Knowledge

Two-state vector formalism

Source đź“ť

204:, the first state vector evolves from the electron leaving its source, the second state vector evolves backwards from the final location of the electron on the detection screen, and the combination of forwards and backwards evolving state vectors determines what occurs when the electron passes the slits. 59:
is not complete; rather, both forwards and backwards evolving quantum states are required to describe a quantum state: a first state vector that evolves from the initial conditions towards the future, and a second state vector that evolves backwards in time from future boundary conditions. Past and
211:. It can be employed in particular for analyzing pre- and post-selected quantum systems. Building on the notion of two-state, Reznik and Aharonov constructed a time-symmetric formulation of quantum mechanics that encompasses probabilistic observables as well as nonprobabilistic weak observables. 80:, can be obtained formally by separating out the initial conditions (or, conversely, the final conditions) by performing sequences of coherence-destroying operations, thereby cancelling out the influence of the two state vectors. 234:
In TSVF, causality is time-symmetric; that is, the usual chain of causality is not simply reversed. Rather, TSVF combines causality both from the past (forward causation) and the future (backwards causation, or
136: 195: 167: 975:
Aharonov, Yakir; Albert, David Z.; Vaidman, Lev (1988-04-04). "How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100".
265:
in 1986, although Ruth Kastner has argued that the two interpretations (Transactional and Two-State Vector) have important differences as well. It shares the property of
219:
In view of the TSVF approach, and in order to allow information to be obtained about quantum systems that are both pre- and post-selected, Yakir Aharonov,
44: 310: 270: 55:
in 1955, who named it the Double Inferential state-Vector Formalism (DIVF). Watanabe proposed that information given by forwards evolving
839: 643: 447: 60:
future measurements, taken together, provide complete information about a quantum system. Watanabe's work was later rediscovered by
755: 315: 463:
Aharonov, Yakir; Bergmann, Peter G.; Lebowitz, Joel L. (1964-06-22). "Time Symmetry in the Quantum Process of Measurement".
207:
The two-state vector formalism provides a time-symmetric description of quantum mechanics, and is constructed such as to be
258: 93: 246:, TSVF yields the same predictions as standard quantum mechanics. Lev Vaidman emphasizes that TSVF fits very well with 243: 1079: 251: 305: 208: 35:
relation in which the present is caused by quantum states of the past and of the future taken in combination.
254:, with the difference that initial and final conditions single out one branch of wavefunctions (our world). 43:
The two-state vector formalism is one example of a time-symmetric interpretation of quantum mechanics (see
278: 266: 201: 51:
in 1921, and later by several other scientists. The two-state vector formalism was first developed by
984: 947: 880: 787: 699: 676: 553: 472: 391: 348: 172: 144: 938:
Aharonov, Y; Vaidman, L (1991-05-21). "Complete description of a quantum system at a given time".
1074: 1033: 904: 870: 803: 777: 585: 543: 510: 417: 364: 834:, Volume 1, Lecture Notes in Physics, vol. 734, pp. 399–447, 2nd ed., Springer, 2008, 337:"Das Kausalproblem der Quantentheorie als eine Grundfrage der modernen Naturforschung ĂĽberhaupt" 1053: 1008: 1000: 963: 896: 835: 704: 651: 639: 619: 615: 577: 569: 522: 488: 443: 28: 382:
Watanabe, Satosi (1955). "Symmetry of physical laws. Part III. Prediction and retrodiction".
1043: 992: 955: 888: 795: 747: 735: 694: 684: 607: 561: 480: 451: 407: 399: 356: 300: 534:
Reznik, B.; Aharonov, Y. (1995-10-01). "Time-symmetric formulation of quantum mechanics".
290: 274: 52: 48: 16:
Description of quantum mechanics in which the present depends on both the past and future
988: 951: 884: 791: 768:
Heaney, Michael B. (2013). "A symmetrical interpretation of the Klein-Gordon equation".
680: 557: 476: 395: 352: 740:
The Retrocausal Nature of Quantum Measurement Revealed by Partial and Weak Measurements
295: 262: 236: 65: 61: 959: 892: 744:
Quantum Retrocausation: Theory and Experiment (13–14 June 2011, San Diego, California)
1068: 807: 638:, Volume 1, Lecture Notes in Physics 734, pp. 399–447, 2nd ed., Springer, 2008, 421: 69: 56: 908: 589: 521:, Handbook of the Philosophy of Science, North-Holland, Elsevier, pp. 275–416, 368: 247: 220: 77: 72:
in 1964, who later renamed it the Two-State Vector Formalism (TSVF). Conventional
281:
and with the time-symmetric theories of Kenneth B. Wharton and Michael B. Heaney
996: 514: 224: 47:). Time-symmetric interpretations of quantum mechanics were first suggested by 1048: 1021: 1020:
Aharonov, Yakir; Cohen, Eliahu; Gruss, Eyal; Landsberger, Tomer (2014-07-26).
