Knowledge (XXG)

Type II topoisomerase

Source đź“ť

475:
Rossmann fold that contains three invariant acidic residues that coordinate magnesium ions involved in DNA cleavage and DNA religation. The structure of the Toprim fold and DNA-binding core of yeast topoisomerase II was first solved by Berger and Wang, and the first gyrase DNA-binding core was solved by Morais Cabral et al. The structure solved by Berger revealed important insights into the function of the enzyme. The DNA-binding core consists of the WHD, which leads to a tower domain. A coiled-coil region leads to a C-terminal domain that forms the main dimer interface for this crystal state (often termed the C-gate). While the original topoisomerase II structure shows a situation where the WHDs are separated by a large distance, the structure of gyrase shows a closed conformation, where the WHD close.
479:
was eventually substantiated by the Dong et al. structure that was solved in the presence of DNA. This last structure showed that the Toprim domain and the WHD formed a cleavage complex very similar to that of the type IA topoisomerases and indicated how DNA-binding and cleavage could be uncoupled, and the structure showed that DNA was bent by ~150 degrees through an invariant isoleucine (in topoisomerase II it is I833 and in gyrase it is I172). This mechanism of bending resembles closely that of integration host factor (IHF) and HU, two architectural proteins in bacteria. In addition, while the previous structures of the DNA-binding core had the C-gate closed, this structure captured the gate open, a key step in the two-gate mechanism (see below).
278:
have the special ability to relax DNA to a state below that of thermodynamic equilibrium, a feature unlike type IA, IB, and IIB topoisomerases. This ability, known as topology simplification, was first identified by Rybenkov et al. The hydrolysis of ATP drives this simplification, but a clear molecular mechanism for this simplification is still lacking. Several models to explain this phenomenon have been proposed, including two models that rely on the ability of type IIA topoisomerases to recognize bent DNA duplexes. Biochemistry, electron microscopy, and recent structures of topoisomerase II bound to DNA reveal that type IIA topoisomerases bind at the apices of DNA, supporting this model.
579:
release of an inorganic phosphate leads to the cleavage of the G-segment, as the catalytic tyrosines form a covalent phosphotyrosine bond with the 5' end of the DNA. This creates a four-base overhang and a double-stranded break in the G-segment. As the DNA-binding gate separates, the T-segment is transferred through the G-segment. The G-segment is sealed, leading to the C-terminal gate (or C-gate) to open, allowing for the release of the T-segment. Release of product ADP leads to a reset of the system, and allows a second T-segment to be captured.
508: 375: 2902: 495:
bends DNA by wrapping the nucleic acid around itself. The bending of DNA by gyrase has been proposed as a key mechanism in the ability of gyrase to introduce negative supercoils into the DNA. This is consistent with footprinting data that shows that gyrase has a 140-base-pair footprint. Both gyrase and topoisomerase IV CTDs bend DNA, but only gyrase introduces negative supercoils.
258:. Along with gyrase, most prokaryotes also contain a second type IIA topoisomerase, termed topoisomerase IV. Gyrase and topoisomerase IV differ by their C-terminal domains, which is believed to dictate substrate specificity and functionality for these two enzymes. Footprinting indicates that gyrase, which forms a 140-base-pair footprint and wraps DNA, introduces negative 292: 719:
DNA gyrase can partially compensate for the loss of the phage T4 gene products, mutants defective in either genes 39, 52 or 60 do not completely abolish phage DNA replication, but rather delay its initiation. The rate of DNA elongation is not slower than wild-type in such mutant infections. Mutants
494:
The C-terminal region of the prokaryotic topoisomerases has been solved for multiple species. The first structure of a C-terminal domain of gyrase was solved by Corbett et al. and the C-terminal domain of topoisomerase IV was solved by Corbett et al. The structures formed a novel beta barrel, which
277:
Type IIA topoisomerases are essential in the separation of entangled daughter strands during replication. This function is believed to be performed by topoisomerase II in eukaryotes and by topoisomerase IV in prokaryotes. Failure to separate these strands leads to cell death. Type IIA topoisomerases
561:
A recent structure of the topo VI A/B complex was solved, showing an open and closed conformation, two states that are predicted in the two-gate mechanism (see below). These structures, of which one is an X-ray crystal structure and the other is a Small-Angle X-ray Scattering (SAXS) reconstruction,
478:
The topoisomerase II core was later solved in new conformations, including one by Fass et al. and one by Dong et al. The Fass structure shows that the Toprim domain is flexible and that this flexibility can allow the Toprim domain to coordinate with the WHD to form a competent cleavage complex. This
474:
The central core of the protein contains a Toprim fold and a DNA-binding core that contains a winged helix domain (WHD), often referred to as a CAP domain, since it was first identified to resemble the WHD of catabolite activator protein. The catalytic tyrosine lies on this WHD. The Toprim fold is a
466:
The structures of the N-terminal ATPase domain of gyrase and yeast topoisomerase II have been solved in complex with AMPPNP (an ATP analogue), showing that two ATPase domains dimerize to form a closed conformation. For gyrase, the structure has a substantial hole in the middle, which is presumed to
602:
is the process by which two circular DNA strands are linked together like chain links. This occurs after DNA replication, where two single strands are catenated and can still replicate but cannot separate into the two daughter cells. As type II topoisomerses break a double strand, they can fix this
360:
The two classes of topoisomerases possess a similar strand passage mechanism and domain structure (see below), however they also have several important differences. Type IIA topoisomerases form double-stranded breaks with four-base pair overhangs, while type IIB topoisomerases form double-stranded
470:
Linking the ATPase domain to the Toprim fold is a helical element known as the transducer domain. This domain is thought to communicate the nucleotide state of the ATPase domain to the rest of the protein. Modifications to this domain affect topoisomerase activity, and structural work done by the
578:
A strand of DNA, called the gate, or G-segment, is bound by a central DNA-binding gate (DNA-gate). A second strand of DNA, called the transport, or T-segment, is captured by the dimerization of the N-terminal ATPase domain (the ATPase-gate) when two molecules of ATP bind. Hydrolysis of ATP and
498:
Unlike the function of the C-terminal domain of prokaryotic topoisomerases, the function of the C-terminal region of eukaryotic topoisomerase II is still not clear. Studies have suggested that this region is regulated by phosphorylation and this modulates topoisomerase activity, however more
29: 621:
Small molecules that target type II topoisomerase are divided into two classes: inhibitors and poisons. Due to their frequent presence in proliferating eukaryotic cells, inhibitors of type II topoisomerases have been extensively studied and used as anti-cancer medications.
