Knowledge

Type Ia supernova

Source 📝

412: 836: 3743: 250: 674:(PTF), lead to the conclusion that this explosion arises from single-degenerate progenitor, with a red giant companion, thus suggesting there is no single progenitor path to SN Ia. Direct observations of the progenitor of PTF 11kx were reported in the August 24 edition of Science and support this conclusion, and also show that the progenitor star experienced periodic nova eruptions before the supernova – another surprising discovery. However, later analysis revealed that the 31: 392: 540:, but this glow was not detected by Swift's XRT (X-ray telescope) in the 53 closest supernova remnants. For 12 Type Ia supernovae observed within 10 days of the explosion, the satellite's UVOT (ultraviolet/optical telescope) showed no ultraviolet radiation originating from the heated companion star's surface hit by the supernova shock wave, meaning there were no red giants or larger stars orbiting those supernova progenitors. In the case of 378: 645: 152: 446:. After the primary has degenerated into a white dwarf, the secondary star later evolves into a red giant and the stage is set for mass accretion onto the primary. During this final shared-envelope phase, the two stars spiral in closer together as angular momentum is lost. The resulting orbit can have a period as brief as a few hours. If the accretion continues long enough, the white dwarf may eventually approach the 4342: 4402: 4426: 4352: 4378: 4414: 756:; these are the main constituents of the outer layers of the star. Months after the explosion, when the outer layers have expanded to the point of transparency, the spectrum is dominated by light emitted by material near the core of the star, heavy elements synthesized during the explosion; most prominently isotopes close to the mass of iron ( 34: 38: 37: 33: 32: 4390: 738: 39: 2604:
Kate; Suzuki, Nao; Tarlton, James E.; Pan, Yen-Chen; Bildsten, Lars; Fulton, Benjamin J.; Parrent, Jerod T.; Sand, David; Podsiadlowski, Philipp; Bianco, Federica B.; Dilday, Benjamin; Graham, Melissa L.; Lyman, Joe; James, Phil; et al. (December 2011). "Supernova 2011fe from an Exploding Carbon-Oxygen White Dwarf Star".
787:. In a series of papers in the 1990s the survey showed that while Type Ia supernovae do not all reach the same peak luminosity, a single parameter measured from the light curve can be used to correct unreddened Type Ia supernovae to standard candle values. The original correction to standard candle value is known as the 36: 704:. This supernova appeared at three different times in the evolution of its brightness due to the differing path length of the light in the three images; at −24, 92, and 107 days from peak luminosity. A fourth image will appear in 2037 allowing observation of the entire luminosity cycle of the supernova. 299:
Regardless of the exact details of how the supernova ignites, it is generally accepted that a substantial fraction of the carbon and oxygen in the white dwarf fuses into heavier elements within a period of only a few seconds, with the accompanying release of energy increasing the internal temperature
2668:
Dilday, B.; Howell, D. A.; Cenko, S. B.; Silverman, J. M.; Nugent, P. E.; Sullivan, M.; Ben-Ami, S.; Bildsten, L.; Bolte, M.; Endl, M.; Filippenko, A. V.; Gnat, O.; Horesh, A.; Hsiao, E.; Kasliwal, M. M.; Kirkman, D.; Maguire, K.; Marcy, G. W.; Moore, K.; Pan, Y.; Parrent, J. T.; Podsiadlowski, P.;
2377:
Foley, Ryan J.; Challis, P. J.; Chornock, R.; Ganeshalingam, M.; Li, W.; Marion, G. H.; Morrell, N. I.; Pignata, G.; Stritzinger, M. D.; Silverman, J. M.; Wang, X.; Anderson, J. P.; Filippenko, A. V.; Freedman, W. L.; Hamuy, M.; Jha, S. W.; Kirshner, R. P.; McCully, C.; Persson, S. E.; Phillips, M.
656:
Unlike the other types of supernovae, Type Ia supernovae generally occur in all types of galaxies, including ellipticals. They show no preference for regions of current stellar formation. As white dwarf stars form at the end of a star's main sequence evolutionary period, such a long-lived star
660:
A long-standing problem in astronomy has been the identification of supernova progenitors. Direct observation of a progenitor would provide useful constraints on supernova models. As of 2006, the search for such a progenitor had been ongoing for longer than a century. Observation of the supernova
2603:
Nugent, Peter E.; Sullivan, Mark; Cenko, S. Bradley; Thomas, Rollin C.; Kasen, Daniel; Howell, D. Andrew; Bersier, David; Bloom, Joshua S.; Kulkarni, S. R.; Kandrashoff, Michael T.; Filippenko, Alexei V.; Silverman, Jeffrey M.; Marcy, Geoffrey W.; Howard, Andrew W.; Isaacson, Howard T.; Maguire,
229:
The current view among astronomers who model Type Ia supernova explosions, however, is that this limit is never actually attained and collapse is never initiated. Instead, the increase in pressure and density due to the increasing weight raises the temperature of the core, and as the white dwarf
657:
system may have wandered far from the region where it originally formed. Thereafter a close binary system may spend another million years in the mass transfer stage (possibly forming persistent nova outbursts) before the conditions are ripe for a Type Ia supernova to occur.
457:
or (if the orbit is sufficiently close) even a main sequence star. The actual evolutionary process during this accretion stage remains uncertain, as it can depend both on the rate of accretion and the transfer of angular momentum to the white dwarf companion.
2840:
Rodney, Steven A.; Brammer, Gabriel B.; Pierel, Justin D. R.; Richard, Johan; Toft, Sune; O’Connor, Kyle F.; Akhshik, Mohammad; Whitaker, Katherine E. (13 September 2021). "A gravitationally lensed supernova with an observable two-decade time delay".
669:
from the explosion was found to contain carbon and oxygen, making it likely the progenitor was a white dwarf primarily composed of these elements. Similarly, observations of the nearby SN PTF 11kx, discovered January 16, 2011 (UT) by the
791:
and was shown by this group to be able to measure relative distances to 7% accuracy. The cause of this uniformity in peak brightness is related to the amount of nickel-56 produced in white dwarfs presumably exploding near the Chandrasekhar limit.
688:
observed KSN 2011b, a Type Ia supernova in the process of exploding. Details of the pre-nova moments may help scientists better judge the quality of Type Ia supernovae as standard candles, which is an important link in the argument for
111:
is unable to prevent catastrophic collapse. If a white dwarf gradually accretes mass from a binary companion, or merges with a second white dwarf, the general hypothesis is that a white dwarf's core will reach the ignition temperature for
713: 134:
The Type Ia category of supernova produces a fairly consistent peak luminosity because of the fixed critical mass at which a white dwarf will explode. Their consistent peak luminosity allows these explosions to be used as
349:, in which a white dwarf accretes matter more slowly and does not approach the Chandrasekhar limit. In the case of a nova, the infalling matter causes a hydrogen fusion surface explosion that does not disrupt the star. 503:
spectra found 15 double systems of the 4,000 white dwarfs tested, implying a double white dwarf merger every 100 years in the Milky Way: this rate matches the number of Type Ia supernovae detected in our neighborhood.
342: = −19.3 (about 5 billion times brighter than the Sun), with little variation. The Type Ia supernova leaves no compact remnant, but the whole mass of the former white dwarf dissipates through space. 843:
There is significant diversity within the class of Type Ia supernovae. Reflecting this, a plethora of sub-classes have been identified. Two prominent and well-studied examples include 1991T-likes, an overluminous
35: 433:
system. The progenitor binary system consists of main sequence stars, with the primary possessing more mass than the secondary. Being greater in mass, the primary is the first of the pair to evolve onto the
795:
The similarity in the absolute luminosity profiles of nearly all known Type Ia supernovae has led to their use as a secondary standard candle in extragalactic astronomy. Improved calibrations of the
495:). A likely scenario is a collision with a binary star system, or between two binary systems containing white dwarfs. This collision can leave behind a close binary system of two white dwarfs. Their 2449:
Ritter, Andreas; Parker, Quentin A.; Lykou, Foteini; Zijlstra, Albert A.; Guerrero, Martin A.; Le Du, Pascal (7 Nov 2023). "From an amateur PN candidate to the Rosetta Stone of SN Iax research".
560:
is 30–50 times fainter than expected. X-ray radiation should be emitted by the accretion discs of Type Ia supernova progenitors. The missing radiation indicates that few white dwarfs possess
1867:
Langer, N.; Yoon, S.-C.; Wellstein, S.; Scheithauer, S. (2002). "On the evolution of interacting binaries which contain a white dwarf". In Gänsicke, B. T.; Beuermann, K.; Rein, K. (eds.).
1632:
Gamezo, V. N.; Khokhlov, A. M.; Oran, E. S.; Chtchelkanova, A. Y.; Rosenberg, R. O. (2003-01-03). "Thermonuclear Supernovae: Simulations of the Deflagration Stage and Their Implications".
1012: 3641: 3147:
Macri, L. M.; Stanek, K. Z.; Bersier, D.; Greenhill, L. J.; Reid, M. J. (2006). "A New Cepheid Distance to the Maser-Host Galaxy NGC 4258 and Its Implications for the Hubble Constant".
1893:
González Hernández, J. I.; Ruiz-Lapuente, P.; Tabernero, H. M.; Montes, D.; Canal, R.; Méndez, J.; Bedin, L. R. (2012). "No surviving evolved companions of the progenitor of SN 1006".
4077: 1320: 752:, their graph of luminosity as a function of time after the explosion. Near the time of maximal luminosity, the spectrum contains lines of intermediate-mass elements from oxygen to 884: 103:", they reignite and in some cases trigger a supernova explosion; this critical mass is often referred to as the Chandrasekhar mass, but is marginally different from the absolute 3457:
Taubenberger, S.; Hachinger, S.; Pignata, G.; Mazzali, P. A.; Contreras, C.; Valenti, S.; Pastorello, A.; Elias-Rosa, N.; Bärnbantner, O.; Barwig, H.; Benetti, S. (2008-03-01).
