Knowledge (XXG)

Turbulence modeling

Source đź“ť

133: 36: 1286: 565: 1099: 374: 1424:
SST (Menter's shear stress transport) turbulence model is a widely used and robust two-equation eddy-viscosity turbulence model used in computational fluid dynamics. The model combines the k-omega turbulence model and K-epsilon turbulence model such that the k-omega is used in the inner region of the
1417:
In computational fluid dynamics, the k–omega (k–ω) turbulence model is a common two-equation turbulence model that is used as a closure for the Reynolds-averaged Navier–Stokes equations (RANS equations). The model attempts to predict turbulence by two partial differential equations for two variables,
1403:
K-epsilon (k-ε) turbulence model is the most common model used in computational fluid dynamics (CFD) to simulate mean flow characteristics for turbulent flow conditions. It is a two-equation model which gives a general description of turbulence by means of two transport equations (PDEs). The original
1389:
The Spalart–Allmaras model is a one-equation model that solves a modelled transport equation for the kinematic eddy turbulent viscosity. The Spalart–Allmaras model was designed specifically for aerospace applications involving wall-bounded flows and has been shown to give good results for boundary
883:
due to turbulence act in the same direction as the shear stresses produced by the averaged flow). It has since been found to be significantly less accurate than most practitioners would assume. Still, turbulence models which employ the Boussinesq hypothesis have demonstrated significant practical
1457:
Eddy viscosity based closures cannot account for the return to isotropy of turbulence, observed in decaying turbulent flows. Eddy-viscosity based models cannot replicate the behaviour of turbulent flows in the Rapid Distortion limit, where the turbulent flow essentially behaves like an elastic
1454:
models have significant shortcomings in complex engineering flows. This arises due to the use of the eddy-viscosity hypothesis in their formulation. For instance, in flows with high degrees of anisotropy, significant streamline curvature, flow separation, zones of recirculating flow or flows
1533:
Boussinesq, J. (1903). Thōrie analytique de la chaleur mise en harmonie avec la thermodynamique et avec la thōrie mc̄anique de la lumi_re: Refroidissement et c̄hauffement par rayonnement, conductibilit ̄des tiges, lames et masses cristallines, courants de convection, thōrie mc̄anique de la
684: 1281:{\displaystyle \nu _{t}=\Delta x\Delta y{\sqrt {\left({\frac {\partial u}{\partial x}}\right)^{2}+\left({\frac {\partial v}{\partial y}}\right)^{2}+{\frac {1}{2}}\left({\frac {\partial u}{\partial y}}+{\frac {\partial v}{\partial x}}\right)^{2}}}} 909:. For wall-bounded turbulent flows, the eddy viscosity must vary with distance from the wall, hence the addition of the concept of a 'mixing length'. In the simplest wall-bounded flow model, the eddy viscosity is given by the equation: 892:
terms. Beyond this, most eddy viscosity turbulence models contain coefficients which are calibrated against measurements, and thus produce reasonably accurate overall outcomes for flow fields of similar type as used for calibration.
332:. In 1877 Boussinesq proposed relating the turbulence stresses to the mean flow to close the system of equations. Here the Boussinesq hypothesis is applied to model the Reynolds stress term. Note that a new proportionality constant 878:
The Boussinesq hypothesis – although not explicitly stated by Boussinesq at the time – effectively consists of the assumption that the Reynolds stress tensor is aligned with the strain tensor of the mean flow (i.e.: that the
980: 560:{\displaystyle -{\overline {v_{i}^{\prime }v_{j}^{\prime }}}=\nu _{t}\left({\frac {\partial {\overline {v_{i}}}}{\partial x_{j}}}+{\frac {\partial {\overline {v_{j}}}}{\partial x_{i}}}\right)-{\frac {2}{3}}k\delta _{ij}} 821: 244: 1432:
The Reynolds stress equation model (RSM), also referred to as second moment closure model, is the most complete classical turbulence modelling approach. Popular eddy-viscosity based models like the
1418:
k and ω, with the first variable being the turbulence kinetic energy (k) while the second (ω) is the specific rate of dissipation (of the turbulence kinetic energy k into internal thermal energy).