482:
More recently, several structures of the DNA-bound structure have been solved in an attempt to understand both the chemical mechanism for DNA cleavage and the structural basis for inhibition of topoisomerase by antibacterial poisons. The first complete architecture of the
463:). For gyrase, the first polypeptide is called GyrB and the second polypeptide is called GyrA. For topo IV, the first polypeptide is called ParE and the second polypeptide is called ParC. Both Pfam signatures are found in the single-chain eukayotic topoisomerase. 590:
In the strand passage mechanism, the cleavage of DNA is key to allow the T-segment to transfer through the G-segment. The mechanism of DNA cleavage by type IIA topoisomerases has recently been the focus of many biochemical and structural biology studies.
554:
The ATPase domain of topo VI B was solved in multiple nucleotide states. It closely resembles that of the GHKL domain of topo II and MutL and shows that the nucleotide state (ADP versus ATP) effects the orientation of the transducer domain ( and 1MX0).
736:
are present. Mutants defective in genes 39, 52 and 60 have reduced ability to carry out multiplicity reactivation, a form of recombinational repair that can deal with different types of DNA damage. The gyrase specified by the genome of uninfected
525:
The organization of type IIB topoisomerases are similar to that of type IIAs, except that all type IIBs have two genes and form heterotetramers. One gene, termed topo VI-B (since it resembles gyrB), contains the ATPase domain, a transducer domain
700:
The bacteriophage (phage) T4 gyrase (type II topoismerase) is a multisubunit protein consisting of the products of genes 39, 52 and probably 60. It catalyses the relaxation of negatively or positively superhelical DNA and is employed in phage
268:
The roles of type IIB topoisomerases are less understood. Unlike type IIA topoisomerases, type IIB topoisomerases cannot simplify DNA topology (see below), but they share several structural features with type IIA topoisomerases.
396:​). The Toprim fold is colored cyan; the DNA is colored orange; the HTH is colored magenta; and the C-gate is colored purple. Notice that the DNA is bent by ~160 degrees through an invariant isoleucine (Ile833 in yeast). 357:, the topoisomerase IIα is highly expressed in proliferating cells. In certain cancers, such as peripheral nerve sheath tumors, high expression of its encoded protein is also associated to poor patient survival. 642:. These molecules work by inhibiting the ATPase activity by acting as noncompetitive inhibitors of ATP. This has been shown through structural studies and biochemical studies performed by the Lindsley group. 692:) that renders quinolones ineffective. Recent structural studies have led to the discovery of a compound that no longer relies on this residue and, therefore, has efficacy against drug-resistant bacteria. 341:
Type IIB topoisomerases are structurally and biochemically distinct, and comprise a single family member, topoisomerase VI (topo VI). Type IIB topoisomerases are found in archaea and some higher plants.
2108:
McCarthy D (January 1979). "Gyrase-dependent initiation of bacteriophage T4 DNA replication: interactions of Escherichia coli gyrase with novobiocin, coumermycin and phage DNA-delay gene products".
680:
Topoisomerase poisons have been extensively used as both anticancer and antibacterial therapies. While antibacterial compounds such as ciprofloxacin target bacterial gyrase, they fail to inhibit
521:​) in an orientation similar to the yeast example. Chains are colored differently. The Toprim domain lies on the top, and the ATPase domain lies on the bottom; each forms a DNA gate. 728:
suggesting that the host compensated DNA synthesis is less accurate than that directed by wild-type phage. A mutant defective in gene 39 shows increased sensitivity to inactivation by
1722:
Bergerat A, de Massy B, Gadelle D, Varoutas PC, Nicolas A, Forterre P (March 1997). "An atypical topoisomerase II from Archaea with implications for meiotic recombination".
582:
Type IIB topoisomerases operate through a similar fashion, except that the protein forms a two-base overhang in the G-segment and the C-terminal gate is completely missing.
232:
In animals, topoisomerase II is a chemotherapy target. In prokaryotes, gyrase is an antibacterial target. Indeed, these enzymes are of interest for a wide range of effects.
575:
Type IIA topoisomerase operates through a "two-gate" mechanism (though this is a historical notation), a mechanism supported by biochemistry as well as by structural work.
603:
state (type I topoisomerases could do this only if there were already a single-strand nick), and the correct chromosome number can remain in daughter cells. Linear DNA in
2233:
McCarthy D, Minner C, Bernstein H, Bernstein C (October 1976). "DNA elongation rates and growing point distributions of wild-type phage T4 and a DNA-delay amber mutant".
166: 1937: 669:. These small molecules target the DNA-protein complex. Some of these molecules lead to increased cleavage, whereas others, such as etoposide, inhibit religation. 185: 845:
Rybenkov VV, Ullsperger C, Vologodskii AV, Cozzarelli NR (August 1997). "Simplification of DNA topology below equilibrium values by type II topoisomerases".
558:
The structure of topo VI-A was solved by Bergerat et al. showing that the HTH and Toprim fold had a novel conformation compared with that of topo IIA.
1995:, Liu CC, Alberts BM (October 1979). "T4 DNA topoisomerase: a new ATP-dependent enzyme essential for initiation of T4 bacteriophage DNA replication". 741:
also appears to participate in recombinational repair by providing an initiation point for the reciprocal strand exchange driven by the RecA protein.
2537: 1953:"A novel DNA-dependent protein kinase inhibitor, NU7026, potentiates the cytotoxicity of topoisomerase II poisons used in the treatment of leukemia" 487:
DNA gyrase has been solved by cryo-electron microscopy at near atomic resolution. The nucleoprotein complex was captured with a long DNA duplex and
240:
Type II topoisomerases increase or decrease the linking number of a DNA loop by 2 units, and it promotes chromosome disentanglement. For example,
33:
Structure of the 42 KDa fragment of the N-terminal ATPase and transducer domains of DNA gyrase homologous to all other type IIA topoisomerases.
361:
breaks with two base overhangs. In addition, type IIA topoisomerases are able to simplify DNA topology, while type IIB topoisomerases do not.
1913: 1071:
Wigley DB, Davies GJ, Dodson EJ, Maxwell A, Dodson G (June 1991). "Crystal structure of an N-terminal fragment of the DNA gyrase B protein".
1036:
Corbett KD, Schoeffler AJ, Thomsen ND, Berger JM (August 2005). "The structural basis for substrate specificity in DNA topoisomerase IV".
1433:
Fass D, Bogden CE, Berger JM (April 1999). "Quaternary changes in topoisomerase II may direct orthogonal movement of two DNA strands".
2621: 1783:
Corbett KD, Benedetti P, Berger JM (July 2007). "Holoenzyme assembly and ATP-mediated conformational dynamics of topoisomerase VI".