2669:
Quimby, R. M.; Sternberg, A.; Suzuki, N.; Tytler, D. R.; Xu, D.; Bloom, J. S.; Gal-Yam, A.; et al. (2012). "PTF11kx: A Type-Ia Supernova with a Symbiotic Nova Progenitor".
930: 536:
space telescope ruled out existing supergiant or giant companion stars of every Type Ia supernova studied. The supergiant companion's blown out outer shell should emit
2808: 661:
SN 2011fe has provided useful constraints. Previous observations with the Hubble Space Telescope did not show a star at the position of the event, thereby excluding a
2971:
Hamuy, M.; Phillips, M. M.; Suntzeff, Nicholas B.; Schommer, Robert A.; Maza, José; Aviles, R. (1996). "The Absolute Luminosities of the Calan/Tololo Type IA Supernovae".
214:, beyond which it can no longer support its weight with electron degeneracy pressure. In the absence of a countervailing process, the white dwarf would collapse to form a 1579:
Röpke, F. K.; Hillebrandt, W. (2004). "The case against the progenitor's carbon-to-oxygen ratio as a source of peak luminosity variations in Type Ia supernovae".
2024: 116:
as it approaches the Chandrasekhar mass. Within a few seconds of initiation of nuclear fusion, a substantial fraction of the matter in the white dwarf undergoes a
2542:
Hoeflich, N.; Deutschmann, A.; Wellstein, S.; Höflich, P. (1999). "The evolution of main sequence star + white dwarf binary systems towards Type Ia supernovae".
438:, where the star's envelope expands considerably. If the two stars share a common envelope then the system can lose significant amounts of mass, reducing the 178:. There are several means by which a supernova of this type can form, but they share a common underlying mechanism. Theoretical astronomers long believed the 4292: 473:. The resulting merger is called a super-Chandrasekhar mass white dwarf. In such a case, the total mass would not be constrained by the Chandrasekhar limit. 996: 2304: 3059:
Hamuy, M.; Phillips, M. M.; Maza, Jose; Suntzeff, Nicholas B.; Schommer, R. A.; Aviles, R. (1996). "A Hubble diagram of distant type IA supernovae".
2203: 4272: 632:, which is the result of a merger of a CO white dwarf and an ONe white dwarf. This makes Pa 30 and IRAS 00500+6713 the only SN Iax remnant in the 411: 1060: 3880: 564:, ruling out the common, accretion-based model of Ia supernovae. Inward spiraling white dwarf pairs are strongly-inferred candidate sources of 2207: 1993: 1473: 1408: 3358: 3669: 932:
subclass characterized by strong early titanium absorption features and rapid photometric and spectral evolution. Despite their abnormal
4287: 273:
is independent of temperature; white dwarfs are unable to regulate temperature in the manner of normal stars, so they are vulnerable to
2730: 2179:"Important Clue Uncovered for the Origins of a Type of Supernovae Explosion, Thanks to a Research Team at the University of Pittsburgh" 2080: 469:
A second possible mechanism for triggering a Type Ia supernova is the merger of two white dwarfs whose combined mass exceeds the
3426:"The nebular spectra of the Type Ia supernova 1991bg: further evidence of a non-standard explosion: The nebular spectra of SN 1991bg" 1972: 1225:
Matheson, Thomas; Kirshner, Robert; Challis, Pete; Jha, Saurabh; et al. (2008). "Optical Spectroscopy of Type Ia Supernovae".
356:, which are caused by the cataclysmic explosion of the outer layers of a massive star as its core collapses, powered by release of 2253:
Schaefer, Bradley E.; Pagnotta, Ashley (2012). "An absence of ex-companion stars in the type Ia supernova remnant SNR 0509-67.5".
4072: 1551: 963: 784: 2818: 278: 59:
each are expected to merge and create a Type Ia supernova destroying both in about 700 million years (artist's impression).
4108: 2579:
Kotak, R. (December 2008). "Progenitors of Type Ia Supernovae". In Evans, A.; Bode, M.F.; O'Brien, T.J.; Darnley, M.J. (eds.).
783:
The use of Type Ia supernovae to measure precise distances was pioneered by a collaboration of Chilean and US astronomers, the
4049: 3623: 3586: 3094:
Freedman, W.; et al. (2001). "Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant".
1705:
Khokhlov, A.; Müller, E.; Höflich, P. (1993). "Light curves of Type Ia supernova models with different explosion mechanisms".
218:, in an accretion-induced non-ejective process, as normally occurs in the case of a white dwarf that is primarily composed of 4317: 3732: 3552: 357: 725:) versus time shows the characteristic light curve for a Type Ia supernova. The peak is primarily due to the decay of 1084:
Mazzali, P. A.; Röpke, F. K.; Benetti, S.; Hillebrandt, W. (2007). "A Common Explosion Mechanism for Type Ia Supernovae".
533: 170:
is a subcategory in the Minkowski–Zwicky supernova classification scheme, which was devised by German-American astronomer
3267:; et al. (1998). "Observational evidence from supernovae for an accelerating Universe and a cosmological constant". 484:; far less frequently than the appearance of novae. Collisions occur with greater frequency in the dense core regions of 4307: 4282: 4093: 3792: 312: 108: 2356:
Wang, Bo; Justham, Stephen; Han, Zhanwen (2013). "Double-detonation explosions as progenitors of Type Iax supernovae".
835: 4312: 3820: 3204: 461:
It has been estimated that single degenerate progenitors account for no more than 20% of all Type Ia supernovae.
242:. The details of the ignition are still unknown, including the location and number of points where the flame begins. 4368: 4113: 4103: 3722: 2507:
van Dyk, Schuyler D. (1992). "Association of supernovae with recent star formation regions in late type galaxies".
1465: 1017: 968: 3357:
Sasdelli, Michele; Mazzali, P. A.; Pian, E.; Nomoto, K.; Hachinger, S.; Cappellaro, E.; Benetti, S. (2014-09-30).
597:. This type of supernova may not always completely destroy the white dwarf progenitor, but instead leave behind a 3777: 3702: 2334: 2125: 671: 549: 397:
An accretion disc forms around a compact body (such as a white dwarf) stripping gas from a companion giant star.
524:, as all possible models with only one white dwarf have been ruled out. It has also been strongly suggested for 90:
Physically, carbon–oxygen white dwarfs with a low rate of rotation are limited to below 1.44 solar masses (
4302: 4297: 3662: 3529: 2308: 2182: 500: 417:
Supercomputer simulation of the explosion phase of the deflagration-to-detonation model of supernova formation.
202: 3742: 249: 4322: 3727: 3717: 2895: 1147:"The Impact of Type Ia Supernovae in Quiescent Galaxies. I. Formation of the Multiphase Interstellar Medium" 435: 266: 847: 4327: 4277: 4231: 4067: 3940: 3920: 1661: 958: 941: 697: 675: 243: 239: 113: 4355: 2583:. ASP Conference Series. Vol. 401. San Francisco: Astronomical Society of the Pacific. p. 150. 507:
A double degenerate scenario is one of several explanations proposed for the anomalously massive (2 
331:. The energy released in the explosion also causes an extreme increase in luminosity. The typical visual 4118: 3772: 3264: 2211: 1338: 937: 893: 824: 788: 4171: 1459: 186:, and empirical evidence for this was found in 2014 when a Type Ia supernova was observed in the 3930: 3767: 3480: 3380: 3286: 3226: 3166: 3113: 3068: 3033: 2990: 2945: 2910: 2860: 2771: 2688: 2623: 2584: 2561: 2516: 2464: 2401: 2262: 2144: 2094: 2033: 1912: 1872: 1821: 1780: 1714: 1653: 1598: 1517: 1388: 1347: 1287: 1244: 1168: 1103: 1036: 973: 3952: 1666: 4448: 4430: 4345: 3962: 3935: 3870: 3799: 3655: 2379: 1957: 682: 553: 470: 447: 270: 104: 100: 819:
In 1998, observations of distant Type Ia supernovae indicated the unexpected result that the
571:
Double degenerate scenarios raise questions about the applicability of Type Ia supernovae as
4418: 4406: 4098: 4007: 3983: 3875: 3835: 3697: 3506: 3470: 3406: 3370: 3302: 3276: 3242: 3216: 3182: 3156: 3129: 3103: 3006: 2980: 2876: 2850: 2789: 2761: 2712: 2678: 2647: 2613: 2551: 2454: 2435: 2417: 2391: 2357: 2286: 2160: 2134: 2085: 1944: 1902: 1811: 1757: 1687: 1643: 1614: 1588: 1533: 1507: 1414: 1378: 1303: 1260: 1234: 1158: 1127: 1093: 1052: 1026: 701: 678:
is too massive for the single-degenerate scenario, and fits better the core-degenerate scenario.
588: 565: 332: 160: 3540: 453:
The white dwarf companion could also accrete matter from other types of companions, including a
2593:
Proceedings of the conference held 12–14 June 2007, at Keele University, Keele, United Kingdom.
1204: 610: 391: 4134: 3978: 3908: 3845: 3757: 3707: 3498: 3398: 2704: 2639: 2278: 2061: 1936: 1849: 1749: 1679: 1634: 1469: 1404: 1186: 1119: 978: 953: 761: 618: 606: 353: 254: 171: 2123:
Middleditch, J. (2004). "A White Dwarf Merger Paradigm for Supernovae and Gamma-Ray Bursts".