799: 725: 484: 403: 228: 73: 1057: 1004: 967: 900: 708: 573: 565: 492: 32: 1012: 931: 920: 875: 843: 647: 604:
About position measurements which do not show the Bohmian particle position
581: 548: 412: 360: 828:
The Two-State Vector Formalism of Quantum Mechanics: an Updated Review
812: 751: 689: 664: 632:
The Two-State Vector Formalism of Quantum Mechanics: an Updated Review
830:. In: Juan Gonzalo Muga, Rafael Sala Mayato, Íñigo Egusquiza (eds.): 634:. In: Juan Gonzalo Muga, Rafael Sala Mayato, Íñigo Egusquiza (eds.): 854: 336: 928:
A Suggestion for a Teleological Interpretation of Quantum Mechanics
1038: 782: 442:, Quantum Mechanical Studies for A. M. Shimony, Volume Two, 1997, 663:
Aharonov, Yakir; Cohen, Eliahu; Landsberger, Tomer (2017-03-12).
438:, in: Robert Sonné Cohen, Michael Horne, John J. Stachel (eds.): 1022:"Measurement and collapse within the two-state vector formalism" 665:"The Two-Time Interpretation and Macroscopic Time-Reversibility" 861:
Vaidman, Lev (2007-03-07). "Backward evolving quantum states".
721:
Ruth E. Kastner, talk presented at Cambridge 2014 Conference,
1032:(1–2). Springer Science and Business Media LLC: 133–146. 257:
The two-state vector formalism has similarities with the
614:, Kluwer Academic Publishers, 1996, pp. 141–154, 175: 147: 96: 471:(6B). American Physical Society (APS): B1410–B1416. 440:
Potentiality, Entanglement and Passion-At-A-Distance
983:(14). American Physical Society (APS): 1351–1354. 934:(submitted 14 June 2000, version of 4 August 2000) 863:Journal of Physics A: Mathematical and Theoretical 723:Free Will and Retrocausality in the Quantum World, 612:Bohmian mechanics and quantum theory: an appraisal 189: 161: 131:{\displaystyle \langle \Phi |\ \ \ |\Psi \rangle } 130: 650:(submitted 21 May 2001, version of 10 June 2007) 542:(4). American Physical Society (APS): 2538–2550. 846:(submitted 21 May 2001, version of 10 June 2007) 169:evolves backwards from the future and the state 940:Journal of Physics A: Mathematical and General 8: 1026:Quantum Studies: Mathematics and Foundations 917:Two-time interpretation of quantum mechanics 436:Protective measurements of two-state vectors 184: 148: 125: 97: 1047: 1037: 874: 781: 700:1983/8998b8f3-71c3-430d-813b-a7b4479bcaa8 698: 688: 610:, Arthur Fine, Sheldon Goldstein (eds.): 547: 411: 176: 174: 154: 146: 117: 103: 95: 327: 7: 842:, DOI 10.1007/978-3-540-73473-4_13, 646:, DOI 10.1007/978-3-540-73473-4_13, 45:Interpretations of quantum mechanics 507:Non-relativistic quantum mechanics 181: 151: 122: 100: 14: 946:(10). IOP Publishing: 2315–2328. 869:(12). IOP Publishing: 3275–3284. 261:of quantum mechanics proposed by 316:Positive operator valued measure 197:evolves forwards from the past. 915:Yakir Aharonov, Eyal Y. Gruss: 311:Wheeler–Feynman absorber theory 271:Wheeler–Feynman absorber theory 851:The Two-State Vector Formalism 602:Yakir Aharonov, Lev Vaidmann: 190:{\displaystyle |\Psi \rangle } 177: 162:{\displaystyle \langle \Phi |} 155: 118: 104: 1: 826:Yakir Aharonov, Lev Vaidman: 630:Yakir Aharonov, Lev Vaidman: 434:Yakir Aharonov, Lev Vaidman: 259:transactional interpretation 997:10.1103/physrevlett.60.1351 960:10.1088/0305-4470/24/10/018 893:10.1088/1751-8113/40/12/s23 1096: 252:many-worlds interpretation 21:two-state vector formalism 1049:10.1007/s40509-014-0011-9 832:Time in Quantum Mechanics 800:10.1007/s10701-013-9713-9 636:Time in Quantum Mechanics 485:10.1103/physrev.134.b1410 404:10.1103/RevModPhys.27.179 384:Reviews of Modern Physics 335:Schottky, Walter (1921). 