1404:
impetus for the K-epsilon model was to improve the mixing-length model, as well as to find an alternative to algebraically prescribing turbulent length scales in moderate to high complexity flows.
1291:
In the context of Large Eddy Simulation, turbulence modeling refers to the need to parameterize the subgrid scale stress in terms of features of the filtered velocity field. This field is called
570: 1020: 180:
govern the velocity and pressure of a fluid flow. In a turbulent flow, each of these quantities may be decomposed into a mean part and a fluctuating part. Averaging the equations gives the
184:, which govern the mean flow. However, the nonlinearity of the Navier–Stokes equations means that the velocity fluctuations still appear in the RANS equations, in the nonlinear term 168:
use turbulent models to predict the evolution of turbulence. These turbulence models are simplified constitutive equations that predict the statistical evolution of turbulent flows.
1962:
Mishra, Aashwin; Girimaji, Sharath (2013). "Intercomponent energy transfer in incompressible homogeneous turbulence: multi-point physics and amenability to one-point closures".
1867:
Mishra, Aashwin; Girimaji, Sharath (2013). "Intercomponent energy transfer in incompressible homogeneous turbulence: multi-point physics and amenability to one-point closures".
160:. Turbulent flows are commonplace in most real-life scenarios. In spite of decades of research, there is no analytical theory to predict the evolution of these turbulent flows. 363: 857: 132: 1362: 749: 912: 717: 311: 278: 1049: 720: 181: 1455:
influenced by rotational effects, the performance of such models is unsatisfactory. In such flows, Reynolds stress equation models offer much better accuracy.
1421: 1803: 1386: 1312: 283:
To obtain equations containing only the mean velocity and pressure, we need to close the RANS equations by modelling the Reynolds stress term
1515: 53: 187: 884:
value. In cases with well-defined shear layers, this is likely due the dominance of streamwise shear components, so that considerable
1558: 119: 100: 756: 2029:
Absi, R. (2021) "Reinvestigating the Parabolic-Shaped Eddy Viscosity Profile for Free Surface Flows" Hydrology 2021, 8(3), 126.
72: 2060: 2050: 2040: 1428: 57: 2023:
Absi, R. (2019) "Eddy Viscosity and Velocity Profiles in Fully-Developed Turbulent Channel Flows" Fluid Dyn (2019) 54: 137.
79: 165: 1075: 177: 161: 988: 86: 164:
governing turbulent flows can only be solved directly for simple cases of flow. For most real-life turbulent flows,
2080: 1433: 1393: 1316: 1067: 325: 46: 824: 2035:
Townsend, A. A. (1980) "The Structure of Turbulent Shear Flow" 2nd Edition (Cambridge Monographs on Mechanics),
1682: 1657: 68: 1575:"About Boussinesq's turbulent viscosity hypothesis: historical remarks and a direct evaluation of its validity" 1444: 1407: 1327: 871:
viscosity with an eddy viscosity. This can be a simple constant eddy viscosity (which works well for some free
1658:"Smagorinsky, Joseph. "General circulation experiments with the primitive equations: I. The basic experiment" 1390:
layers subjected to adverse pressure gradients. It is also gaining popularity in turbomachinery applications.
1059:", which is a surprisingly accurate model for wall-bounded, attached (not separated) flow fields with small 313:
as a function of the mean flow, removing any reference to the fluctuating part of the velocity. This is the
1697:
Spalart, Philippe R.; Allmaras, Steven R. (1992). "A one-equation turbulence model for aerodynamic flows".
679:{\displaystyle -{\overline {v_{i}^{\prime }v_{j}^{\prime }}}=2\nu _{t}S_{ij}-{\tfrac {2}{3}}k\delta _{ij}} 1292: 1090: 1022:
is the partial derivative of the streamwise velocity (u) with respect to the wall normal direction (y)
1971: 1928: 1876: 1818: 1776: 1733: 1669: 1630: 1364:. The S–A model uses only one additional equation to model turbulence viscosity transport, while the 2075: 335: 1507: 1380:
The following is a brief overview of commonly employed models in modern engineering applications.