2102: 4382: 4017: 3825: 3815: 3488: 3437: 3388: 3294: 3234: 3174: 3121: 3076: 3041: 2998: 2953: 2918: 2868: 2779: 2696: 2631: 2565: 2524: 2409: 2270: 2152: 2051: 2041: 1928: 1920: 1839: 1829: 1741: 1718: 1671: 1606: 1602: 1525: 1521: 1396: 1355: 1295: 1291: 1252: 1176: 1111: 1044: 1040: 797: 717: 666: 629: 557: 485: 439: 140: 44: 3207:; et al. (1999). "Measurements of Omega and Lambda from 42 high redshift supernovae". 269:
can expand and cool which automatically regulates the increase in thermal energy. However,
3925: 3830: 3544: 3533: 3459:"The underluminous Type Ia supernova 2005bl and the class of objects similar to SN 1991bg" 3200: 2748:
Soker, Noam; Kashi, Amit; García Berro, Enrique; Torres, Santiago; Camacho, Judit (2013).
1433: 827:. Three members from two teams were subsequently awarded Nobel Prizes for this discovery. 813: 572: 274: 136: 117: 234:
ensues, lasting approximately 1,000 years. At some point in this simmering phase, a
3605: 3484: 3384: 3290: 3230: 3170: 3117: 3072: 3037: 2994: 2949: 2914: 2864: 2775: 2692: 2627: 2588: 2520: 2468: 2405: 2266: 2148: 2098: 2037: 1916: 1876: 1825: 1784: 1657: 1392: 1351: 1248: 1172: 1107: 644: 377: 246:
is initiated shortly thereafter, but this fuel is not consumed as completely as carbon.
143:
of a type Ia supernova, as observed from Earth, indicates its distance from Earth.
3957: 3913: 3887: 2056: 2019: 1844: 1799: 1256: 809: 561: 492: 443: 328: 316: 293: 3359:"Abundance stratification in Type Ia supernovae – IV. The luminous, peculiar SN 1991T" 1555: 1554:. ASC / Alliances Center for Astrophysical Thermonuclear Flashes. 2004. Archived from 1333: 839:
Supernova remnant SNR 0454-67.2 is likely the result of a Type Ia supernova explosion.
4442: 4161: 3493: 3458: 3442: 3425: 3246: 3133: 2880: 2651: 2421: 2413: 1997: 1761: 1373:
Canal, R.; Gutiérrez, J. (1997). "The Possible White Dwarf-Neutron Star Connection".
1307: 887: 593:
It has been proposed that a group of sub-luminous supernovae should be classified as
521: 496: 262: 72: 3510: 3410: 3306: 3186: 3010: 2716: 2164: 1869:
The Physics of Cataclysmic Variables and Related Objects, ASP Conference Proceedings
1537: 1264: 1145:
Li, Miao; Li, Yuan; Bryan, Greg L.; Ostriker, Eve C.; Quataert, Eliot (2020-05-05).
1131: 528:, given that no companion star remnant has been found there. Observations made with 151: 4394: 4139: 4039: 4012: 3990: 3627: 3590: 3332: 2793: 2290: 1948: 1691: 1618: 1529: 1418: 1056: 628:
is believed to be associated with the supernova remnant Pa 30 and its central star
285:. It is still a matter of considerable debate whether this flare transforms into a 235: 215: 175: 48: 3571: 3556: 315:
the star; that is, the individual particles making up the white dwarf gain enough
205:
matter from a companion, it can exceed the Chandrasekhar limit of about 1.44 
2750:"Explaining the Type Ia supernova PTF 11kx with a violent prompt merger scenario" 1610: 1048: 575:, since total mass of the two merging white dwarfs varies significantly, meaning 17: 4241: 4149: 4044: 4034: 4022: 3947: 3860: 2482: 2330: 1400: 780:, which dominate the energy output of the ejecta at intermediate to late times. 749: 690: 598: 430: 183: 80: 52: 2872: 2232: 1871:. San Francisco, California: Astronomical Society of the Pacific. p. 252. 1498:
Hillebrandt, W.; Niemeyer, J. C. (2000). "Type Ia Supernova Explosion Models".
1461:
Cosmic Catastrophes: Supernovae, Gamma-Ray Bursts, and Adventures in Hyperspace
1181: 1146: 4256: 4251: 4246: 4226: 4027: 3903: 3865: 3762: 3260: 933: 890:
and abnormally small silicon features, and 1991bg-likes, an exceptionally dim
576: 508: 320: 289: 286: 282: 231: 206: 190: 91: 84: 56: 3502: 3402: 2731:"The First-Ever Direct Observations of a Type 1a Supernova Progenitor System" 1190: 4236: 4216: 4211: 4206: 4201: 4156: 3850: 3787: 3782: 3712: 3678: 3393: 2700: 1745: 1675: 1115: 769: 765: 757: 662: 633: 614: 541: 517: 219: 179: 167: 156: 68: 2784: 2749: 2708: 2643: 2282: 2065: 1940: 1853: 1753: 1683: 1123: 2046: 1779:. Cambridge, England: Dordrecht, D. Reidel Publishing Co. pp. 75–80. 601:. Known examples of type Iax supernovae include: the historical supernova 4221: 4186: 4181: 4176: 4000: 3840: 3281: 3221: 3161: 3108: 2985: 2936:
Phillips, M. M. (1993). "The absolute magnitudes of Type Ia supernovae".
2556: 2139: 1816: 1648: 1593: 1512: 1383: 1377:. Astrophysics and Space Science Library. Vol. 214. pp. 49–55. 1098: 1031: 820: 801: 742: 454: 361: 319:
to fly apart from each other. The star explodes violently and releases a
277:
fusion reactions. The flare accelerates dramatically, in part due to the
3024:
Colgate, S. A. (1979). "Supernovae as a standard candle for cosmology".
2635: 2274: 1924: 1834: 1334:"A rigorous examination of the Chandrasekhar theory of stellar collapse" 812:
of the Type Ia supernova distances have led to an improved value of the
476:
Collisions of solitary stars within the Milky Way occur only once every
4196: 4166: 4144: 1932: 1299: 773: 753: 625: 602: 525: 2436:"Hubble finds supernova star system linked to potential 'zombie star'" 2178: 1775:
Paczynski, B. (July 28 – August 1, 1975). "Common Envelope Binaries".
712: 4191: 3995: 777: 730: 726: 537: 429:
One model for the formation of this category of supernova is a close
198: 194: 187: 2362: 1732:
Gilmore, Gerry (2004). "The Short Spectacular Life of a Superstar".
936:, members of both peculiar groups can be standardized by use of the 737: 261:
Once fusion begins, the temperature of the white dwarf increases. A
4389: 3526: 3298: 3238: 3178: 3125: 3080: 3045: 3002: 2957: 2922: 2855: 2528: 2459: 2156: 1359: 1163: 3475: 3375: 2766: 2683: 2618: 2396: 1907: 1239: 834: 805: 736: 711: 649: 643: 307: 248: 150: 127: 29: 2382:(2012). "Type Iax Supernovae: A New Class of Stellar Explosion". 1321:
Type 1a Supernovae: Why Our Standard Candle Isn’t Really Standard
3855: 2813: 2809:"NASA Spacecraft Capture Rare, Early Moments of Baby Supernovae" 1013:"Presupernova Evolution of Accreting White Dwarfs with Rotation" 529: 399: 346: 223: 76: 3651: 2305:"NASA'S Swift Narrows Down Origin of Important Supernova Class" 1278:
da Silva, L. A. L. (1993). "The Classification of Supernovae".
499:
and they merge through their shared envelope. A study based on
323:
in which matter is typically ejected at speeds on the order of
159:, a type Ia supernova, one day after maximum light in the 2081:"A Thousand Blazing Suns: The Inner Life of Globular Clusters" 545: 3647: 800:
distance scale and direct geometric distance measurements to
3642:
SNFactory Shows Type Ia ‘Standard Candles’ Have Many Masses
345:
The theory of this type of supernova is similar to that of
1994:"Brightest supernova discovery hints at stellar collision" 2331:"NASA's Chandra Reveals Origin of Key Cosmic Explosions" 700:
had taken three images of a Type Ia supernova through a
4078:
Timeline of white dwarfs, neutron stars, and supernovae
2483:"Search for stellar survivor of a supernova explosion" 4366: 1955:
Matson, John (December 2012). "No Star Left Behind".
896: 850: 544:, the companion star must have been smaller than the 79:
orbiting one another) in which one of the stars is a
3537: 3424:
Mazzali, Paolo A.; Hachinger, Stephan (2012-08-21).