1248:"Toprim--a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins" 1195: 2048:"T4 DNA-delay proteins, required for specific DNA replication, form a complex that has ATP-dependent DNA topoisomerase activity" 178: 2319:"The genetics of the Luria-Latarjet effect in bacteriophage T4: evidence for the involvement of multiple DNA repair pathways" 383: 121: 2777: 145: 2892: 2530: 1486:
Dong KC, Berger JM (December 2007). "Structural basis for gate-DNA recognition and bending by type IIA topoisomerases".
1137:"Structure of the topoisomerase II ATPase region and its mechanism of inhibition by the chemotherapeutic agent ICRF-187" 1826:
Roca J, Wang JC (May 1994). "DNA transport by a type II DNA topoisomerase: evidence in favor of a two-gate mechanism".
732:
irradiation during the stage of phage infection after initiation of DNA replication when multiple copies of the phage
254:, introduces negative supercoils and decreases the linking number by 2. Gyrase is also able to remove knots from the 507: 306: 2762: 2878: 2865: 2852: 2839: 2826: 2813: 2800: 2563: 880:
Vologodskii AV, Zhang W, Rybenkov VV, Podtelezhnikov AA, Subramanian D, Griffith JD, Cozzarelli NR (March 2001).
2772: 607:
is so long they can be thought of as being without ends; type II topoisomerases are needed for the same reason.
2726: 2669: 2554: 2509: 1305:
Berger JM, Gamblin SJ, Harrison SC, Wang JC (January 1996). "Structure and mechanism of DNA topoisomerase II".
139: 44: 1675:"Structure of the topoisomerase VI-B subunit: implications for type II topoisomerase mechanism and evolution" 2674: 2523: 616: 126: 1869:
Berger JM, Wang JC (February 1996). "Recent developments in DNA topoisomerase II structure and mechanism".
374: 218: 2505: 715:
gyrase gyrA subunit and the phage gene 39 protein shares homology with the gyr B subunit. Since the host
2695: 2614: 721: 190: 2767: 114: 2571: 2059: 2004: 1731: 1617: 1550: 1495: 1379: 1314: 1148: 1080: 893: 350: 346: 222: 2731: 2409:"Formation of covalently closed heteroduplex DNA by the combined action of gyrase and RecA protein" 412: 378:
Schematic structure of gyrase, oriented upside-down compared to the other examples in this article.
142: 2922: 2664: 2486: 2028: 1931: 1851: 1808: 1755: 1519: 1458: 1405: 1338: 1228: 1196:"Nucleotide-dependent domain movement in the ATPase domain of a human type IIA DNA topoisomerase" 1104: 1005: 976:"DNA topoisomerase VI generates ATP-dependent double-strand breaks with two-nucleotide overhangs" 639: 66: 2478: 2438: 2389: 2340: 2299: 2250: 2215: 2166: 2125: 2087: 2020: 1974: 1919: 1909: 1886: 1843: 1800: 1773: 1747: 1704: 1663: 1645: 1594: 1576: 1511: 1476: 1450: 1423: 1397: 1356: 1330: 1295: 1277: 1220: 1176: 1125: 1096: 1053: 1026: 997: 956: 921: 862: 824: 789: 631: 513: 419:
subclass), which exists in both type II topoisomerases, type IA topoisomerases, and bacterial
388: 133: 684:
type IIA topoisomerases. In addition, drug-resistant bacteria often have a point mutation in
229:
of circular DNA by ±2. Topoisomerases are ubiquitous enzymes, found in all living organisms.
2710: 2705: 2679: 2607: 2586: 2470: 2428: 2420: 2379: 2371: 2330: 2289: 2281: 2242: 2205: 2197: 2156: 2145:"The 52-protein subunit of T4 DNA topoisomerase is homologous to the gyrA-protein of gyrase" 2117: 2077: 2067: 2012: 1964: 1878: 1835: 1792: 1739: 1694: 1686: 1635: 1625: 1566: 1558: 1503: 1442: 1387: 1366:
Morais Cabral JH, Jackson AP, Smith CV, Shikotra N, Maxwell A, Liddington RC (August 1997).
1322: 1267: 1259: 1210: 1166: 1156: 1088: 1045: 987: 948: 911: 901: 854: 816: 779: 771: 707: 335: 1951:
Willmore E, de Caux S, Sunter NJ, Tilby MJ, Jackson GH, Austin CA, Durkacz BW (June 2004).
2757: 2741: 2654: 702: 102: 471:
Verdine group shows that the ATP state affects the orientation of the transducer domain.
2063: 2008: 1735: 1621: 1554: 1499: 1383: 1318: 1152: 1084: 897: 305:
Please expand the section to include this information. Further details may exist on the
78: 2906: 2795: 2736: 2424: 2384: 2359: 1571: 1538: 784: 759: 226: 206: 161: 49: 2461:
Wang JC (June 2002). "Cellular roles of DNA topoisomerases: a molecular perspective".
2433: 2408: 2294: 2269: 2210: 2185: 2161: 2144: 2082: 2047: 1882: 1699: 1674: 1640: 1605: 1272: 1247: 1171: 1136: 677:(4'-(9'-acridinylamino)methanesulfon-m-anisidide) also inhibits type 2 topoisomerase. 265:
Eukaryotic type II topoisomerase cannot introduce supercoils; it can only relax them.
2916: 2700: 2659: 2550: 2515: 2490: 2246: 2121: 1839: 916: 881: 662: 416: 1855: 1232: 1009: 548: 541: 530: 460: 453: 2649: 2186:"Nucleotide sequence of a type II DNA topoisomerase gene. Bacteriophage T4 gene 39" 2032: 1812: 1759: 1523: 1409: 1342: 1108: 430:
a central DNA-binding core (which structurally forms a heart-shaped structure), and
262:, while topoisomerase IV, which forms a 28-base-pair footprint, does not wrap DNA. 2285: 1462: 338:(topo IV). These enzymes span all domains of life and are essential for function. 2375: 858: 2873: 2808: 2644: 729: 646: 534: 488: 405: 386:
Structure of yeast topoisomerase II bound to a doubly nicked 34-mer duplex DNA (
2901: 2052:
Proceedings of the National Academy of Sciences of the United States of America
1969: 1952: 1610:
Proceedings of the National Academy of Sciences of the United States of America
1606:"The C-terminal domain of DNA gyrase A adopts a DNA-bending beta-pinwheel fold" 1562: 1141:
Proceedings of the National Academy of Sciences of the United States of America
886:
Proceedings of the National Academy of Sciences of the United States of America
2581: 2335: 2318: 1049: 952: 820: 733: 681: 666: 658: 654: 604: 599: 449:). Prokaryotes have the ATPase domain and the Toprim fold on one polypeptide ( 331: 255: 251: 241: 2201: 1923: 1263: 2847: 2821: 2546: 1992: 1630: 1539:"Cryo-EM structure of the complete E. coli DNA gyrase nucleoprotein complex" 1161: 650: 259: 214: 2482: 2072: 1978: 1804: 1708: 1690: 1649: 1580: 1515: 1454: 1224: 1215: 1180: 1057: 1001: 992: 975: 925: 906: 793: 291: 2442: 2393: 2344: 2303: 2219: 2170: 1890: 1847: 1751: 1401: 1334: 1281: 1100: 960: 939:
Reece RJ, Maxwell A (January 1991). "DNA gyrase: structure and function".