832: 1987: 1944: 1892: 1834: 1749: 1604: 1086: 280:. Its effect on the mean flow is like that of a stress term, such as from pressure or viscosity. 153: 93: 2056: 2046: 2036: 1554: 1511: 1340: 1060: 727: 1979: 1936: 1884: 1826: 1784: 1741: 1702: 1677: 1638: 1594: 1586: 1548: 1499: 692: 286: 253: 1027: 2055:
Wilcox, C. D. (1998), "Turbulence Modeling for CFD" 2nd Ed., (DCW Industries, La Cañada),
2045:
Bradshaw, P. (1971) "An introduction to turbulence and its measurement" (Pergamon Press),
1056: 860: 247: 1500: 1337:–omega) models and offers a relatively low cost computation for the turbulence viscosity 1975: 1932: 1880: 1854:
Modelling Turbulence in Engineering and the Environment: Second-Moment Routes to Closure
1822: 1780: 1737: 1673: 1634: 1919:
Lumley, John; Newman, Gary (1977). "The return to isotropy of homogeneous turbulence".
1071: 906: 902: 145: 1093:
models, based on the local derivatives of the velocity field and the local grid size:
369:, has been introduced. Models of this type are known as eddy viscosity models (EVMs). 2069: 1991: 1896: 1838: 1753: 1721: 872: 1948: 1608: 1621:
Prandtl, Ludwig (1925). "Bericht uber Untersuchungen zur ausgebildeten Turbulenz".
880: 905:
introduced the additional concept of the mixing length, along with the idea of a
137: 35: 17: 1767:
Wilcox, D. C. (2008). "Formulation of the k-omega Turbulence Model Revisited".
1722:"A Reynolds stress model of turbulence and its application to thin shear flows" 1590: 975:{\displaystyle \nu _{t}=\left|{\frac {\partial u}{\partial y}}\right|l_{m}^{2}} 1940: 1745: 1599: 867:
In this model, the additional turbulence stresses are given by augmenting the
157: 1642: 2024: 1804:"Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications" 329: 2030: 328:
was the first to attack the closure problem, by introducing the concept of
1983: 1888: 868: 1706: 1574: 1830: 1788: 1425:
boundary layer and switches to the k-epsilon in the free shear flow.
1070:
have evolved over time, with most modern turbulence models given by
1909:
Pope, Stephen. "Turbulent Flows". Cambridge University Press, 2000.
239:{\displaystyle -\rho {\overline {v_{i}^{\prime }v_{j}^{\prime }}}} 131: 1089:
was the first who proposed a formula for the eddy viscosity in
875:
flows such as axisymmetric jets, 2-D jets, and mixing layers).
29: 605: 590: 409: 394: 246:
from the convective acceleration. This term is known as the
225: 210: 1683:
10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
816:{\displaystyle k={\tfrac {1}{2}}{\overline {v_{i}'v_{i}'}}} 888:
errors in flow-normal components are still negligible in
1547:
John J. Bertin; Jacques Periaux; Josef Ballmann (1992),
1082:
Smagorinsky model for the sub-grid scale eddy viscosity
767: 649: 1343: 1102: 1030: 991: 915: 835: 759: 730: 695: 573: 377: 338: 289: 256: 190: 27:
Use of mathematical models to simulate turbulent flow