2581:
RS Ophiuchi (2006) and the Recurrent Nova Phenomenon
139:
to measure the distance to their host galaxies: the
4265: 4127: 4086: 4060: 3971: 3896: 3808: 3750: 3685: 1493: 1491: 1489: 1487: 1485: 924: 878: 3430:Monthly Notices of the Royal Astronomical Society 3363:Monthly Notices of the Royal Astronomical Society 3322:, Steven Weinberg, Oxford University Press, 2008. 2807:Johnson, Michele; Chandler, Lynn (May 20, 2015). 2754:Monthly Notices of the Royal Astronomical Society 696:In September 2021, astronomers reported that the 568:, although they have not been directly observed. 1888: 1886: 886:subclass that exhibits particularly strong iron 2663: 2661: 2025:Proceedings of the National Academy of Sciences 1777:Structure and Evolution of Close Binary Systems 1438:Gravitational Waves from Gravitational Collapse 300:to billions of degrees. The energy released (1– 230:approaches about 99% of the limit, a period of 131:) to unbind the star in a supernova explosion. 1800:"The Evolution of Compact Binary Star Systems" 748:Type Ia supernovae have a characteristic 716:This plot of luminosity (relative to the Sun, 3663: 3574:. Sloan Digital Sky Survey. February 27, 2007 1079: 1077: 997:HubbleSite - Dark Energy - Type Ia Supernovae 8: 4293:Monte Agliale Supernovae and Asteroid Survey 3608:. Pole Star Publications Ltd. August 6, 2003 1500:Annual Review of Astronomy and Astrophysics 3670: 3656: 3648: 3555:. Johns Hopkins University. Archived from 1432:Fryer, C. L.; New, K. C. B. (2006-01-24). 729:(Ni), while the later stage is powered by 552:revealed that the X-ray radiation of five 520:. It is the only possible explanation for 3492: 3474: 3441: 3392: 3374: 3280: 3220: 3160: 3107: 2984: 2854: 2783: 2765: 2682: 2617: 2555: 2458: 2395: 2361: 2138: 2055: 2045: 1906: 1843: 1833: 1815: 1798:Postnov, K. A.; Yungelson, L. R. (2006). 1665: 1647: 1592: 1511: 1382: 1238: 1180: 1162: 1097: 1030: 904: 895: 858: 849: 3553:"Type Ia Supernova Cosmology with ADEPT" 2896:"The 1990 Calan/Tololo Supernova Search" 2233:"Bizarre Supernova Breaks All The Rules" 1961:. Vol. 307, no. 6. p. 16. 1574: 1572: 1006: 1004: 83:. The other star can be anything from a 4373: 3624:"Novae and Supernovae explosions found" 989: 3708:Type II (IIP, IIL, IIn, and IIb) 2208:Lawrence Berkeley National Laboratory 2079:Rubin, V. C.; Ford, W. K. J. (1999). 879:{\displaystyle (M_{V}\lesssim -19.5)} 7: 4351: 3606:"Source for major type of supernova" 3527:List of all known Type Ia supernovae 2204:"The Weirdest Type Ia Supernova Yet" 1205:"Introduction to Supernova Remnants" 681:In May 2015, NASA reported that the 652:taken by the Hubble Space Telescope. 4288:Katzman Automatic Imaging Telescope 2020:"Supernovae and Stellar Collisions" 120:reaction, releasing enough energy ( 27:Type of supernova in binary systems 3626:. peripatus.gen.nz. Archived from 3589:. peripatus.gen.nz. Archived from 925:{\displaystyle (M_{V}\gtrsim -18)} 67:(read: "type one-A") is a type of 25: 808:emission when combined with the 4424: 4412: 4400: 4388: 4376: 4350: 4341: 4340: 4073:History of supernova observation 3741: 3494:10.1111/j.1365-2966.2008.12843.x 3443:10.1111/j.1365-2966.2012.21433.x 1458:Wheeler, J. Craig (2000-01-15). 1332:Lieb, E. H.; Yau, H.-T. (1987). 1011:Yoon, S.-C.; Langer, L. (2004). 964:History of supernova observation 410: 390: 376: 238:flame front is born, powered by 182:for this type of supernova is a 87:to an even smaller white dwarf. 2894:Hamuy, M.; et al. (1993). 1973:"Type Ia Supernova Progenitors" 352:Type Ia supernovae differ from 4318:SuperNova Early Warning System 3733:Common envelope jets supernova 2451:IAU 384 Conference Proceedings 1530:10.1146/annurev.astro.38.1.191 1280:Astrophysics and Space Science 1207:. NASA Goddard/SAO. 2006-09-07 919: 897: 873: 851: 358:gravitational potential energy 335:of Type Ia supernovae is 1: 2938:Astrophysical Journal Letters 785:Calán/Tololo Supernova Survey 665:as the source. The expanding 465:Double degenerate progenitors 425:Single degenerate progenitors 311:) is more than sufficient to 4308:Supernova/Acceleration Probe 4283:High-Z Supernova Search Team 3881:pulsational pair-instability 3617:(A Type Ia progenitor found) 2438:. SpaceDaily. 6 August 2014. 2210:. 2006-09-20. Archived from 1804:Living Reviews in Relativity 1257:10.1088/0004-6256/135/4/1598 109:electron degeneracy pressure 4313:Supernova Cosmology Project 3821:Fast blue optical transient 3205:Supernova Cosmology Project 2235:. New Scientist. 2006-09-20 1401:10.1007/978-94-011-5542-7_7 279:Rayleigh–Taylor instability 4465: 3538:The Open Supernova Catalog 3333:"Tangled — cosmic edition" 2873:10.1038/s41550-021-01450-9 2544:Astronomy and Astrophysics 2414:10.1088/0004-637X/767/1/57 1707:Astronomy and Astrophysics 1611:10.1051/0004-6361:20040135 1581:Astronomy and Astrophysics 1466:Cambridge University Press 1049:10.1051/0004-6361:20035822 1018:Astronomy and Astrophysics 969:List of supernova remnants 586: 4336: 3739: 2384:The Astrophysical Journal 2335:Chandra X-ray Observatory 2126:The Astrophysical Journal 2018:Whipple, Fred L. (1939). 1440:. Max-Planck-Gesellschaft 1151:The Astrophysical Journal 672:Palomar Transient Factory 550:Chandra X-ray Observatory 193:. When a slowly-rotating 55:stars slightly under one 4298:Nearby Supernova Factory 3572:"Sloan Supernova Survey" 2183:University of Pittsburgh 1953:See also lay reference: 1182:10.3847/1538-4357/ab86b4 741:Light curve for type Ia 4323:Supernova Legacy Survey 3551:Falck, Bridget (2006). 2701:10.1126/science.1219164 2566:2000A&A...362.1046L 1746:10.1126/science.1100370 1719:1993A&A...270..223K 1676:10.1126/science.1078129 1603:2004A&A...420L...1R 1522:2000ARA&A..38..191H 1434:"2.1 Collapse scenario" 1292:1993Ap&SS.202..215D 1116:10.1126/science.1136259 1041:2004A&A...419..623Y 436:asymptotic giant branch 4328:Texas Supernova Search 4303:Sloan Supernova Survey 3921:Luminous blue variable 3587:"Novae and Supernovae" 3337:www.spacetelescope.org 2487:www.spacetelescope.org 2307:. NASA. Archived from 1975:. Swinburne University 959:Cosmic distance ladder 926: 880: 840: 825:accelerating expansion 745: 734: 698:Hubble Space Telescope 676:circumstellar material 653: 325:5,000–20,000 km/s 281:and interactions with 258: 163: 60: 3773:Phillips relationship 3394:10.1093/mnras/stu1777 3265:Supernova Search Team 3209:Astrophysical Journal 3149:Astrophysical Journal 3096:Astrophysical Journal 3026:Astrophysical Journal 2378:M.; Reichart, D. E.; 2047:10.1073/pnas.25.3.118 1339:Astrophysical Journal 927: 881: 838: 804:from the dynamics of 789:Phillips relationship 776:produces high-energy 740: 715: 647: 556:and the bulge of the 548:, if it existed. The 442:, orbital radius and 252: 174:and Swiss astronomer 154: 42: 3269:Astronomical Journal 3061:Astronomical Journal 2973:Astronomical Journal 