866: 828: 2254: 2129: 2091: 2024: 775: 760:"The DNA cleavage reaction of topoisomerase II: wolf in sheep's clothing" 725: 635: 456:), while the DNA cleavage core and the CTD lies on a second polypeptide ( 209:
that cut both strands of the DNA helix simultaneously in order to manage
1507: 974:
Buhler C, Lebbink JH, Bocs C, Ladenstein R, Forterre P (October 2001).
420: 345:
Some organisms including humans have two isoforms of topoisomerase II:
246: 109: 90: 1777: 1667: 1598: 1480: 1427: 1360: 1299: 1129: 1030: 517: 392: 326:
There are two subclasses of type II topoisomerases, type IIA and IIB.
2860: 2630: 2016: 1796: 1743: 1326: 1092: 685: 674: 627: 354: 173: 85: 73: 61: 2360:"Topoisomerase involvement in multiplicity reactivation of phage T4" 882:"Mechanism of topology simplification by type II DNA topoisomerases" 2474: 711:
bacterial host. The phage gene 52 protein shares homology with the
2834: 1392: 1367: 807:
Reece RJ, Maxwell A (1991). "DNA gyrase: structure and function".
506: 441:), while prokaryotic type II topoisomerases are heterotetramers (A 381: 373: 1446: 1368:"Crystal structure of the breakage-reunion domain of DNA gyrase" 545: 538: 527: 457: 450: 424: 97: 2603: 2519: 382: 285: 210: 28: 1194:
Wei H, Ruthenburg AJ, Bechis SK, Verdine GL (November 2005).
2358:
Miskimins R, Schneider S, Johns V, Bernstein H (June 1982).
1537:
Vanden Broeck A, Lotz C, Ortiz J, Lamour V (October 2019).
2599: 562:
show that the ATPase domain can be either open or closed.
400:
Type IIA topoisomerases consist of several key motifs:
334:, eukaryotic topoisomerase II (topo II), and bacterial 941:
Critical Reviews in Biochemistry and Molecular Biology
809:
Critical Reviews in Biochemistry and Molecular Biology
2890: 1604:
Corbett KD, Shultzaberger RK, Berger JM (May 2004).
724:
as well as increased base-substitution and deletion
2786: 2750: 2719: 2688: 2637: 2562: 437:
Eukaryotic type II topoisomerases are homodimers (A
184: 172: 160: 155: 132: 120: 108: 96: 84: 72: 60: 55: 43: 38: 21: 1246:Aravind L, Leipe DD, Koonin EV (September 1998). 1135:Classen S, Olland S, Berger JM (September 2003). 2103: 2101: 840: 838: 720:defective in genes 39, 52 or 60 show increased 499:research needs to be done to investigate this. 1120: 1118: 1021: 1019: 2615: 2531: 2046:Stetler GL, King GJ, Huang WM (August 1979). 491:, a novel bacterial topoisomerase inhibitor. 8: 626:Inhibitors of type II topoisomerase include 330:Type IIA topoisomerases include the enzymes 225:. In this process, these enzymes change the 2270:"The DNA-delay mutants of bacteriophage T4" 551:), contains the WHD and the Toprim domain. 2622: 2608: 2600: 2538: 2524: 2516: 1936:: CS1 maint: location missing publisher ( 645:Poisons of type II topoisomerases include 152: 2508:at the U.S. National Library of Medicine 2432: 2383: 2334: 2293: 2209: 2160: 2081: 2071: 1968: 1785:Nature Structural & Molecular Biology 1698: 1639: 1629: 1570: 1391: 1271: 1214: 1170: 1160: 991: 915: 905: 783: 758:Deweese JE, Osheroff N (February 2009). 2897: 750: 544:). The second gene, termed topo VI-A ( 2463:Nature Reviews. Molecular Cell Biology 1929: 1673:Corbett KD, Berger JM (January 2003). 244:, a type II topoisomerase observed in 22:DNA Topoisomerase II (ATP-hydrolyzing) 18: 2268:Mufti S, Bernstein H (October 1974). 1871:Current Opinion in Structural Biology 7: 1203:The Journal of Biological Chemistry 980:The Journal of Biological Chemistry 408:(for gyrase, Hsp, kinase and MutL), 2425:10.1002/j.1460-2075.1984.tb02106.x 14: 533:), and a C-terminal Ig-fold-like 2900: 1908:(Sixth ed.). New York, NY. 673:The experimental antitumor drug 290: 27: 853:(5326). New York, N.Y.: 690–3. 303:about newly-found IIB members . 1: 2286:10.1128/JVI.14.4.860-871.1974 1906:Molecular biology of the cell 1883:10.1016/s0959-440x(96)80099-6 433:a variable C-terminal domain. 217:. They use the hydrolysis of 2407:Cassuto E (September 1984). 2247:10.1016/0022-2836(76)90346-6 2235:Journal of Molecular Biology 2122:10.1016/0022-2836(79)90329-2 2110:Journal of Molecular Biology 1840:10.1016/0092-8674(94)90222-4 1038:Journal of Molecular Biology 859:10.1126/science.277.5326.690 2506:DNA+Topoisomerases,+Type+II 2143:Huang WM (September 1986). 467:accommodate the T-segment. 2939: 2376:10.1093/genetics/101.2.157 1970:10.1182/blood-2003-07-2527 1563:10.1038/s41467-019-12914-y 614: 2778:Michaelis–Menten kinetics 2336:10.1017/s0016672300031499 2184:Huang WM (October 1986). 