60:. Unsourced material may be challenged and removed. 1550:Advances in Hypersonics: Modeling hypersonic flows 1356: 1280: 1043: 1014: 974: 851: 815: 743: 711: 678: 559: 357: 305: 272: 238: 1699:30th Aerospace Sciences Meeting and Exhibit, AIAA 1506:. Cambridge: Cambridge University Press. p.  1015:{\displaystyle {\frac {\partial u}{\partial y}}} 182:Reynolds-averaged Navier–Stokes (RANS) equations 1311:The Boussinesq hypothesis is employed in the 8: 751:is the (kinematic) turbulence eddy viscosity 1852:Hanjalić, Hanjalić; Launder, Brian (2011). 1502:Computational fluid dynamics for engineers 2025:https://doi.org/10.1134/S0015462819010014 1681: 1598: 1348: 1342: 1270: 1245: 1222: 1206: 1197: 1173: 1159: 1135: 1128: 1107: 1101: 1035: 1029: 992: 990: 966: 961: 933: 920: 914: 840: 834: 798: 785: 778: 766: 758: 735: 729: 700: 694: 667: 648: 636: 626: 604: 599: 589: 584: 577: 572: 548: 531: 514: 494: 488: 482: 470: 450: 444: 438: 427: 408: 403: 393: 388: 381: 376: 343: 337: 294: 288: 261: 255: 224: 219: 209: 204: 197: 189: 120:Learn how and when to remove this message 2031:https://doi.org/10.3390/hydrology8030126 1055:This simple model is the basis for the " 2005:Sagaut, Pierre; Cambon, Claude (2008). 1475: 1498:Andersson, Bengt; et al. (2012). 1422:SST (Menter’s Shear Stress Transport) 896: 567:which can be written in shorthand as 367:(kinematic) turbulence eddy viscosity 7: 58:adding citations to reliable sources 1720:Hanjalic, K.; Launder, B. (1972). 1256: 1248: 1233: 1225: 1184: 1176: 1146: 1138: 1122: 1116: 1003: 995: 944: 936: 507: 485: 463: 441: 25: 152:is the construction and use of a 34: 2007:Homogeneous Turbulence Dynamics 897:Prandtl's mixing-length concept 45:needs additional citations for 1429:Reynolds stress equation model 1: 358:{\displaystyle \nu _{t}>0} 1656:Smagorinsky, Joseph (1963). 1573:François G. Schmitt (2007), 852:{\displaystyle \delta _{ij}} 808: 611: 500: 456: 415: 231: 1531:Boussinesq, Joseph (1903). 136:A simulation of a physical 2097: 1964:Journal of Fluid Mechanics 1921:Journal of Fluid Mechanics 1869:Journal of Fluid Mechanics 1726:Journal of Fluid Mechanics 1591:10.1016/j.crme.2007.08.004 721:mean rate of strain tensor 326:Joseph Valentin Boussinesq 156:to predict the effects of 1941:10.1017/s0022112077000585 1746:10.1017/S002211207200268X 825:turbulence kinetic energy 1643:10.1002/zamm.19250050212 1579:Comptes Rendus MĂ©canique 1357:{\displaystyle \nu _{t}} 744:{\displaystyle \nu _{t}} 1076:Navier–Stokes equations 178:Navier–Stokes equations 1802:Menter, F. R. (1994). 1662:Monthly Weather Review 1483:Pope, Stephen (2000). 1387:Spalart–Allmaras (S–A) 1358: 1293:subgrid-scale modeling 1282: 1045: 1016: 976: 853: 817: 745: 713: 712:{\displaystyle S_{ij}} 680: 561: 359: 307: 306:{\displaystyle R_{ij}} 274: 273:{\displaystyle R_{ij}} 240: 141: 1359: 1283: 1091:Large Eddy Simulation 1051:is the mixing length. 