708:− 688:− 669:− 635:− 606:− 594:⋯ 579:− 556:− 510:… 466:⋯ 402:− 393:⋯ 377:− 352:⋯ 341:− 325:− 210:, radius 150:⋯ 139:− 123:− 3905:Category 3532:citation 3004:. After 2235:are the 1119:′ 1090:′ 995:′ 3593:Bibcode 1487:. With 1402:inside 61:PARI/GP 34:complex 3620:. 33. 3247:: For 1682:. Now 1489:N=O(k) 1430:) Let 1382:) and 1358:) and 20:, the 3656:(PDF) 1315:) in 57:Magma 37:roots 24:is a 3538:link 3454:and 3386:< 3195:> 2920:1.35 2896:> 2817:, −2 2809:, −2 2782:> 2769:> 1979:and 1323:) = 59:and 3626:doi 3601:doi 3570:doi 3115:log 3093:log 3068:log 3019:log 2813:, 2 2400:deg 2126:deg 1586:100 1481:n-k 1477:1/2 1339:). 1287:of 903:If 16:In 3907:: 3616:. 3599:. 3589:39 3587:. 3566:31 3564:. 3560:. 3534:}} 3530:{{ 3240:) 3201:64 3161:13 2819:Ri 2815:Ri 1594:98 1418:. 1386:'( 1220::= 262:. 3693:e 3686:t 3679:v 3665:. 3634:. 3628:: 3622:3 3607:. 3603:: 3595:: 3578:. 3572:: 3540:) 3497:) 3492:k 3488:v 3484:, 3479:k 3475:u 3471:, 3468:0 3465:( 3462:A 3442:) 3437:k 3433:u 3429:, 3426:0 3423:( 3420:D 3410:k 3394:k 3390:v 3381:k 3377:u 3362:u 3349:, 3344:k 3340:u 3335:| 3329:k 3325:p 3320:| 3311:j 3307:u 3302:| 3296:j 3292:p 3287:| 3281:k 3275:j 3267:= 3264:0 3253:n 3249:k 3222:2 3218:) 3212:3 3208:n 3198:( 3190:9 3186:. 3182:6 3178:n 3169:8 3165:. 3157:2 3136:) 3133:) 3130:n 3127:( 3119:2 3111:+ 3108:2 3105:( 3097:2 3089:+ 3086:) 3083:n 3080:( 3072:2 3064:+ 3061:4 3037:) 3034:n 3031:( 3023:2 3015:+ 3012:3 2990:n 2986:3 2982:. 2978:0 2972:+ 2969:1 2961:n 2957:/ 2953:3 2949:. 2945:0 2941:e 2912:3 2908:. 2904:0 2900:e 2891:j 2887:r 2882:/ 2876:j 2872:R 2849:j 2845:r 2840:/ 2834:j 2830:R 2811:R 2807:R 2803:x 2801:( 2799:p 2785:0 2777:j 2773:r 2764:j 2760:R 2749:R 2729:j 2712:) 2709:x 2703:( 2698:1 2692:j 2688:g 2682:) 2679:x 2676:( 2671:1 2665:j 2661:f 2648:) 2643:2 2639:x 2635:( 2630:j 2626:g 2620:) 2617:x 2614:( 2609:1 2603:j 2599:p 2571:) 2568:x 2565:( 2560:j 2556:g 2551:) 2548:x 2545:( 2540:j 2536:f 2529:) 2526:x 2523:( 2518:j 2514:p 2500:j 2484:j 2480:2 2459:) 2454:2 2450:) 2446:x 2443:( 2440:o 2436:x 2428:2 2424:) 2420:x 2417:( 2414:e 2411:( 2406:p 2396:) 2392:1 2386:( 2383:= 2380:) 2377:x 2374:( 2369:1 2366:+ 2363:j 2359:p 2338:) 2333:2 2329:x 2325:( 2322:o 2318:x 2315:+ 2312:) 2307:2 2303:x 2299:( 2296:e 2293:= 2290:) 2287:x 2284:( 2279:j 2275:p 2264:p 2248:j 2244:2 2223:) 2220:x 2217:( 2212:j 2208:p 2187:, 2184:) 2179:x 2171:( 2166:j 2162:p 2157:) 2152:x 2147:( 2142:j 2138:p 2132:p 2122:) 2118:1 2112:( 2109:= 2106:) 2103:x 2100:( 2095:1 2092:+ 2089:j 2085:p 2080:, 2077:p 2074:= 2069:0 2065:p 2046:p 2042:p 2038:4 2016:g 2010:+ 2005:0 2001:g 1997:= 1992:1 1988:g 1967:f 1961:+ 1956:0 1952:f 1948:= 1943:1 1939:f 1914:f 1906:0 1902:g 1898:+ 1895:g 1887:0 1883:f 1879:= 1874:0 1870:g 1864:0 1860:f 1853:p 1833:, 1830:) 1825:0 1821:g 1814:g 1811:( 1808:) 1803:0 1799:f 