306:Delayed choice experiment 932:arXiv:quant-ph/0006070v2 923:(submitted 28 July 2005) 921:arXiv:quant-ph/0507269v1 857:(submitted 10 June 2007) 844:arXiv:quant-ph/0105101v2 742:, AIP Conf. Proc. 1408: 648:arXiv:quant-ph/0105101v2 566:10.1103/physreva.52.2538 227:developed the theory of 977:Physical Review Letters 209:time-reversal invariant 770:Foundations of Physics 279:John Archibald Wheeler 244:de Broglie–Bohm theory 215:Relation to other work 202:double-slit experiment 200:In the example of the 191: 163: 132: 27:) is a description of 519:Philosophy of Physics 192: 164: 133: 746:, pp. 120-131, 173: 145: 94: 989:1988PhRvL..60.1351A 952:1991JPhA...24.2315A 885:2007JPhA...40.3275V 792:2013FoPh...43..733H 736:Avshalom C. Elitzur 681:2017Entrp..19..111A 558:1995PhRvA..52.2538R 477:1964PhRv..134.1410A 396:1955RvMP...27..179W 353:1921NW......9..492S 341:Naturwissenschaften 87:is represented by: 876:quant-ph/0606208v1 523:Footnote on p. 327 511:Jeremy Butterfield 361:10.1007/bf01494985 187: 159: 128: 1080:Quantum mechanics 855:arXiv:0706.1347v1 752:10.1063/1.3663720 690:10.3390/e19030111 536:Physical Review A 505:Michael Dickson: 242:Similarly as the 116: 113: 110: 29:quantum mechanics 1087: 1061: 1051: 1041: 1016: 971: 912: 878: 814: 811: 785: 765: 759: 738:, Eliahu Cohen: 733: 727: 719: 713: 712: 702: 692: 660: 654: 628: 622: 608:James T. Cushing 600: 594: 593: 551: 549:quant-ph/9501011 531: 525: 503: 497: 496: 460: 454: 450:, pp. 1–8, 432: 426: 425: 415: 379: 373: 372: 332: 301:Weak measurement 196: 194: 193: 188: 180: 168: 166: 165: 160: 158: 141:where the state 137: 135: 134: 129: 121: 114: 111: 108: 107: 85:two-state vector 1095: 1094: 1090: 1089: 1088: 1086: 1085: 1084: 1065: 1064: 1019: 974: 937: 860: 823: 821:Further reading 818: 817: 767: 766: 762: 734: 730: 720: 716: 662: 661: 657: 629: 625: 601: 597: 533: 532: 528: 504: 500: 465:Physical Review 462: 461: 457: 433: 429: 381: 380: 376: 347:(25): 492–496. 334: 333: 329: 324: 291:Satosi Watanabe 287: 275:Richard Feynman 217: 171: 170: 143: 142: 139: 92: 91: 53:Satosi Watanabe 49:Walter Schottky 41: 17: 12: 11: 5: 1093: 1091: 1083: 1082: 1077: 1067: 1066: 1063: 1062: 1017: 972: 935: 924: 913: 858: 847: 840:978-3540734727 822: 819: 816: 815: 776:(6): 733–746. 760: 728: 714: 655: 644:978-3540734727 623: 595: 526: 498: 455: 448:978-0792344537 427: 390:(2): 179–186. 374: 326: 325: 323: 320: 319: 318: 313: 308: 303: 298: 296:Yakir Aharonov 293: 286: 283: 263:John G. Cramer 237:retrocausality 216: 213: 186: 183: 179: 157: 153: 150: 127: 124: 120: 106: 102: 99: 89: 66:Peter Bergmann 62:Yakir Aharonov 57:quantum states 40: 37: 31:in terms of a 15: 13: 10: 9: 6: 4: 3: 2: 1092: 1081: 1078: 1076: 1073: 1072: 1070: 1059: 1055: 1050: 1045: 1040: 1035: 1031: 1027: 1023: 1018: 1014: 1010: 1006: 1002: 998: 994: 990: 986: 982: 978: 973: 969: 965: 961: 957: 953: 949: 945: 941: 936: 933: 929: 925: 922: 918: 914: 910: 906: 902: 898: 894: 890: 886: 882: 877: 872: 868: 864: 859: 856: 852: 849:Lev Vaidman: 848: 845: 841: 837: 833: 829: 825: 824: 820: 813: 809: 805: 801: 797: 793: 789: 784: 779: 775: 771: 764: 761: 757: 753: 749: 745: 741: 737: 732: 729: 726: 724: 718: 715: 710: 706: 701: 696: 691: 686: 682: 678: 674: 670: 666: 659: 656: 653: 649: 645: 641: 637: 633: 627: 624: 621: 617: 613: 609: 