2903:Astronomical Journal 2785:10.1093/mnras/stt271 2509:Astronomical Journal 1227:Astronomical Journal 974:Near-Earth supernova 894: 848: 823:seems to undergo an 327:, roughly 6% of the 4346:Category:Supernovae 4278:Calán/Tololo Survey 3963:Population III star 3871:Soft gamma repeater 3703:Type Ib and Ic 3485:2008MNRAS.385...75T 3385:2014MNRAS.445..711S 3291:1998AJ....116.1009R 3231:1999ApJ...517..565P 3171:2006ApJ...652.1133M 3118:2001ApJ...553...47F 3073:1995AJ....109....1H 3038:1979ApJ...232..404C 2995:1996AJ....112.2391H 2950:1993ApJ...413L.105P 2915:1993AJ....106.2392H 2865:2021NatAs...5.1118R 2821:on November 8, 2020 2776:2013MNRAS.431.1541S 2693:2012Sci...337..942D 2636:10.1038/nature10644 2628:2011Natur.480..344N 2589:2008ASPC..401..150K 2521:1992AJ....103.1788V 2469:2023arXiv231103700R 2406:2013ApJ...767...57F 2275:10.1038/nature10692 2267:2012Natur.481..164S 2149:2004ApJ...601L.167M 2099:1999Mercu..28d..26M 2038:1939PNAS...25..118W 1958:Scientific American 1925:10.1038/nature11447 1917:2012Natur.489..533G 1877:2002ASPC..261..252L 1835:10.12942/lrr-2006-6 1826:2006LRR.....9....6P 1785:1976IAUS...73...75P 1740:(5697): 1915–1916. 1658:2003Sci...299...77G 1393:1997ASSL..214...49C 1352:1987ApJ...323..140L 1249:2008AJ....135.1598M 1173:2020ApJ...894...44L 1108:2007Sci...315..825M 566:gravitational waves 554:elliptical galaxies 471:Chandrasekhar limit 448:Chandrasekhar limit 271:degeneracy pressure 105:Chandrasekhar limit 4356:Commons:Supernovae 4008:Stellar black hole 3984:Pulsar wind nebula 3836:Gravitational wave 3543:2016-03-03 at the 3532:2022-02-02 at the 1300:10.1007/BF00626878 922: 876: 841: 746: 735: 702:gravitational lens 654: 648:Supernova remnant 589:Type Iax supernova 522:SNR 0509-67.5 354:Type II supernovae 333:absolute magnitude 265:star supported by 259: 253:G299 Type Ia 164: 61: 4364: 4363: 3979:Supernova remnant 3846:Luminous red nova 3758:Carbon detonation 2849:(11): 1118–1125. 2677:(6097): 942–945. 2612:(7377): 344–347. 2261:(7380): 164–166. 1901:(7417): 533–536. 1552:"Science Summary" 1475:978-0-521-65195-0 1464:. Cambridge, UK: 1410:978-0-7923-4585-5 1092:(5813): 825–828. 979:Supernova remnant 954:Carbon detonation 938:Phillips relation 762:radioactive decay 686:space observatory 486:globular clusters 383:Formation process 255:supernova remnant 172:Rudolph Minkowski 65:Type Ia supernova 43:At the core of a 40: 18:Type 1a supernova 16:(Redirected from 4456: 4429: 4428: 4427: 4417: 4416: 4415: 4405: 4404: 4403: 4393: 4392: 4381: 4380: 4379: 4372: 4354: 4353: 4344: 4343: 4207:Remnant G1.9+0.3 3826:Fast radio burst 3745: 3723:Pair-instability 3672: 3665: 3658: 3649: 3638: 3636: 3635: 3616: 3614: 3613: 3601: 3599: 3598: 3582: 3580: 3579: 3567: 3565: 3564: 3515: 3514: 3496: 3478: 3454: 3448: 3447: 3445: 3436:(4): 2926–2935. 3421: 3415: 3414: 3396: 3378: 3354: 3348: 3347: 3345: 3343: 3329: 3323: 3317: 3311: 3310: 3284: 3282:astro-ph/9805201 3275:(3): 1009–1038. 3257: 3251: 3250: 3224: 3222:astro-ph/9812133 3197: 3191: 3190: 3164: 3162:astro-ph/0608211 3155:(2): 1133–1149. 3144: 3138: 3137: 3111: 3109:astro-ph/0012376 3091: 3085: 3084: 3056: 3050: 3049: 3021: 3015: 3014: 2988: 2986:astro-ph/9609059 2968: 2962: 2961: 2933: 2927: 2926: 2900: 2891: 2885: 2884: 2858: 2843:Nature Astronomy 2837: 2831: 2830: 2828: 2826: 2817:. Archived from 2804: 2798: 2797: 2787: 2769: 2760:(2): 1541–1546. 2745: 2739: 2738: 2727: 2721: 2720: 2686: 2665: 2656: 2655: 2621: 2600: 2594: 2592: 2576: 2570: 2569: 2559: 2557:astro-ph/0008444 2539: 2533: 2532: 2515:(6): 1788–1803. 2504: 2498: 2497: 2495: 2493: 2479: 2473: 2472: 2462: 2446: 2440: 2439: 2432: 2426: 2425: 2399: 2380:Soderberg, A. M. 2374: 2368: 2367: 2365: 2353: 2347: 2346: 2344: 2342: 2327: 2321: 2320: 2318: 2316: 2301: 2295: 2294: 2250: 2244: 2243: 2241: 2240: 2229: 2223: 2222: 2220: 2219: 2200: 2194: 2193: 2191: 2189: 2175: 2169: 2168: 2142: 2140:astro-ph/0311484 2133:(2): L167–L170. 2120: 2114: 2113: 2111: 2110: 2101:. Archived from 2076: 2070: 2069: 2059: 2049: 2015: 2009: 2008: 2006: 2005: 1990: 1984: 1983: 1981: 1980: 1969: 1963: 1962: 1952: 1910: 1890: 1881: 1880: 1864: 1858: 1857: 1847: 1837: 1819: 1817:astro-ph/0701059 1795: 1789: 1788: 1772: 1766: 1765: 1729: 1723: 1722: 1713:(1–2): 223–248. 1702: 1696: 1695: 1669: 1651: 1649:astro-ph/0212054 1629: 1623: 1622: 1596: 1594:astro-ph/0403509 1576: 1567: 1566: 1564: 1563: 1548: 1542: 1541: 1515: 1513:astro-ph/0006305 1495: 1480: 1479: 1455: 1449: 1448: 1446: 1445: 1429: 1423: 1422: 1386: 1384:astro-ph/9701225 1370: 1364: 1363: 1329: 1323: 1318: 1312: 1311: 1275: 1269: 1268: 1242: 1233:(4): 1598–1615. 1222: 1216: 1215: 1213: 1212: 1201: 1195: 1194: 1184: 1166: 1142: 1136: 1135: 1101: 1099:astro-ph/0702351 1081: 1072: 1071: 1069: 1068: 1059:. Archived from 1034: 1032:astro-ph/0402287 1008: 999: 994: 931: 929: 928: 923: 909: 908: 888:absorption lines 885: 883: 882: 877: 863: 862: 798:Cepheid variable 573:standard candles 558:Andromeda Galaxy 516:) progenitor of 483: 479: 440:angular momentum 414: 394: 380: 326: 310: 305: 267:thermal pressure 141:visual magnitude 137:standard candles 130: 125: 99:). Beyond this " 45:planetary nebula 41: 21: 4464: 4463: 4459: 4458: 4457: 4455: 4454: 4453: 4439: 4438: 4435: 4425: 4423: 4413: 4411: 4401: 4399: 4387: 4377: 4375: 4367: 4365: 4360: 4332: 4261: 4247:SN 2016aps 4227:SN Refsdal 4123: 4082: 4056: 3967: 3953:Wolf–Rayet star 3892: 3831:Gamma-ray burst 3804: 3778:Nucleosynthesis 3746: 3737: 3681: 3676: 3644:(March 4, 2014) 3633: 3631: 3622: 3611: 3609: 3604: 3596: 3594: 3585: 3577: 3575: 3570: 3562: 3560: 3550: 3545:Wayback Machine 3534:Wayback Machine 3523: 3518: 3456: 3455: 3451: 3423: 3422: 3418: 3356: 3355: 3351: 3341: 3339: 3331: 3330: 3326: 3318: 3314: 3259: 3258: 3254: 3199: 3198: 3194: 3146: 3145: 3141: 3093: 3092: 3088: 3058: 3057: 3053: 3023: 3022: 3018: 2970: 2969: 2965: 2935: 2934: 2930: 2898: 2893: 2892: 2888: 2839: 2838: 2834: 2824: 2822: 2806: 2805: 2801: 2747: 2746: 2742: 2729: 2728: 2724: 2667: 2666: 2659: 2602: 2601: 2597: 2578: 2577: 2573: 2541: 2540: 2536: 2506: 2505: 2501: 2491: 2489: 2481: 2480: 2476: 2448: 2447: 2443: 2434: 2433: 2429: 2376: 2375: 2371: 2355: 2354: 2350: 2340: 2338: 2329: 2328: 2324: 2314: 2312: 2311:on 12 June 2020 2303: 2302: 2298: 2252: 2251: 2247: 2238: 2236: 2231: 2230: 2226: 2217: 2215: 2202: 2201: 2197: 2187: 2185: 2177: 2176: 2172: 2122: 2121: 2117: 2108: 2106: 2078: 2077: 2073: 2017: 2016: 2012: 2003: 2001: 1992: 1991: 1987: 1978: 1976: 1971: 1970: 1966: 1954: 1892: 1891: 1884: 1866: 1865: 1861: 1797: 1796: 1792: 1774: 1773: 1769: 1731: 1730: 1726: 1704: 1703: 1699: 1667:10.1.1.257.3251 1642:(5603): 77–81. 