1792:f 1789:( 1786:+ 1781:0 1777:f 1773:) 1768:0 1764:g 1757:g 1754:( 1751:+ 1746:0 1742:g 1738:) 1733:0 1729:f 1722:f 1719:( 1716:= 1711:0 1707:g 1701:0 1697:f 1690:p 1680:g 1664:0 1660:g 1649:p 1645:N 1641:f 1625:0 1621:f 1597:, 1590:/ 1582:k 1579:n 1573:N 1567:k 1564:2 1560:2 1548:0 1544:f 1537:f 1524:f 1508:0 1504:f 1493:N 1485:2 1473:k 1469:n 1455:] 1452:X 1449:[ 1445:C 1438:p 1426:( 1416:G 1412:C 1408:p 1404:G 1400:p 1396:x 1394:( 1392:f 1388:x 1384:p 1380:x 1378:( 1376:p 1364:x 1362:( 1360:g 1356:x 1354:( 1352:f 1348:x 1346:( 1344:p 1337:x 1335:( 1333:g 1331:) 1329:x 1327:( 1325:f 1321:x 1319:( 1317:p 1313:x 1311:( 1309:g 1305:G 1301:x 1299:( 1297:p 1293:x 1291:( 1289:p 1273:) 1270:z 1264:x 1261:( 1256:0 1253:= 1250:) 1247:z 1244:( 1241:p 1237:: 1234:G 1228:z 1217:) 1214:x 1211:( 1208:f 1186:. 1181:m 1177:z 1171:0 1168:= 1165:) 1162:z 1159:( 1156:p 1152:: 1149:G 1143:z 1135:= 1129:) 1126:z 1123:( 1116:p 1108:m 1104:z 1100:) 1097:z 1094:( 1087:p 1078:0 1075:= 1072:) 1069:z 1066:( 1063:p 1059:: 1056:G 1050:z 1042:= 1039:z 1036:d 1030:m 1026:z 1019:) 1016:z 1013:( 1010:p 1005:) 1002:z 999:( 992:p 983:C 972:i 965:2 961:1 945:C 941:x 939:( 937:p 933:C 918:C 911:G 885:. 882:) 876:+ 871:1 865:n 861:u 854:n 850:t 846:+ 840:+ 835:2 831:u 824:3 820:t 816:+ 813:u 807:2 803:t 799:+ 794:1 790:t 786:( 780:) 775:n 771:u 764:0 760:a 756:+ 751:1 745:n 741:u 734:1 730:a 726:+ 720:+ 717:u 711:1 705:n 701:a 697:+ 694:1 691:( 685:= 672:1 666:n 662:u 655:0 651:a 646:n 643:+ 638:2 632:n 628:u 621:1 617:a 612:) 609:1 603:n 600:( 597:+ 591:+ 588:u 582:2 576:n 572:a 567:2 564:+ 559:1 553:n 549:a 530:u 516:n 513:, 507:, 504:1 501:, 498:0 495:= 492:m 488:, 482:m 477:n 473:z 469:+ 463:+ 458:m 453:1 449:z 445:= 440:m 436:t 415:) 410:n 406:z 399:x 396:( 390:) 385:1 381:z 374:x 371:( 368:= 363:0 359:p 355:+ 349:+ 344:1 338:n 334:x 328:1 322:n 318:p 314:+ 309:n 305:x 301:= 298:) 295:x 292:( 289:p 260:r 258:/ 256:R 252:R 248:r 244:c 240:R 238:, 236:r 234:, 232:c 230:( 228:A 220:x 218:( 216:p 212:r 208:c 204:r 202:, 200:c 198:( 196:D 189:x 187:( 185:p 181:x 179:( 177:p 161:0 157:p 153:+ 147:+ 142:1 136:n 132:x 126:1 120:n 116:p 112:+ 107:n 103:x 99:= 96:) 93:x 90:( 87:p

Index

mathematics
numerical algorithm
polynomial
complex
roots
Arnold Schönhage
Victor Pan
Xavier Gourdon
Magma
PARI/GP
complex analysis
residue theorem
Newton's method
Newton's identities
elementary symmetric polynomials
formal power series
residue theorem
fast Fourier transform
Schönhage 1982
extended Euclidean algorithm
Graeffe iteration
Padé approximations
Padé approximants
power series
Schönhage 1982
Malajovich & Zubelli 1997
Rouché theorem
Descartes' rule of signs
The fundamental theorem of algebra in terms of computational complexity. Preliminary Report
citation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