1046: 1044:{\displaystyle l_{m}} 1017: 977: 854: 818: 746: 714: 681: 562: 360: 308: 275: 241: 135: 69:"Turbulence modeling" 1984:10.1017/jfm.2013.343 1889:10.1017/jfm.2013.343 1623:Z. Angew. Math. Mech 1341: 1100: 1028: 989: 913: 833: 757: 728: 693: 571: 375: 336: 287: 254: 188: 54:improve this article 1976:2013JFM...731..639M 1933:1977JFM....82..161L 1881:2013JFM...731..639M 1823:1994AIAAJ..32.1598M 1781:2008AIAAJ..46.2823W 1738:1972JFM....52..609H 1674:1963MWRv...91...99S 1635:1925ZaMM....5..136P 1536:. Gauthier-Villars. 1372:–ω models use two. 971: 806: 793: 609: 594: 413: 398: 229: 214: 150:turbulence modeling 1707:10.2514/6.1992-439 1600:20.500.12210/73178 1354: 1299:Spalart–Allmaras, 1278: 1087:Joseph Smagorinsky 1061:pressure gradients 1041: 1012: 972: 957: 849: 813: 794: 781: 776: 741: 709: 676: 658: 595: 580: 557: 399: 384: 355: 303: 270: 236: 215: 200: 154:mathematical model 142: 2081:Turbulence models 1775:(11): 2823–2838. 1585:(9–10): 617–627, 1517:978-1-107-01895-2 1276: 1263: 1240: 1214: 1191: 1153: 1068:turbulence models 1010: 951: 811: 775: 657: 614: 539: 521: 503: 477: 459: 418: 234: 130: 129: 122: 104: 16:(Redirected from 2088: 2011: 2010: 2002: 1996: 1995: 1959: 1953: 1952: 1916: 1910: 1907: 1901: 1900: 1864: 1858: 1857: 1849: 1843: 1842: 1817:(8): 1598–1605. 1808: 1799: 1793: 1792: 1764: 1758: 1757: 1717: 1711: 1710: 1694: 1688: 1687: 1685: 1653: 1647: 1646: 1618: 1612: 1611: 1602: 1570: 1564: 1563: 1544: 1538: 1537: 1528: 1522: 1521: 1505: 1495: 1489: 1488: 1480: 1363: 1361: 1360: 1355: 1353: 1352: 1313:Spalart–Allmaras 1287: 1285: 1284: 1279: 1277: 1275: 1274: 1269: 1265: 1264: 1262: 1254: 1246: 1241: 1239: 1231: 1223: 1215: 1207: 1202: 1201: 1196: 1192: 1190: 1182: 1174: 1164: 1163: 1158: 1154: 1152: 1144: 1136: 1129: 1112: 1111: 1050: 1048: 1047: 1042: 1040: 1039: 1021: 1019: 1018: 1013: 1011: 1009: 1001: 993: 981: 979: 978: 973: 970: 965: 956: 952: 950: 942: 934: 925: 924: 858: 856: 855: 850: 848: 847: 822: 820: 819: 814: 812: 807: 802: 789: 779: 777: 768: 750: 748: 747: 742: 740: 739: 718: 716: 715: 710: 708: 707: 685: 683: 682: 677: 675: 674: 659: 650: 644: 643: 631: 630: 615: 610: 608: 603: 593: 588: 578: 566: 564: 563: 558: 556: 555: 540: 532: 527: 523: 522: 520: 519: 518: 505: 504: 499: 498: 489: 483: 478: 476: 475: 474: 461: 460: 455: 454: 445: 439: 432: 431: 419: 414: 412: 407: 397: 392: 382: 364: 362: 361: 356: 348: 347: 312: 310: 309: 304: 302: 301: 279: 277: 276: 271: 269: 268: 245: 243: 242: 237: 235: 230: 228: 223: 213: 208: 198: 125: 118: 114: 111: 105: 103: 62: 38: 30: 21: 18:Turbulence model 2096: 2095: 2091: 2090: 2089: 2087: 2086: 2085: 2066: 2065: 2020: 2015: 2014: 2004: 2003: 1999: 1961: 1960: 1956: 1918: 1917: 1913: 1908: 1904: 1866: 1865: 1861: 1851: 1850: 1846: 1831:10.2514/3.12149 1806: 1801: 1800: 1796: 1789:10.2514/1.36541 1766: 1765: 1761: 1719: 