1435:Nature Structural Biology 1050:10.1016/j.jmb.2005.06.029 953:10.3109/10409239109114072 821:10.3109/10409239109114072 151: 26: 2670:Diffusion-limited enzyme 2510:Medical Subject Headings 1904:Alberts B (2014-11-18). 705:during infection of the 2317:Hyman P (August 1993). 1631:10.1073/pnas.0401595101 1162:10.1073/pnas.1832879100 696:Bacteriophage T4 gyrase 617:Topoisomerase inhibitor 273:Topology simplification 2202:10.1093/nar/14.19.7751 2190:Nucleic Acids Research 2149:Nucleic Acids Research 2073:10.1073/pnas.76.8.3737 1264:10.1093/nar/26.18.4205 1252:Nucleic Acids Research 1216:10.1074/jbc.M506520200 993:10.1074/jbc.M101823200 907:10.1073/pnas.061029098 764:Nucleic Acids Research 522: 511:Structure of topo VI ( 397: 379: 301:is missing information 203:Type II topoisomerases 2763:Eadie–Hofstee diagram 2696:Allosteric regulation 2577:Type II topoisomerase 1543:Nature Communications 722:genetic recombination 510: 385: 377: 2773:Lineweaver–Burk plot 2572:Type I topoisomerase 1691:10.1093/emboj/cdg008 688:(Serine79Alanine in 256:bacterial chromosome 223:Type I topoisomerase 2274:Journal of Virology 2064:1979PNAS...76.3737S 2009:1979Natur.281..456L 1736:1997Natur.386..414B 1622:2004PNAS..101.7293C 1555:2019NatCo..10.4935V 1508:10.1038/nature06396 1500:2007Natur.450.1201D 1384:1997Natur.388..903M 1319:1996Natur.379..225B 1153:2003PNAS..10010629C 1085:1991Natur.351..624W 898:2001PNAS...98.3045V 566:Mechanism of action 2732:Enzyme superfamily 2665:Enzyme promiscuity 2323:Genetical Research 776:10.1093/nar/gkn937 523: 406:GHKL ATPase domain 398: 380: 2888: 2887: 2597: 2596: 1915:978-0-8153-4432-2 324: 323: 200: 199: 196: 195: 115:metabolic pathway 2930: 2905: 2904: 2896: 2768:Hanes–Woolf plot 2711:Enzyme activator 2706:Enzyme inhibitor 2680:Enzyme catalysis 2624: 2617: 2610: 2601: 2587:topoisomerase IV 2540: 2533: 2526: 2517: 2494: 2447: 2446: 2436: 2413:The EMBO Journal 2404: 2398: 2397: 2387: 2355: 2349: 2348: 2338: 2314: 2308: 2307: 2297: 2265: 2259: 2258: 2230: 2224: 2223: 2213: 2181: 2175: 2174: 2164: 2140: 2134: 2133: 2105: 2096: 2095: 2085: 2075: 2043: 2037: 2036: 2017:10.1038/281456a0 2003:(5731): 456–61. 1989: 1983: 1982: 1972: 1948: 1942: 1941: 1935: 1927: 1901: 1895: 1894: 1866: 1860: 1859: 1823: 1817: 1816: 1797:10.1038/nsmb1264 1780: 1770: 1764: 1763: 1744:10.1038/386414a0 1719: 1713: 1712: 1702: 1679:The EMBO Journal 1670: 1660: 1654: 1653: 1643: 1633: 1601: 1591: 1585: 1584: 1574: 1534: 1528: 1527: 1494:(7173): 1201–5. 1483: 1473: 1467: 1466: 1430: 1420: 1414: 1413: 1395: 1363: 1353: 1347: 1346: 1327:10.1038/379225a0 1313:(6562): 225–32. 1302: 1292: 1286: 1285: 1275: 1243: 1237: 1236: 1218: 1200: 1191: 1185: 1184: 1174: 1164: 1147:(19): 10629–34. 1132: 1122: 1113: 1112: 1093:10.1038/351624a0 1068: 1062: 1061: 1033: 1023: 1014: 1013: 995: 986:(40): 37215–22. 971: 965: 964: 936: 930: 929: 919: 909: 877: 871: 870: 842: 833: 832: 815:(3–4): 335–375. 804: 798: 797: 787: 755: 520: 395: 336:topoisomerase IV 319: 316: 310: 294: 286: 153: 31: 19: 16:Class of enzymes 2938: 2937: 2933: 2932: 2931: 2929: 2928: 2927: 2913: 2912: 2911: 2899: 2891: 2889: 2884: 2796:Oxidoreductases 2782: 2758:Enzyme kinetics 2746: 2742:List of enzymes 2715: 2684: 2655:Catalytic triad 2633: 2628: 2598: 2593: 2558: 2544: 2502: 2497: 2460: 2456: 2454:Further reading 2451: 2450: 2406: 2405: 2401: 2357: 2356: 2352: 2316: 2315: 2311: 2267: 2266: 2262: 2232: 2231: 2227: 2196:(19): 7751–65. 2183: 2182: 2178: 2155:(18): 7379–90. 2142: 2141: 2137: 2107: 2106: 2099: 2045: 2044: 2040: 1991: 1990: 1986: 1963:(12): 4659–65. 1950: 1949: 1945: 1928: 1916: 1903: 1902: 1898: 1868: 1867: 1863: 1825: 1824: 1820: 1782: 1772: 1771: 1767: 1730:(6623): 414–7. 1721: 1720: 1716: 1672: 1662: 1661: 1657: 1603: 1593: 1592: 1588: 1536: 1535: 1531: 1485: 1475: 1474: 1470: 1432: 1422: 1421: 1417: 1378:(6645): 903–6. 1365: 1355: 1354: 1350: 1304: 1294: 1293: 1289: 1258:(18): 4205–13. 1245: 1244: 1240: 1209:(44): 37041–7. 1198: 1193: 1192: 1188: 1134: 1124: 1123: 1116: 1079:(6328): 624–9. 1070: 1069: 1065: 1035: 1025: 1024: 1017: 973: 972: 968: 947:(3–4): 335–75. 