605: 599: 596: 591: 587: 583: 579: 575: 571: 567: 563: 559: 555: 550: 545: 541: 537: 530: 527: 524: 520: 516: 512: 508: 502: 499: 494: 490: 486: 482: 478: 474: 470: 466: 459: 456: 453: 449: 445: 441: 437: 431: 428: 423: 419: 414: 409: 405: 401: 397: 393: 389: 385: 378: 375: 370: 366: 362: 358: 354: 350: 346: 342: 338: 331: 328: 321: 317: 314: 312: 309: 307: 304: 302: 299: 297: 294: 292: 289: 288: 284: 282: 280: 276: 272: 268: 267:time symmetry 264: 260: 255: 253: 249: 245: 240: 238: 232: 230: 226: 222: 214: 212: 210: 205: 203: 198: 138: 88: 86: 81: 79: 76:, as well as 75: 71: 70:Joel Lebowitz 67: 63: 58: 54: 50: 46: 38: 36: 34: 30: 26: 22: 1029: 1025: 980: 976: 943: 939: 927: 926:Eyal Gruss: 916: 866: 862: 850: 831: 827: 773: 769: 763: 743: 739: 731: 722: 717: 672: 668: 658: 635: 631: 626: 611: 603: 598: 539: 535: 529: 518: 506: 501: 468: 464: 458: 439: 435: 430: 387: 383: 377: 344: 340: 330: 256: 248:Hugh Everett 241: 233: 221:David Albert 218: 206: 199: 140: 90: 84: 82: 78:retrodiction 42: 24: 20: 18: 515:John Earman 413:10945/47584 229:weak values 225:Lev Vaidman 1069:Categories 675:(3): 111. 322:References 74:prediction 1075:Causality 1058:2196-5609 1039:1406.6382 1005:0031-9007 968:0305-4470 901:1751-8113 808:118770571 783:1211.4645 709:1099-4300 574:1050-2947 493:0031-899X 422:122168419 269:with the 185:⟩ 182:Ψ 152:Φ 149:⟨ 126:⟩ 123:Ψ 101:Φ 98:⟨ 1013:10038016 909:67843217 756:abstract 590:11845457 517:(eds.): 369:22228793 285:See also 985:Bibcode 948:Bibcode 881:Bibcode 788:Bibcode 677:Bibcode 669:Entropy 582:9912531 554:Bibcode 473:Bibcode 392:Bibcode 349:Bibcode 1056:  1011:  1003:  966:  907:  899:  838:  806:  707:  652:p. 443 642:  616:p. 141 606:, in: 588:  580:  572:  491:  446:  420:  367:  115:  112:  109:  39:Theory 33:causal 1034:arXiv 905:S2CID 871:arXiv 804:S2CID 778:arXiv 586:S2CID 544:arXiv 418:S2CID 365:S2CID 1054:ISSN 1009:PMID 1001:ISSN 964:ISSN 897:ISSN 836:ISBN 705:ISSN 640:ISBN 578:PMID 570:ISSN 489:ISSN 452:p. 2 444:ISBN 277:and 223:and 83:The 68:and 25:TSVF 19:The 1044:doi 993:doi 956:doi 889:doi 796:doi 748:doi 695:hdl 685:doi 620:147 562:doi 481:doi 469:134 408:hdl 400:doi 357:doi 273:by 250:'s 239:). 1071:: 1052:. 1042:. 1028:. 1024:. 1007:. 999:. 991:. 981:60 979:. 962:. 954:. 944:24 942:. 930:, 919:, 903:. 895:. 887:. 879:. 867:40 865:. 853:, 802:. 794:. 786:. 774:43 772:. 703:. 693:. 683:. 673:19 671:. 667:. 618:, 584:. 576:. 568:. 560:. 552:. 540:52 538:. 513:, 509:, 487:. 479:. 467:. 416:. 406:. 398:. 388:27 386:. 363:. 355:. 343:. 339:. 231:. 64:, 1060:. 1046:: 1036:: 1030:1 1015:. 995:: 987:: 970:. 958:: 950:: 911:. 891:: 883:: 873:: 810:. 798:: 790:: 780:: 758:) 754:( 750:: 711:. 697:: 687:: 679:: 592:. 564:: 556:: 546:: 495:. 483:: 475:: 424:. 410:: 402:: 394:: 371:. 359:: 351:: 345:9 178:| 156:| 119:| 105:| 23:(

Index

quantum mechanics
causal
Interpretations of quantum mechanics
Walter Schottky
Satosi Watanabe
quantum states
Yakir Aharonov
Peter Bergmann
Joel Lebowitz
prediction
retrodiction
double-slit experiment
time-reversal invariant
David Albert
Lev Vaidman
weak values
retrocausality
de Broglie–Bohm theory
Hugh Everett
many-worlds interpretation
transactional interpretation
John G. Cramer
time symmetry
Wheeler–Feynman absorber theory
Richard Feynman
John Archibald Wheeler
Satosi Watanabe
Yakir Aharonov
Weak measurement
Delayed choice experiment

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