1718: 1714: 1696: 1695: 1691: 1655: 1654: 1650: 1620: 1619: 1615: 1572: 1571: 1567: 1561: 1546: 1545: 1541: 1530: 1529: 1525: 1518: 1497: 1496: 1492: 1485:Turbulent Flows 1482: 1481: 1477: 1472: 1467: 1462: 1461: 1378: 1344: 1339: 1338: 1326:–epsilon), and 1309: 1255: 1247: 1232: 1224: 1221: 1217: 1216: 1183: 1175: 1169: 1168: 1145: 1137: 1131: 1130: 1103: 1098: 1097: 1084: 1074:similar to the 1072:field equations 1057:law of the wall 1031: 1026: 1025: 1002: 994: 987: 986: 943: 935: 929: 916: 911: 910: 899: 861:Kronecker delta 836: 831: 830: 780: 755: 754: 731: 726: 725: 696: 691: 690: 663: 632: 622: 579: 569: 568: 544: 510: 506: 490: 484: 466: 462: 446: 440: 437: 433: 423: 383: 373: 372: 339: 334: 333: 323: 315:closure problem 290: 285: 284: 257: 252: 251: 248:Reynolds stress 199: 186: 185: 174: 172:Closure problem 166:CFD simulations 126: 115: 109: 106: 63: 61: 51: 39: 28: 23: 22: 15: 12: 11: 5: 2094: 2092: 2084: 2083: 2078: 2068: 2067: 2064: 2063: 2053: 2043: 2033: 2027: 2019: 2016: 2013: 2012: 1997: 1954: 1911: 1902: 1859: 1844: 1794: 1759: 1732:(4): 609–638. 1712: 1689: 1648: 1613: 1565: 1559: 1539: 1523: 1516: 1490: 1474: 1473: 1471: 1468: 1466: 1463: 1460: 1459: 1443:model and the 1426: 1419: 1405: 1391: 1383: 1382: 1377: 1374: 1351: 1347: 1308: 1297: 1289: 1288: 1273: 1268: 1261: 1258: 1253: 1250: 1244: 1238: 1235: 1230: 1227: 1220: 1213: 1210: 1205: 1200: 1195: 1189: 1186: 1181: 1178: 1172: 1167: 1162: 1157: 1151: 1148: 1143: 1140: 1134: 1127: 1124: 1121: 1118: 1115: 1110: 1106: 1083: 1080: 1053: 1052: 1038: 1034: 1023: 1008: 1005: 1000: 997: 969: 964: 960: 955: 949: 946: 941: 938: 932: 928: 923: 919: 907:boundary layer 903:Ludwig Prandtl 898: 895: 881:shear stresses 865: 864: 846: 843: 839: 827: 810: 805: 801: 797: 792: 788: 784: 774: 771: 765: 762: 752: 738: 734: 723: 706: 703: 699: 673: 670: 666: 662: 656: 653: 647: 642: 639: 635: 629: 625: 621: 618: 613: 607: 602: 598: 592: 587: 583: 576: 554: 551: 547: 543: 538: 535: 530: 526: 517: 513: 509: 502: 497: 493: 487: 481: 473: 469: 465: 458: 453: 449: 443: 436: 430: 426: 422: 417: 411: 406: 402: 396: 391: 387: 380: 354: 351: 346: 342: 330:eddy viscosity 322: 321:Eddy viscosity 319: 300: 297: 293: 267: 264: 260: 233: 227: 222: 218: 212: 207: 203: 196: 193: 173: 170: 146:fluid dynamics 140:airplane model 128: 127: 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2093: 2082: 2079: 2077: 2074: 2073: 2071: 2062: 2058: 2054: 2052: 2048: 2044: 2042: 2038: 2034: 2032: 2028: 2026: 2022: 2021: 2017: 2008: 2001: 1998: 1993: 1989: 1985: 1981: 1977: 1973: 1969: 1965: 1958: 1955: 1950: 1946: 1942: 1938: 1934: 1930: 1926: 1922: 1915: 1912: 1906: 1903: 1898: 1894: 1890: 1886: 1882: 1878: 1874: 1870: 1863: 1860: 1855: 1848: 1845: 1840: 1836: 1832: 1828: 1824: 1820: 1816: 1812: 1805: 1798: 1795: 1790: 1786: 1782: 1778: 1774: 1770: 1763: 1760: 1755: 1751: 1747: 1743: 1739: 1735: 1731: 1727: 1723: 1716: 1713: 1708: 1704: 1700: 1693: 1690: 1684: 1679: 1675: 1671: 1668:(3): 99–164. 