1631: 1630: 1626: 1578: 1577: 1570: 1561: 1559: 1550: 1549: 1545: 1497: 1496: 1483: 1476: 1457: 1456: 1452: 1443: 1441: 1431: 1430: 1426: 1411: 1372: 1371: 1367: 1331: 1330: 1326: 1319: 1315: 1277: 1276: 1272: 1224: 1223: 1219: 1210: 1208: 1203: 1202: 1198: 1144: 1143: 1139: 1083: 1082: 1075: 1066: 1064: 1010: 1009: 1002: 995: 991: 987: 950: 900: 892: 891: 854: 846: 845: 833: 814:Hubble constant 760:elements). The 723: 710: 642: 630:IRAS 00500+6713 591: 585: 562:accretion discs 514: 511: 493:blue stragglers 481: 477: 467: 427: 422: 421: 420: 419: 418: 415: 406: 405: 404: 395: 386: 385: 384: 381: 370: 341: 324: 303: 301: 212: 209: 180:progenitor star 149: 147:Consensus model 123: 121: 97: 94: 71:that occurs in 30: 28: 23: 22: 15: 12: 11: 5: 4462: 4460: 4452: 4451: 4441: 4440: 4434: 4433: 4421: 4409: 4397: 4385: 4362: 4361: 4359: 4358: 4348: 4337: 4334: 4333: 4331: 4330: 4325: 4320: 4315: 4310: 4305: 4300: 4295: 4290: 4285: 4280: 4275: 4269: 4267: 4263: 4262: 4260: 4259: 4254: 4249: 4244: 4239: 4237:SN 2006gy 4234: 4229: 4224: 4219: 4217:SN 2011fe 4214: 4212:SN 2007bi 4209: 4204: 4202:SN 2003fg 4199: 4194: 4189: 4184: 4179: 4174: 4169: 4164: 4159: 4154: 4153: 4152: 4142: 4137: 4135:Barnard's Loop 4131: 4129: 4125: 4124: 4122: 4121: 4116: 4111: 4106: 4101: 4096: 4090: 4088: 4084: 4083: 4081: 4080: 4075: 4070: 4064: 4062: 4058: 4057: 4055: 4054: 4053: 4052: 4050:Orion–Eridanus 4042: 4037: 4032: 4031: 4030: 4025: 4020: 4010: 4005: 4004: 4003: 3998: 3988: 3987: 3986: 3975: 3973: 3969: 3968: 3966: 3965: 3960: 3958:Super-AGB star 3955: 3950: 3945: 3944: 3943: 3938: 3933: 3923: 3918: 3917: 3916: 3911: 3900: 3898: 3894: 3893: 3891: 3890: 3888:Symbiotic nova 3885: 3884: 3883: 3873: 3868: 3863: 3858: 3853: 3848: 3843: 3838: 3833: 3828: 3823: 3818: 3812: 3810: 3806: 3805: 3803: 3802: 3797: 3796: 3795: 3790: 3785: 3775: 3770: 3765: 3760: 3754: 3752: 3748: 3747: 3740: 3738: 3736: 3735: 3730: 3725: 3720: 3715: 3710: 3705: 3700: 3695: 3689: 3687: 3683: 3682: 3677: 3675: 3674: 3667: 3660: 3652: 3646: 3645: 3639: 3619: 3618: 3602: 3583: 3568: 3548: 3522: 3521:External links 3519: 3517: 3516: 3449: 3416: 3369:(1): 711–725. 3349: 3324: 3312: 3299:10.1086/300499 3261:Riess, Adam G. 3252: 3239:10.1086/307221 3201:Perlmutter, S. 3192: 3179:10.1086/508530 3139: 3126:10.1086/320638 3086: 3081:10.1086/117251 3051: 3046:10.1086/157300 3032:(1): 404–408. 3016: 3003:10.1086/118190 2963: 2958:10.1086/186970 2928: 2923:10.1086/116811 2886: 2832: 2799: 2740: 2722: 2657: 2595: 2571: 2534: 2529:10.1086/116195 2499: 2474: 2441: 2427: 2369: 2348: 2322: 2296: 2245: 2224: 2195: 2170: 2157:10.1086/382074 2115: 2071: 2032:(3): 118–125. 2010: 1985: 1964: 1882: 1859: 1790: 1767: 1724: 1697: 1624: 1568: 1543: 1506:(1): 191–230. 1481: 1474: 1468:. p. 96. 1450: 1424: 1409: 1365: 1360:10.1086/165813 1346:(1): 140–144. 1324: 1313: 1286:(2): 215–236. 1270: 1217: 1196: 1137: 1073: 1025:(2): 623–644. 1000: 988: 986: 983: 982: 981: 976: 971: 966: 961: 956: 949: 946: 921: 918: 915: 912: 907: 903: 899: 875: 872: 869: 866: 861: 857: 853: 832: 829: 810:Hubble diagram 721: 709: 706: 641: 638: 624:The supernova 587:Main article: 584: 581: 518:SN 2003fg 512: 509: 466: 463: 426: 423: 416: 409: 408: 407: 396: 389: 388: 387: 382: 375: 374: 373: 372: 371: 369: 366: 339: 329:speed of light 317:kinetic energy 296:deflagration. 226:, and oxygen. 210: 207: 157:SN 1998aq 148: 145: 95: 92: 73:binary systems 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4461: 4450: 4447: 4446: 4444: 4437: 4432: 4422: 4420: 4410: 4408: 4398: 4396: 4391: 4386: 4384: 4374: 4370: 4357: 4349: 4347: 4339: 4338: 4335: 4329: 4326: 4324: 4321: 4319: 4316: 4314: 4311: 4309: 4306: 4304: 4301: 4299: 4296: 4294: 4291: 4289: 4286: 4284: 4281: 4279: 4276: 4274: 4271: 4270: 4268: 4264: 4258: 4255: 4253: 4250: 4248: 4245: 4243: 4240: 4238: 4235: 4233: 4230: 4228: 4225: 4223: 4222:SN 2014J 4220: 4218: 4215: 4213: 4210: 4208: 4205: 4203: 4200: 4198: 4195: 4193: 4190: 4188: 4187:SN 1994D 4185: 4183: 4182:SN 1987A 4180: 4178: 4177:SN 1885A 4175: 4173: 4170: 4168: 4165: 4163: 4160: 4158: 4155: 4151: 4148: 4147: 4146: 4143: 4141: 4138: 4136: 4133: 4132: 4130: 4126: 4120: 4117: 4115: 4112: 4110: 4107: 4105: 4104:Massive stars 4102: 4100: 4097: 4095: 4092: 4091: 4089: 4085: 4079: 4076: 4074: 4071: 4069: 4066: 4065: 4063: 4059: 4051: 4048: 4047: 4046: 4043: 4041: 4038: 4036: 4033: 4029: 4026: 4024: 4021: 4019: 4016: 4015: 4014: 4011: 4009: 4006: 4002: 3999: 3997: 3994: 3993: 3992: 3989: 3985: 3982: 3981: 3980: 3977: 3976: 3974: 3970: 3964: 3961: 3959: 3956: 3954: 3951: 3949: 3946: 3942: 3939: 3937: 3934: 3932: 3929: 3928: 3927: 3924: 3922: 3919: 3915: 3912: 3910: 3907: 3906: 3905: 3902: 3901: 3899: 3895: 3889: 3886: 3882: 3879: 3878: 3877: 3874: 3872: 3869: 3867: 3864: 3862: 3859: 3857: 3854: 3852: 3849: 3847: 3844: 3842: 3839: 3837: 3834: 3832: 3829: 3827: 3824: 3822: 3819: 3817: 3814: 3813: 3811: 3807: 3801: 3798: 3794: 3791: 3789: 3786: 3784: 3781: 3780: 3779: 3776: 3774: 3771: 3769: 3766: 3764: 3761: 3759: 3756: 3755: 3753: 3749: 3744: 3734: 3731: 3729: 3726: 3724: 3721: 3719: 3718:Superluminous 3716: 3714: 3711: 3709: 3706: 3704: 3701: 3699: 3698:Type Iax 3696: 3694: 3691: 3690: 3688: 3684: 3680: 3673: 3668: 3666: 3661: 3659: 3654: 3653: 3650: 3643: 3640: 3630:on 2007-08-15 3629: 3625: 3621: 3620: 3607: 3603: 3593:on 2007-08-15 3592: 3588: 3584: 3573: 3569: 3559:on 2007-10-30 3558: 3554: 3549: 3546: 3542: 3539: 3535: 3531: 3528: 3525: 3524: 3520: 3512: 3508: 3504: 3500: 3495: 3490: 3486: 3482: 3477: 3472: 3468: 3464: 3460: 3453: 3450: 3444: 3439: 3435: 3431: 3427: 3420: 3417: 3412: 3408: 3404: 3400: 3395: 3390: 3386: 3382: 3377: 3372: 3368: 3364: 3360: 3353: 3350: 3338: 3334: 3328: 3325: 3321: 3316: 3313: 3308: 3304: 3300: 3296: 3292: 3288: 3283: 3278: 3274: 3270: 3266: 3262: 3256: 3253: 3248: 3244: 3240: 3236: 3232: 3228: 3223: 3218: 3215:(2): 565–86. 3214: 3210: 3206: 3202: 3196: 3193: 3188: 3184: 3180: 3176: 3172: 3168: 3163: 3158: 3154: 3150: 3143: 3140: 3135: 3131: 3127: 3123: 3119: 3115: 3110: 3105: 3101: 3097: 3090: 3087: 3082: 3078: 3074: 3070: 3066: 3062: 3055: 3052: 3047: 3043: 3039: 3035: 3031: 3027: 3020: 3017: 3012: 3008: 3004: 3000: 2996: 2992: 2987: 2982: 2978: 2974: 2967: 2964: 2959: 2955: 2951: 2947: 2943: 2939: 2932: 2929: 2924: 2920: 2916: 2912: 2908: 2904: 2897: 2890: 2887: 2882: 2878: 2874: 2870: 2866: 2862: 2857: 2852: 2848: 2844: 2836: 2833: 2820: 2816: 2815: 2810: 2803: 2800: 2795: 2791: 2786: 2781: 2777: 2773: 2768: 2763: 2759: 2755: 2751: 2744: 2741: 2737:. 2012-08-24. 2736: 2735:Scitech Daily 2732: 2726: 2723: 2718: 2714: 2710: 2706: 2702: 2698: 2694: 2690: 2685: 2680: 2676: 2672: 2664: 2662: 2658: 2653: 2649: 2645: 2641: 2637: 2633: 2629: 2625: 2620: 2615: 2611: 2607: 2599: 2596: 2590: 2586: 2582: 2575: 2572: 2567: 2563: 2558: 2553: 2550:: 1046–1064. 