938: 937: 933: 879: 878: 874: 844: 843: 836: 806: 805: 801: 757: 756: 752: 747: 703:DNA replication 698: 619: 613: 597: 588: 573: 568: 512: 505: 448: 444: 440: 387: 372: 367: 320: 314: 311: 304: 295: 284: 275: 250:and most other 238: 34: 17: 12: 11: 5: 2936: 2934: 2926: 2925: 2915: 2914: 2910: 2909: 2886: 2885: 2883: 2882: 2869: 2856: 2843: 2830: 2817: 2804: 2790: 2788: 2784: 2783: 2781: 2780: 2775: 2770: 2765: 2760: 2754: 2752: 2748: 2747: 2745: 2744: 2739: 2734: 2729: 2723: 2721: 2720:Classification 2717: 2716: 2714: 2713: 2708: 2703: 2698: 2692: 2690: 2686: 2685: 2683: 2682: 2677: 2672: 2667: 2662: 2657: 2652: 2647: 2641: 2639: 2635: 2634: 2629: 2627: 2626: 2619: 2612: 2604: 2595: 2594: 2592: 2591: 2590: 2589: 2584: 2574: 2568: 2566: 2560: 2559: 2551:topoisomerases 2545: 2543: 2542: 2535: 2528: 2520: 2514: 2513: 2501: 2500:External links 2498: 2496: 2495: 2475:10.1038/nrm831 2457: 2455: 2452: 2449: 2448: 2419:(9): 2159–64. 2399: 2350: 2309: 2260: 2225: 2176: 2135: 2097: 2058:(8): 3737–41. 2038: 1984: 1943: 1914: 1896: 1861: 1818: 1765: 1714: 1655: 1616:(19): 7293–8. 1586: 1529: 1468: 1415: 1348: 1287: 1238: 1186: 1114: 1063: 1015: 966: 931: 872: 834: 799: 770:(3): 738–748. 749: 748: 746: 743: 697: 694: 671: 670: 643: 615:Main article: 612: 609: 596: 593: 587: 584: 572: 571:Strand passage 569: 567: 564: 504: 501: 446: 442: 438: 435: 434: 431: 428: 409: 404:an N-terminal 371: 368: 366: 363: 343: 342: 339: 322: 321: 298: 296: 289: 283: 282:Classification 280: 274: 271: 237: 234: 227:linking number 207:topoisomerases 198: 197: 194: 193: 188: 182: 181: 176: 170: 169: 164: 158: 157: 149: 148: 137: 130: 129: 124: 118: 117: 112: 106: 105: 100: 94: 93: 88: 82: 81: 76: 70: 69: 64: 58: 57: 53: 52: 47: 41: 40: 36: 35: 32: 24: 23: 15: 13: 10: 9: 6: 4: 3: 2: 2935: 2924: 2921: 2920: 2918: 2908: 2903: 2898: 2894: 2880: 2876: 2875: 2870: 2867: 2863: 2862: 2857: 2854: 2850: 2849: 2844: 2841: 2837: 2836: 2831: 2828: 2824: 2823: 2818: 2815: 2811: 2810: 2805: 2802: 2798: 2797: 2792: 2791: 2789: 2785: 2779: 2776: 2774: 2771: 2769: 2766: 2764: 2761: 2759: 2756: 2755: 2753: 2749: 2743: 2740: 2738: 2737:Enzyme family 2735: 2733: 2730: 2728: 2725: 2724: 2722: 2718: 2712: 2709: 2707: 2704: 2702: 2701:Cooperativity 2699: 2697: 2694: 2693: 2691: 2687: 2681: 2678: 2676: 2673: 2671: 2668: 2666: 2663: 2661: 2660:Oxyanion hole 2658: 2656: 2653: 2651: 2648: 2646: 2643: 2642: 2640: 2636: 2632: 2625: 2620: 2618: 2613: 2611: 2606: 2605: 2602: 2588: 2585: 2583: 2580: 2579: 2578: 2575: 2573: 2570: 2569: 2567: 2565: 2561: 2556: 2552: 2548: 2541: 2536: 2534: 2529: 2527: 2522: 2521: 2518: 2511: 2507: 2504: 2503: 2499: 2492: 2488: 2484: 2480: 2476: 2472: 2469:(6): 430–40. 2468: 2464: 2459: 2458: 2453: 2444: 2440: 2435: 2430: 2426: 2422: 2418: 2414: 2410: 2403: 2400: 2395: 2391: 2386: 2381: 2377: 2373: 2370:(2): 157–77. 2369: 2365: 2361: 2354: 2351: 2346: 2342: 2337: 2332: 2328: 2324: 2320: 2313: 2310: 2305: 2301: 2296: 2291: 2287: 2283: 2280:(4): 860–71. 2279: 2275: 2271: 2264: 2261: 2256: 2252: 2248: 2244: 2241:(4): 963–81. 2240: 2236: 2229: 2226: 2221: 2217: 2212: 2207: 2203: 2199: 2195: 2191: 2187: 2180: 2177: 2172: 2168: 2163: 2158: 2154: 2150: 2146: 2139: 2136: 2131: 2127: 2123: 2119: 2116:(3): 265–83. 2115: 2111: 2104: 2102: 2098: 2093: 2089: 2084: 2079: 2074: 2069: 2065: 2061: 2057: 2053: 2049: 2042: 2039: 2034: 2030: 2026: 2022: 2018: 2014: 2010: 2006: 2002: 1998: 1994: 1988: 1985: 1980: 1976: 1971: 1966: 1962: 1958: 1954: 1947: 1944: 1939: 1933: 1925: 1921: 1917: 1911: 1907: 1900: 1897: 1892: 1888: 1884: 1880: 1876: 1872: 1865: 1862: 1857: 1853: 1849: 1845: 1841: 1837: 1834:(4): 609–16. 1833: 1829: 1822: 1819: 1814: 1810: 1806: 1802: 1798: 1794: 1790: 1786: 1779: 1775: 1769: 1766: 1761: 1757: 1753: 1749: 1745: 1741: 1737: 1733: 1729: 1725: 1718: 1715: 1710: 1706: 1701: 1696: 1692: 1688: 1685:(1): 151–63. 1684: 1680: 1676: 1669: 1665: 1659: 1656: 1651: 1647: 1642: 1637: 1632: 1627: 1623: 1619: 1615: 1611: 1607: 1600: 1596: 1590: 1587: 1582: 1578: 1573: 1568: 1564: 1560: 1556: 1552: 1548: 1544: 1540: 1533: 1530: 1525: 1521: 1517: 1513: 1509: 1505: 1501: 1497: 1493: 1489: 1482: 1478: 1472: 1469: 1464: 1460: 1456: 1452: 1448: 1444: 1440: 1436: 1429: 1425: 1419: 1416: 1411: 1407: 1403: 1399: 1394: 1393:10.1038/42294 1389: 1385: 1381: 1377: 1373: 1369: 1362: 1358: 1352: 1349: 1344: 1340: 1336: 1332: 1328: 1324: 1320: 1316: 1312: 1308: 1301: 1297: 1291: 1288: 1283: 1279: 1274: 1269: 1265: 1261: 1257: 1253: 1249: 1242: 1239: 1234: 1230: 1226: 1222: 1217: 1212: 1208: 1204: 1197: 1190: 1187: 1182: 1178: 1173: 1168: 1163: 1158: 1154: 1150: 1146: 1142: 1138: 1131: 1127: 1121: 1119: 1115: 1110: 1106: 1102: 1098: 1094: 1090: 1086: 1082: 1078: 1074: 1067: 1064: 1059: 1055: 1051: 1047: 1044:(3): 545–61. 