1667: 1663: 1659: 1652: 1649: 1644: 1640: 1636: 1632: 1628: 1624: 1617: 1614: 1610: 1606: 1601: 1596: 1592: 1588: 1584: 1580: 1576: 1569: 1566: 1562: 1560:9780817636630 1556: 1552: 1551: 1543: 1540: 1535: 1527: 1524: 1519: 1513: 1509: 1504: 1503: 1494: 1491: 1486: 1479: 1476: 1469: 1464: 1456: 1453: 1451: 1447: 1442: 1440: 1436: 1430: 1427: 1423: 1420: 1416: 1414: 1410: 1406: 1402: 1400: 1396: 1392: 1388: 1385: 1384: 1381: 1376:Common models 1375: 1373: 1371: 1367: 1349: 1345: 1336: 1332: 1330: 1325: 1321: 1319: 1314: 1306: 1302: 1298: 1296: 1294: 1271: 1266: 1259: 1251: 1242: 1236: 1228: 1218: 1211: 1208: 1203: 1198: 1193: 1187: 1179: 1170: 1165: 1160: 1155: 1149: 1141: 1132: 1125: 1119: 1113: 1108: 1104: 1096: 1095: 1094: 1092: 1088: 1081: 1079: 1077: 1073: 1069: 1066:More general 1064: 1062: 1058: 1036: 1032: 1024: 1006: 998: 985: 984: 983: 967: 962: 958: 953: 947: 939: 930: 926: 921: 917: 908: 904: 894: 891: 887: 882: 876: 874: 870: 862: 844: 841: 837: 828: 826: 803: 799: 795: 790: 786: 782: 772: 769: 763: 760: 753: 736: 732: 724: 722: 704: 701: 697: 689: 688: 687: 671: 668: 664: 660: 654: 651: 645: 640: 637: 633: 627: 623: 619: 616: 600: 596: 585: 581: 574: 552: 549: 545: 541: 536: 533: 528: 524: 515: 511: 495: 491: 479: 471: 467: 451: 447: 434: 428: 424: 420: 404: 400: 389: 385: 378: 370: 368: 352: 349: 344: 340: 331: 327: 320: 318: 316: 298: 295: 291: 281: 265: 262: 258: 249: 220: 216: 205: 201: 194: 191: 183: 179: 171: 169: 167: 163: 162:The equations 159: 155: 151: 147: 139: 134: 124: 121: 113: 110:November 2016 102: 99: 95: 92: 88: 85: 81: 78: 74: 71: â€“  70: 66: 65:Find sources: 59: 55: 49: 48: 43:This article 41: 37: 32: 31: 19: 2006: 2000: 1967: 1963: 1957: 1924: 1920: 1914: 1905: 1872: 1868: 1862: 1853: 1847: 1814: 1811:AIAA Journal 1810: 1797: 1772: 1769:AIAA Journal 1768: 1762: 1729: 1725: 1715: 1698: 1692: 1665: 1661: 1651: 1626: 1622: 1616: 1582: 1578: 1568: 1553:, Springer, 1549: 1542: 1532: 1526: 1501: 1493: 1484: 1478: 1449: 1445: 1438: 1434: 1431: 1412: 1408: 1398: 1394: 1379: 1369: 1365: 1334: 1328: 1323: 1317: 1310: 1304: 1300: 1290: 1085: 1065: 1054: 900: 889: 885: 877: 866: 371: 366: 324: 314: 282: 175: 149: 143: 116: 107: 97: 90: 83: 76: 64: 52:Please help 47:verification 44: 1970:: 639–681. 1927:: 161–178. 1875:: 639–681. 138:wind tunnel 2076:Turbulence 2070:Categories 2061:0963605100 2051:0080166210 2041:0521298199 1629:(2): 136. 1465:References 158:turbulence 80:newspapers 1992:122537381 1897:122537381 1839:120712103 1754:122631170 1441:–epsilon) 1401:–epsilon) 1346:ν 1307:–ω models 1257:∂ 1249:∂ 1234:∂ 1226:∂ 1185:∂ 1177:∂ 1147:∂ 1139:∂ 1123:Δ 1117:Δ 1105:ν 1004:∂ 996:∂ 945:∂ 937:∂ 918:ν 869:molecular 838:δ 809:¯ 733:ν 665:δ 646:− 624:ν 612:¯ 606:′ 591:′ 575:− 546:δ 529:− 508:∂ 501:¯ 486:∂ 464:∂ 457:¯ 442:∂ 425:ν 416:¯ 410:′ 395:′ 379:− 341:ν 232:¯ 226:′ 211:′ 195:ρ 192:− 1949:39228898 1609:32637068 890:absolute 886:relative 804:′ 791:′ 1972:Bibcode 1929:Bibcode 1877:Bibcode 1819:Bibcode 1777:Bibcode 1734:Bibcode 1670:Bibcode 1631:Bibcode 1534:lumi_re 1458:medium. 