2549: 2545: 2538: 2535: 2530: 2526: 2522: 2518: 2514: 2510: 2503: 2500: 2488: 2484: 2478: 2475: 2470: 2466: 2461: 2456: 2452: 2445: 2442: 2437: 2431: 2428: 2423: 2419: 2415: 2411: 2407: 2403: 2398: 2393: 2389: 2385: 2381: 2373: 2370: 2364: 2359: 2352: 2349: 2336: 2332: 2326: 2323: 2310: 2306: 2300: 2297: 2292: 2288: 2284: 2280: 2276: 2272: 2268: 2264: 2260: 2256: 2249: 2246: 2234: 2228: 2225: 2214:on 2017-10-08 2213: 2209: 2205: 2199: 2196: 2184: 2180: 2174: 2171: 2166: 2162: 2158: 2154: 2150: 2146: 2141: 2136: 2132: 2128: 2127: 2119: 2116: 2105:on 2006-05-21 2104: 2100: 2096: 2092: 2088: 2087: 2082: 2075: 2072: 2067: 2063: 2058: 2053: 2048: 2043: 2039: 2035: 2031: 2027: 2026: 2021: 2014: 2011: 1999: 1998:New Scientist 1995: 1989: 1986: 1974: 1968: 1965: 1960: 1959: 1950: 1946: 1942: 1938: 1934: 1930: 1926: 1922: 1918: 1914: 1909: 1904: 1900: 1896: 1889: 1887: 1883: 1878: 1874: 1870: 1863: 1860: 1855: 1851: 1846: 1841: 1836: 1831: 1827: 1823: 1818: 1813: 1809: 1805: 1801: 1794: 1791: 1786: 1782: 1778: 1771: 1768: 1763: 1759: 1755: 1751: 1747: 1743: 1739: 1735: 1728: 1725: 1720: 1716: 1712: 1708: 1701: 1698: 1693: 1689: 1685: 1681: 1677: 1673: 1668: 1663: 1659: 1655: 1650: 1645: 1641: 1637: 1636: 1628: 1625: 1620: 1616: 1612: 1608: 1604: 1600: 1595: 1590: 1586: 1582: 1575: 1573: 1569: 1558:on 2017-05-05 1557: 1553: 1547: 1544: 1539: 1535: 1531: 1527: 1523: 1519: 1514: 1509: 1505: 1501: 1494: 1492: 1490: 1488: 1486: 1482: 1477: 1471: 1467: 1463: 1462: 1454: 1451: 1439: 1435: 1428: 1425: 1420: 1416: 1412: 1406: 1402: 1398: 1394: 1390: 1385: 1380: 1376: 1369: 1366: 1361: 1357: 1353: 1349: 1345: 1341: 1340: 1335: 1328: 1325: 1322: 1317: 1314: 1309: 1305: 1301: 1297: 1293: 1289: 1285: 1281: 1274: 1271: 1266: 1262: 1258: 1254: 1250: 1246: 1241: 1236: 1232: 1228: 1221: 1218: 1206: 1200: 1197: 1192: 1188: 1183: 1178: 1174: 1170: 1165: 1160: 1156: 1152: 1148: 1141: 1138: 1133: 1129: 1125: 1121: 1117: 1113: 1109: 1105: 1100: 1095: 1091: 1087: 1080: 1078: 1074: 1063:on 2007-10-25 1062: 1058: 1054: 1050: 1046: 1042: 1038: 1033: 1028: 1024: 1020: 1019: 1014: 1007: 1005: 1001: 998: 993: 990: 984: 980: 977: 975: 972: 970: 967: 965: 962: 960: 957: 955: 952: 951: 947: 945: 943: 940:to determine 939: 935: 916: 913: 910: 905: 901: 889: 870: 867: 864: 859: 855: 837: 830: 828: 826: 822: 817: 815: 811: 807: 803: 799: 793: 790: 786: 781: 779: 775: 771: 767: 763: 759: 755: 751: 744: 739: 732: 728: 724: 720: 714: 707: 705: 703: 699: 694: 692: 687: 685: 679: 677: 673: 668: 664: 658: 651: 646: 639: 637: 635: 631: 627: 622: 620: 616: 612: 608: 604: 600: 596: 595:Type Iax 590: 582: 580: 579:also varies. 578: 574: 569: 567: 563: 559: 555: 551: 547: 543: 539: 535: 531: 527: 523: 519: 515: 505: 502: 498: 494: 491: 487: 482:10 years 474: 472: 464: 462: 459: 456: 451: 449: 445: 441: 437: 432: 424: 413: 403: 401: 393: 379: 367: 365: 363: 359: 355: 350: 348: 343: 338: 334: 330: 322: 318: 314: 309: 297: 295: 291: 288: 284: 280: 276: 272: 268: 264: 263:main sequence 256: 251: 247: 245: 244:Oxygen fusion 241: 240:carbon fusion 237: 233: 227: 225: 221: 217: 213: 204: 200: 196: 192: 189: 185: 181: 177: 173: 169: 162: 158: 153: 146: 144: 142: 138: 132: 129: 119: 115: 114:carbon fusion 110: 106: 102: 101:critical mass 98: 88: 86: 82: 78: 74: 70: 66: 58: 54: 50: 46: 19: 4436: 4431:Solar System 4232:Vela Remnant 4197:SN 1006 4162:SN 1000+0216 4140:Cassiopeia A 4109:Most distant 4040:Local Bubble 4013:Compact star 3991:Neutron star 3728:Calcium-rich 3693:Type Ia 3692: 3632:. Retrieved 3628:the original 3610:. Retrieved 3595:. Retrieved 3591:the original 3576:. Retrieved 3561:. Retrieved 3557:the original 3469:(1): 75–96. 3466: 3462: 3452: 3433: 3429: 3419: 3366: 3362: 3352: 3340:. Retrieved 3336: 3327: 3319: 3315: 3272: 3268: 3255: 3212: 3208: 3195: 3152: 3148: 3142: 3102:(1): 47–72. 3099: 3095: 3089: 3064: 3060: 3054: 3029: 3025: 3019: 2976: 2972: 2966: 2941: 2937: 2931: 2906: 2902: 2889: 2846: 2842: 2835: 2823:. Retrieved 2819:the original 2812: 2802: 2757: 2753: 2743: 2734: 2725: 2674: 2670: 2609: 2605: 2598: 2580: 2574: 2547: 2543: 2537: 2512: 2508: 2502: 2490:. Retrieved 2486: 2477: 2450: 2444: 2430: 2387: 2383: 2372: 2351: 2339:. Retrieved 2325: 2313:. Retrieved 2309:the original 2299: 2258: 2254: 2248: 2237:. Retrieved 2227: 2216:. Retrieved 2212:the original 2198: 2186:. Retrieved 2173: 2130: 2124: 2118: 2107:. Retrieved 2103:the original 2090: 2084: 2074: 2029: 2023: 2013: 2002:. Retrieved 2000:. 2007-01-03 1988: 1977:. Retrieved 1967: 1956: 1898: 1894: 1868: 1862: 1807: 1803: 1793: 1776: 1770: 1737: 1733: 1727: 1710: 1706: 1700: 1639: 1633: 1627: 1587:(1): L1–L4. 1584: 1580: 1560:. Retrieved 1556:the original 1546: 1503: 1499: 1460: 1453: 1442:. Retrieved 1437: 1427: 1375:White Dwarfs 1374: 1368: 1343: 1337: 1327: 1316: 1283: 1279: 1273: 1230: 1226: 1220: 1209:. Retrieved 1199: 1154: 1150: 1140: 1089: 1085: 1065:. Retrieved 1061:the original 1022: 1016: 992: 934:luminosities 842: 818: 794: 782: 747: 718: 695: 683: 680: 659: 655: 623: 594: 592: 570: 526:SN 1006 506: 497:orbit decays 489: 475: 468: 460: 452: 428: 398: 351: 344: 336: 298: 260: 236:deflagration 228: 216:neutron star 201:white dwarf 176:Fritz Zwicky 166:The Type Ia 165: 155:Spectrum of 133: 89: 64: 62: 49:Henize 2-428 4419:Outer space 4407:Spaceflight 4242:ASASSN-15lh 4192:SN 185 4150:Crab Nebula 4045:Superbubble 4035:Zombie star 4018:electroweak 3948:White dwarf 3897:Progenitors 3861:Pulsar kick 3342:26 November 2944:(2): L105. 2909:(6): 2392. 2363:1301.1047v1 1933:10261/56885 750:light curve 708:Light curve 691:dark energy 640:Observation 599:zombie star 431:binary star 184:white dwarf 161:B band 81:white dwarf 53:white dwarf 4449:Supernovae 4257:SN 2022jli 4252:SN 2018cow 4119:In fiction 4094:Candidates 4068:Guest star 3926:Supergiant 3904:Hypergiant 3866:Quark-nova 3768:Near-Earth 3751:Physics of 3679:Supernovae 3634:2007-05-25 3612:2007-11-25 3597:2007-05-25 3578:2007-05-25 3563:2007-05-20 2856:2106.08935 2460:2311.03700 2239:2007-01-08 2218:2006-11-02 2109:2006-06-02 2004:2007-01-06 1979:2007-05-20 1562:2017-04-25 1444:2007-06-07 1211:2007-05-01 1164:1909.03138 1067:2007-05-30 985:References 577:luminosity 364:emission. 321:shock wave 290:detonation 287:supersonic 283:turbulence 232:convection 191:Messier 82 85:giant star 57:solar mass 4383:Astronomy 4157:iPTF14hls 4061:Discovery 3851:Micronova 3800:Neutrinos 3793:γ-process 3788:r-process 3783:p-process 3763:Foe/Bethe 3713:Hypernova 3503:0035-8711 3476:0711.4548 3403:0035-8711 3376:1409.0116 3320:Cosmology 3247:118910636 3134:119097691 2881:235446995 2767:1207.5770 2684:1207.1306 2652:205227021 2619:1110.6201 2422:118603977 2397:1212.2209 2390:(1): 57. 2093:(4): 26. 1908:1210.1948 1762:116987470 1662:CiteSeerX 1308:122727067 1240:0803.1705 1191:0004-637X 1157:(1): 44. 