1043: 1039: 1032: 1028: 1022: 1020: 1016: 1011: 1007: 1003: 999: 994: 989: 985: 981: 977: 970: 967: 962: 958: 954: 950: 946: 942: 935: 932: 927: 923: 918: 913: 908: 903: 899: 895: 892:(6): 3045–9. 891: 887: 883: 876: 873: 868: 864: 860: 856: 852: 848: 841: 839: 835: 830: 826: 822: 818: 814: 810: 803: 800: 795: 791: 786: 781: 777: 773: 769: 765: 761: 754: 751: 744: 742: 740: 735: 731: 727: 723: 718: 714: 710: 709: 704: 695: 693: 691: 687: 683: 678: 676: 668: 664: 663:ciprofloxacin 660: 656: 652: 648: 644: 641: 637: 633: 629: 625: 624: 623: 618: 610: 608: 606: 601: 594: 592: 585: 583: 580: 576: 570: 565: 563: 559: 556: 552: 550: 547: 543: 540: 536: 532: 529: 519: 515: 509: 502: 500: 496: 492: 490: 486: 480: 476: 472: 468: 464: 462: 459: 455: 452: 432: 429: 426: 422: 418: 417:Rossmann fold 414: 413:Toprim domain 410: 407: 403: 402: 401: 394: 390: 384: 376: 369: 364: 362: 358: 356: 352: 348: 340: 337: 333: 329: 328: 327: 318: 308: 302: 299:This section 297: 293: 288: 287: 281: 279: 272: 270: 266: 263: 261: 257: 253: 249: 248: 243: 235: 233: 230: 228: 224: 220: 216: 212: 208: 204: 192: 189: 187: 183: 180: 177: 175: 171: 168: 165: 163: 159: 154: 150: 147: 144: 141: 138: 135: 131: 128: 125: 123: 119: 116: 113: 111: 107: 104: 101: 99: 95: 92: 91:NiceZyme view 89: 87: 83: 80: 77: 75: 71: 68: 65: 63: 59: 54: 51: 48: 46: 42: 37: 30: 25: 20: 2874:Translocases 2871: 2858: 2845: 2832: 2819: 2809:Transferases 2806: 2793: 2650:Binding site 2576: 2466: 2462: 2416: 2412: 2402: 2367: 2363: 2353: 2326: 2322: 2312: 2277: 2273: 2263: 2238: 2234: 2228: 2193: 2189: 2179: 2152: 2148: 2138: 2113: 2109: 2055: 2051: 2041: 2000: 1996: 1987: 1960: 1956: 1946: 1905: 1899: 1877:(1): 84–90. 1874: 1870: 1864: 1831: 1827: 1821: 1791:(7): 611–9. 1788: 1784: 1768: 1727: 1723: 1717: 1682: 1678: 1658: 1613: 1609: 1589: 1546: 1542: 1532: 1491: 1487: 1471: 1447:10.1038/7556 1441:(4): 322–6. 1438: 1434: 1418: 1375: 1371: 1351: 1310: 1306: 1290: 1255: 1251: 1241: 1206: 1202: 1189: 1144: 1140: 1076: 1072: 1066: 1041: 1037: 983: 979: 969: 944: 940: 934: 889: 885: 875: 850: 846: 812: 808: 802: 767: 763: 753: 738: 716: 712: 706: 699: 689: 679: 672: 620: 598: 589: 586:DNA cleavage 581: 577: 574: 560: 557: 553: 524: 497: 493: 484: 481: 477: 473: 469: 465: 436: 399: 359: 344: 325: 315:October 2021 312: 300: 276: 267: 264: 245: 239: 231: 213:tangles and 202: 201: 79:BRENDA entry 2645:Active site 1549:(1): 4935. 730:ultraviolet 661:(including 647:doxorubicin 640:mitindomide 535:H2TH domain 489:gepotidacin 252:prokaryotes 67:IntEnz view 39:Identifiers 2848:Isomerases 2822:Hydrolases 2689:Regulation 2329:(1): 1–9. 745:References 734:chromosome 682:eukaryotic 667:teniposide 659:quinolones 655:novobiocin 611:Inhibition 605:eukaryotes 600:Catenation 595:Catenation 332:DNA gyrase 260:supercoils 242:DNA gyrase 215:supercoils 136:structures 103:KEGG entry 2923:EC 5.99.1 2727:EC number 2547:Isomerase 2491:205496065 1932:cite book 1924:887605755 1781:​; 1671:​; 1602:​; 1484:​; 1431:​; 1364:​; 1303:​; 1133:​; 1034:​; 651:etoposide 365:Structure 307:talk page 221:, unlike 56:Databases 2917:Category 2751:Kinetics 2675:Cofactor 2638:Activity 2483:12042765 2364:Genetics 1979:15010369 1856:19776252 1805:17603498 1709:12505993 1650:15123801 1581:31666516 1516:18097402 1455:10201398 1233:35186716 1225:16100112 1181:12963818 1058:16023670 1010:24354635 1002:11485995 926:11248029 794:19042970 726:mutation 636:ICRF-193 632:ICRF-187 503:Type IIB 370:Type IIA 236:Function 191:proteins 179:articles 167:articles 140:RCSB PDB 2907:Biology 2861:Ligases 2631:Enzymes 2443:6092061 2394:6293912 2385:1201854 2345:8405988 2304:4609406 2220:3022233 2171:3020513 2060:Bibcode 2033:4343962 2005:Bibcode 1891:8696977 1848:8187179 1813:2159631 1760:4327493 1752:9121560 1732:Bibcode 1618:Bibcode 1572:6821735 1551:Bibcode 1524:1756317 1496:Bibcode 1410:4320715 1402:9278055 1380:Bibcode 1343:4360011 1335:8538787 1315:Bibcode 1282:9722641 1149:Bibcode 1109:4373125 1101:1646964 1081:Bibcode 961:1657531 894:Bibcode 867:9235892 847:Science 829:1657531 785:2647315 739:E. coli 717:E. coli 713:E. coli 708:E. coli 690:E. coli 665:), and 549:PF04406 542:PF18000 531:PF09239 485:E. coli 461:PF00521 454:PF00204 421:primase 355:cancers 247:E. coli 127:profile 110:MetaCyc 50:5.6.2.2 2893:Portal 2835:Lyases 2582:gyrase 2512:(MeSH) 2489:  2481:  2441:  2434:557658 2431:  2392:  2382:  2343:  2302:  2295:355592 2292:  2255:789903 2253:  2218:  2211:311794 2208:  2169:  2162:311757 2159:  2130:372540 2128:  2092:226976 2090:  2083:383908 