1452:–omega) 1415:–omega) 1368:–ε and 1315:(S–A), 1303:–ε and 901:Later, 859:is the 823:is the 719:is the 94:scholar 2059:  2049:  2039:  1990:  1947:  1895:  1837:  1752:  1607:  1557:  1514:  982:where 686:where 365:, the 96:  89:  82:  75:  67:  2018:Other 1988:S2CID 1945:S2CID 1893:S2CID 1835:S2CID 1807:(PDF) 1750:S2CID 1605:S2CID 1470:Notes 873:shear 101:JSTOR 87:books 2057:ISBN 2047:ISBN 2037:ISBN 1555:ISBN 1512:ISBN 1448:–ω ( 1437:–ε ( 1411:–ω ( 1397:–ε ( 829:and 350:> 176:The 73:news 1980:doi 1968:731 1937:doi 1885:doi 1873:731 1827:doi 1785:doi 1742:doi 1703:doi 1678:doi 1639:doi 1595:hdl 1587:doi 1583:335 144:In 56:by 2072:: 1986:. 1978:. 1966:. 1943:. 1935:. 1925:82 1923:. 1891:. 1883:. 1871:. 1833:. 1825:. 1815:32 1813:. 1809:. 1783:. 1773:46 1771:. 1748:. 1740:. 1730:52 1728:. 1724:. 1701:. 1676:. 1666:91 1664:. 1660:. 1637:. 1625:. 1603:, 1593:, 1581:, 1577:, 1510:. 1508:83 1331:–ω 1320:–ε 1295:. 1078:. 1063:. 317:. 250:, 148:, 2009:. 1994:. 1982:: 1974:: 1951:. 1939:: 1931:: 1899:. 1887:: 1879:: 1856:. 1841:. 1829:: 1821:: 1791:. 1787:: 1779:: 1756:. 1744:: 1736:: 1709:. 1705:: 1686:. 1680:: 1672:: 1645:. 1641:: 1633:: 1627:5 1597:: 1589:: 1520:. 1487:. 1450:k 1446:k 1439:k 1435:k 1413:k 1409:k 1399:k 1395:k 1370:k 1366:k 1350:t 1335:k 1333:( 1329:k 1324:k 1322:( 1318:k 1305:k 1301:k 1272:2 1267:) 1260:x 1252:v 1243:+ 1237:y 1229:u 1219:( 1212:2 1209:1 1204:+ 1199:2 1194:) 1188:y 1180:v 1171:( 1166:+ 1161:2 1156:) 1150:x 1142:u 1133:( 1126:y 1120:x 1114:= 1109:t 1037:m 1033:l 1007:y 999:u 968:2 963:m 959:l 954:| 948:y 940:u 931:| 927:= 922:t 863:. 845:j 842:i 800:i 796:v 787:i 783:v 773:2 770:1 764:= 761:k 737:t 705:j 702:i 698:S 672:j 669:i 661:k 655:3 652:2 641:j 638:i 634:S 628:t 620:2 617:= 601:j 597:v 586:i 582:v 553:j 550:i 542:k 537:3 534:2 525:) 516:i 512:x 496:j 492:v 480:+ 472:j 468:x 452:i 448:v 435:( 429:t 421:= 405:j 401:v 390:i 386:v 353:0 345:t 299:j 296:i 292:R 266:j 263:i 259:R 221:j 217:v 206:i 202:v 123:) 117:( 112:) 108:( 98:· 91:· 84:· 77:· 50:. 20:)

Index

Turbulence model

verification
improve this article
adding citations to reliable sources
"Turbulence modeling"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message

wind tunnel
fluid dynamics
mathematical model
turbulence
The equations
CFD simulations
Navier–Stokes equations
Reynolds-averaged Navier–Stokes (RANS) equations
Reynolds stress
Joseph Valentin Boussinesq
eddy viscosity
mean rate of strain tensor
turbulence kinetic energy
Kronecker delta
molecular
shear
shear stresses

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