914:− 911:≳ 868:− 865:≲ 770:cobalt-56 766:nickel-56 758:iron-peak 743:SN 2018gv 663:red giant 634:Milky Way 615:SN 2002cx 611:SN 1991bg 542:SN 2011fe 368:Formation 220:magnesium 168:supernova 69:supernova 4443:Category 4266:Research 4172:Kepler's 4114:Remnants 4001:magnetar 3972:Remnants 3876:Imposter 3841:Kilonova 3541:Archived 3530:Archived 3511:18434976 3411:59067792 3307:15640044 3187:15728812 3011:15157846 2979:: 2391. 2717:38997016 2709:22923575 2644:22170680 2492:30 March 2341:28 March 2315:24 March 2283:22237107 2188:23 March 2165:15092837 2066:16577876 1941:23018963 1854:28163653 1810:(1): 6. 1754:15218132 1684:12446871 1538:10210550 1265:33156459 1132:16408991 1124:17289993 948:See also 942:distance 831:Subtypes 821:universe 802:NGC 4258 768:through 619:SN 2012Z 607:SN 1991T 583:Type Iax 513:☉ 455:subgiant 362:neutrino 306:10  294:subsonic 211:☉ 203:accretes 126:10  107:, where 96:☉ 4369:Portals 4273:ASAS-SN 4167:Tycho's 4145:SN 1054 4128:Notable 4099:Notable 3809:Related 3686:Classes 3481:Bibcode 3381:Bibcode 3287:Bibcode 3227:Bibcode 3167:Bibcode 3114:Bibcode 3069:Bibcode 3034:Bibcode 2991:Bibcode 2946:Bibcode 2911:Bibcode 2861:Bibcode 2825:May 21, 2794:7846647 2772:Bibcode 2689:Bibcode 2671:Science 2624:Bibcode 2585:Bibcode 2562:Bibcode 2517:Bibcode 2465:Bibcode 2402:Bibcode 2337:website 2291:4362865 2263:Bibcode 2145:Bibcode 2095:Bibcode 2086:Mercury 2057:1077725 2034:Bibcode 1949:4431391 1913:Bibcode 1873:Bibcode 1845:5253975 1822:Bibcode 1781:Bibcode 1734:Science 1715:Bibcode 1692:6111616 1654:Bibcode 1635:Science 1619:2849060 1599:Bibcode 1518:Bibcode 1419:9288287 1389:Bibcode 1348:Bibcode 1288:Bibcode 1245:Bibcode 1169:Bibcode 1104:Bibcode 1086:Science 1057:2963085 1037:Bibcode 778:photons 774:iron-56 754:calcium 626:SN 1181 603:SN 1181 292:from a 275:runaway 118:runaway 4023:exotic 3996:pulsar 3941:yellow 3909:yellow 3816:Failed 3509:  3501:  3409:  3401:  3305:  3245:  3185:  3132:  3009:  2879:  2792:  2715:  2707:  2650:  2642:  2606:Nature 2420:  2289:  2281:  2255:Nature 2163:  2064:  2054:  1947:  1939:  1895:Nature 1852:  1842:  1760:  1752:  1690:  1682:  1664:  1617:  1536:  1472:  1417:  1407:  1306:  1263:  1189:  1130:  1122:  1055:  731:cobalt 727:nickel 684:Kepler 667:plasma 617:, and 538:X-rays 444:period 313:unbind 199:oxygen 195:carbon 188:galaxy 51:, two 4395:Stars 4087:Lists 4028:quark 3507:S2CID 3471:arXiv 3463:MNRAS 3407:S2CID 3371:arXiv 3303:S2CID 3277:arXiv 3243:S2CID 3217:arXiv 3183:S2CID 3157:arXiv 3130:S2CID 3104:arXiv 3067:: 1. 3007:S2CID 2981:arXiv 2899:(PDF) 2877:S2CID 2851:arXiv 2790:S2CID 2762:arXiv 2713:S2CID 2679:arXiv 2648:S2CID 2614:arXiv 2552:arXiv 2455:arXiv 2453:: 6. 2418:S2CID 2392:arXiv 2358:arXiv 2287:S2CID 2161:S2CID 2135:arXiv 1945:S2CID 1903:arXiv 1812:arXiv 1758:S2CID 1688:S2CID 1644:arXiv 1615:S2CID 1589:arXiv 1534:S2CID 1508:arXiv 1415:S2CID 1379:arXiv 1304:S2CID 1261:S2CID 1235:arXiv 1159:arXiv 1128:S2CID 1094:arXiv 1053:S2CID 1027:arXiv 806:maser 733:(Co). 650:N103B 534:Swift 402:image 347:novae 77:stars 75:(two 3931:blue 3856:Nova 3499:ISSN 3399:ISSN 3344:2018 2827:2015 2814:NASA 2705:PMID 2640:PMID 2494:2017 2343:2012 2317:2012 2279:PMID 2190:2012 2062:PMID 1937:PMID 1850:PMID 1750:PMID 1680:PMID 1470:ISBN 1405:ISBN 1187:ISSN 1120:PMID 871:19.5 530:NASA 501:SDSS 400:NASA 360:via 224:neon 3936:red 3914:Red 3536:at 3489:doi 3467:385 3438:doi 3434:424 3389:doi 3367:445 3295:doi 3273:116 3235:doi 3213:517 3175:doi 3153:652 3122:doi 3100:553 3077:doi 3065:109 3042:doi 3030:232 2999:doi 2977:112 2954:doi 2942:413 2919:doi 2907:106 2869:doi 2780:doi 2758:431 2697:doi 2675:337 2632:doi 2610:480 2548:362 2525:doi 2513:103 2410:doi 2388:767 2271:doi 2259:481 2153:doi 2131:601 2052:PMC 2042:doi 1929:hdl 1921:doi 1899:489 1840:PMC 1830:doi 1742:doi 1738:304 1711:270 1672:doi 1640:299 1607:doi 1585:420 1526:doi 1397:doi 1356:doi 1344:323 1296:doi 1284:202 1253:doi 1231:135 1177:doi 1155:894 1112:doi 1090:315 1045:doi 1023:419 772:to 764:of 693:. 546:Sun 532:'s 490:cf. 480:to 4445:: 3505:. 3497:. 3487:. 3479:. 3465:. 3461:. 3432:. 3428:. 3405:. 3397:. 3387:. 3379:. 3365:. 3361:. 3335:. 3301:. 3293:. 3285:. 3271:. 3263:; 3241:. 3233:. 3225:. 3211:. 3203:; 3181:. 3173:. 3165:. 3151:. 3128:. 3120:. 3112:. 3098:. 3075:. 3063:. 3040:. 3028:. 3005:. 2997:. 2989:. 2975:. 2952:. 2940:. 2917:. 2905:. 2901:. 2875:. 2867:. 2859:. 2845:. 2811:. 2788:. 2778:. 2770:. 2756:. 2752:. 2733:. 2711:. 2703:. 2695:. 2687:. 2673:. 2660:^ 2646:. 2638:. 2630:. 2622:. 2608:. 2560:. 2546:. 2523:. 2511:. 2485:. 2463:. 2416:. 2408:. 2400:. 2386:. 2333:. 2285:. 2277:. 2269:. 2257:. 2206:. 2181:. 2159:. 2151:. 2143:. 2129:. 2091:28 2089:. 2083:. 2060:. 2050:. 2040:. 2030:25 2028:. 2022:. 1996:. 1943:. 1935:. 1927:. 1919:. 1911:. 1897:. 1885:^ 1848:. 1838:. 1828:. 1820:. 1806:. 1802:. 1756:. 1748:. 1736:. 1709:. 1686:. 1678:. 1670:. 1660:. 1652:. 1638:. 1613:. 1605:. 1597:. 1583:. 1571:^ 1532:. 1524:. 1516:. 1504:38 1502:. 1484:^ 1436:. 1413:. 1403:. 1395:. 1387:. 1354:. 1342:. 1336:. 1302:. 1294:. 1282:. 1259:. 1251:. 1243:. 1229:. 1185:. 1175:. 1167:. 1153:. 1149:. 1126:. 1118:. 1110:. 1102:. 1088:. 1076:^ 1051:. 1043:. 1035:. 1021:. 1015:. 1003:^ 944:. 917:18 816:. 636:. 621:. 613:, 609:, 605:, 478:10 450:. 222:, 63:A 47:, 4371:: 3671:e 3664:t 3657:v 3637:. 3615:. 3600:. 3581:. 3566:. 3547:. 3513:. 3491:: 3483:: 3473:: 3446:. 3440:: 3413:. 3391:: 3383:: 3373:: 3346:. 3309:. 3297:: 3289:: 3279:: 3249:. 3237:: 3229:: 3219:: 3189:. 3177:: 3169:: 3159:: 3136:. 3124:: 3116:: 3106:: 3083:. 3079:: 3071:: 3048:. 3044:: 3036:: 3013:. 3001:: 2993:: 2983:: 2960:. 2956:: 2948:: 2925:. 2921:: 2913:: 2883:. 2871:: 2863:: 2853:: 2847:5 2829:. 2796:. 2782:: 2774:: 2764:: 2719:. 2699:: 2691:: 2681:: 2654:. 2634:: 2626:: 2616:: 2591:. 2587:: 2568:. 2564:: 2554:: 2531:. 2527:: 2519:: 2496:. 2471:. 2467:: 2457:: 2424:. 2412:: 2404:: 2394:: 2366:. 2360:: 2345:. 2319:. 2293:. 2273:: 2265:: 2242:. 2221:. 2192:. 2167:. 2155:: 2147:: 2137:: 2112:. 2097:: 2068:. 2044:: 2036:: 2007:. 1982:. 1951:. 1931:: 1923:: 1915:: 1905:: 1879:. 1875:: 1856:. 1832:: 1824:: 1814:: 1808:9 1787:. 1783:: 1764:. 1744:: 1721:. 1717:: 1694:. 1674:: 1656:: 1646:: 1621:. 1609:: 1601:: 1591:: 1565:. 1540:. 1528:: 1520:: 1510:: 1478:. 1447:. 1421:. 1399:: 1391:: 1381:: 1362:. 1358:: 1350:: 1310:. 1298:: 1290:: 1267:. 1255:: 1247:: 1237:: 1214:. 1193:. 1179:: 1171:: 1161:: 1134:. 1114:: 1106:: 1096:: 1070:. 1047:: 1039:: 1029:: 920:) 906:V 902:M 898:( 874:) 860:V 856:M 852:( 722:0 719:L 510:M 488:( 340:v 337:M 308:J 304:× 302:2 257:. 208:M 197:– 128:J 124:× 122:1 93:M 20:)

Index

Type 1a supernova
planetary nebula
Henize 2-428
white dwarf
solar mass
supernova
binary systems
stars
white dwarf
giant star
M
critical mass
Chandrasekhar limit
electron degeneracy pressure
carbon fusion
runaway
J
standard candles
visual magnitude

SN 1998aq
B band
supernova
Rudolph Minkowski
Fritz Zwicky
progenitor star
white dwarf
galaxy
Messier 82
carbon

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.