2080:  2031:  2025:226889 2023:  1997:Nature 1993:Liu LF 1977:  1922:  1912:  1889:  1854:  1846:  1811:  1803:  1758:  1750:  1724:Nature 1707:  1700:140052 1697:  1648:  1641:409912 1638:  1579:  1569:  1522:  1514:  1488:Nature 1463:947461 1461:  1453:  1408:  1400:  1372:Nature 1341:  1333:  1307:Nature 1280:  1273:147817 1270:  1231:  1223:  1179:  1172:196855 1169:  1107:  1099:  1073:Nature 1056:  1008:  1000:  959:  924:  914:  865:  827:  792:  782:  686:gyrase 675:m-AMSA 638:, and 628:HU-331 174:PubMed 156:Search 146:PDBsum 86:ExPASy 74:BRENDA 62:IntEnz 45:EC no. 2787:Types 2564:5.6.2 2487:S2CID 2029:S2CID 1957:Blood 1852:S2CID 1809:S2CID 1756:S2CID 1520:S2CID 1459:S2CID 1406:S2CID 1339:S2CID 1229:S2CID 1199:(PDF) 1105:S2CID 1006:S2CID 917:30604 353:. In 347:alpha 122:PRIAM 2879:list 2872:EC7 2866:list 2859:EC6 2853:list 2846:EC5 2840:list 2833:EC4 2827:list 2820:EC3 2814:list 2807:EC2 2801:list 2794:EC1 2557:5.6) 2479:PMID 2439:PMID 2390:PMID 2341:PMID 2300:PMID 2251:PMID 2216:PMID 2167:PMID 2126:PMID 2088:PMID 2021:PMID 1975:PMID 1938:link 1920:OCLC 1910:ISBN 1887:PMID 1844:PMID 1828:Cell 1801:PMID 1778:2Q2E 1748:PMID 1705:PMID 1668:1MU5 1646:PMID 1599:1SUU 1577:PMID 1512:PMID 1481:2RGR 1451:PMID 1428:1BJT 1398:PMID 1361:1AB4 1331:PMID 1300:1BGW 1278:PMID 1221:PMID 1177:PMID 1130:1PVG 1097:PMID 1054:PMID 1031:1zvt 998:PMID 957:PMID 922:PMID 863:PMID 825:PMID 790:PMID 546:Pfam 539:Pfam 528:Pfam 518:2Q2E 458:Pfam 451:Pfam 425:DnaG 393:2RGR 351:beta 349:and 205:are 186:NCBI 143:PDBe 98:KEGG 2471:doi 2429:PMC 2421:doi 2380:PMC 2372:doi 2368:101 2331:doi 2290:PMC 2282:doi 2243:doi 2239:106 2206:PMC 2198:doi 2157:PMC 2118:doi 2114:127 2078:PMC 2068:doi 2013:doi 2001:281 1965:doi 1961:103 1879:doi 1836:doi 1793:doi 1774:PDB 1740:doi 1728:386 1695:PMC 1687:doi 1664:PDB 1636:PMC 1626:doi 1614:101 1595:PDB 1567:PMC 1559:doi 1504:doi 1492:450 1477:PDB 1443:doi 1424:PDB 1388:doi 1376:388 1357:PDB 1323:doi 1311:379 1296:PDB 1268:PMC 1260:doi 1211:doi 1207:280 1167:PMC 1157:doi 1145:100 1126:PDB 1089:doi 1077:351 1046:doi 1042:351 1027:PDB 988:doi 984:276 949:doi 912:PMC 902:doi 855:doi 851:277 817:doi 780:PMC 772:doi 514:PDB 415:(a 389:PDB 219:ATP 211:DNA 162:PMC 134:PDB 2919:: 2555:EC 2549:: 2485:. 2477:. 2465:. 2437:. 2427:. 2415:. 2411:. 2388:. 2378:. 2366:. 2362:. 2339:. 2327:62 2325:. 2321:. 2298:. 2288:. 2278:14 2276:. 2272:. 2249:. 2237:. 2214:. 2204:. 2194:14 2192:. 2188:. 2165:. 2153:14 2151:. 2147:. 2124:. 2112:. 2100:^ 2086:. 2076:. 2066:. 2056:76 2054:. 2050:. 2027:. 2019:. 2011:. 1999:. 1973:. 1959:. 1955:. 1934:}} 1930:{{ 1918:. 1885:. 1873:. 1850:. 1842:. 1832:77 1830:. 1807:. 1799:. 1789:14 1787:. 1776:: 1754:. 1746:. 1738:. 1726:. 1703:. 1693:. 1683:22 1681:. 1677:. 1666:: 1644:. 1634:. 1624:. 1612:. 1608:. 1597:: 1575:. 1565:. 1557:. 1547:10 1545:. 1541:. 1518:. 1510:. 1502:. 1490:. 1479:: 1457:. 1449:. 1437:. 1426:: 1404:. 1396:. 1386:. 1374:. 1370:. 1359:: 1337:. 1329:. 1321:. 1309:. 1298:: 1276:. 1266:. 1256:26 1254:. 1250:. 1227:. 1219:. 1205:. 1201:. 1175:. 1165:. 1155:. 1143:. 1139:. 1128:: 1117:^ 1103:. 1095:. 1087:. 1075:. 1052:. 1040:. 1029:: 1018:^ 1004:. 996:. 982:. 978:. 955:. 945:26 943:. 920:. 910:. 900:. 890:98 888:. 884:. 861:. 849:. 837:^ 823:. 813:26 811:. 788:. 778:. 768:37 766:. 762:. 657:, 653:, 649:, 634:, 630:, 516:: 427:), 411:a 391:: 2895:: 2881:) 2877:( 2868:) 2864:( 2855:) 2851:( 2842:) 2838:( 2829:) 2825:( 2816:) 2812:( 2803:) 2799:( 2623:e 2616:t 2609:v 2553:( 2539:e 2532:t 2525:v 2493:. 2473:: 2467:3 2445:. 2423:: 2417:3 2396:. 2374:: 2347:. 2333:: 2306:. 2284:: 2257:. 2245:: 2222:. 2200:: 2173:. 2132:. 2120:: 2094:. 2070:: 2062:: 2035:. 2015:: 2007:: 1981:. 1967:: 1940:) 1926:. 1893:. 1881:: 1875:6 1858:. 1838:: 1815:. 1795:: 1762:. 1742:: 1734:: 1711:. 1689:: 1652:. 1628:: 1620:: 1583:. 1561:: 1553:: 1526:. 1506:: 1498:: 1465:. 1445:: 1439:6 1412:. 1390:: 1382:: 1345:. 1325:: 1317:: 1284:. 1262:: 1235:. 1213:: 1183:. 1159:: 1151:: 1111:. 1091:: 1083:: 1060:. 1048:: 1012:. 990:: 963:. 951:: 928:. 904:: 896:: 869:. 857:: 831:. 819:: 796:. 774:: 537:( 526:( 447:2 445:B 443:2 439:2 423:( 317:) 313:( 309:.

Index


EC no.
5.6.2.2
IntEnz
IntEnz view
BRENDA
BRENDA entry
ExPASy
NiceZyme view
KEGG
KEGG entry
MetaCyc
metabolic pathway
PRIAM
profile
PDB
RCSB PDB
PDBe
PDBsum
PMC
articles
PubMed
articles
NCBI
proteins
topoisomerases
DNA
supercoils
ATP
Type I topoisomerase

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