Knowledge

Talairach coordinates

Source πŸ“

106:, lie on a straight horizontal line. Since these two points lie on the midsagittal plane, the coordinate system is completely defined by requiring this plane to be vertical. Distances in Talairach coordinates are measured from the anterior commissure as the origin (as defined in the 1998 edition). The y-axis points posterior and anterior to the commissures, the left and right is the x-axis, and the z-axis is in the ventral-dorsal (down and up) directions. Once the brain is reoriented to these axes, the researchers must also outline the six cortical outlines of the brain: anterior, posterior, left, right, inferior, and superior. In the 1967 atlas the left is with positive coordinates while in the 1988 atlas the left has negative coordinates. 185:. Similar to the Talairach coordinates, MNI coordinates can be used to describe the location of particular brain structures, without having to take into account any individual brain differences. However, as the Talairach system is "unrepresentative of the population at large", MNI coordinates were developed from MRI data garnered from many individuals, in an effort to create a neural coordinate system that could be more generalizable. MNI coordinates have been matched to Tailarach coordinates to allow landmarks to correspond. 127: 224:
The Talairach atlas is still commonly used in terms of the neuroimaging techniques that are available, but the lack of a three-dimensional model of the original brain makes it difficult for researchers to map locations from three-dimensional anatomical MRI images to the atlas automatically. Previous
188:
The original MNI space was MNI 305, which was created from 305 Tailarach aligned images, from which a mean brain image was taken. MNI 152 (also known as ICBM 152) was created later with higher resolution MRI images that were registered to MNI 305, and from which a mean was taken. MNI 152 is itself
233:
Current target brains are not suitable for current research (i.e., are average, can only be used in low-resolution MRI target brain mapping studies or are single brain). Optimized high-resolution brain template (HRBT), a high-resolution MRI target brain, is a technique that can aid in the issues
158:
Some neuroimaging techniques, in fact, purported the use of Brodmann's area as a guideline for Talairach coordinates. Further, these technologies showcase that experimental tasks in a common reference space become possible through imaging the living human brain by registering function and having
196:
are able to convert from Talairach to MNI coordinates. However, disparities between MNI and Talairach coordinates can impede the comparison of results across different studies. This problem is most prevalent in situations where coordinate disparities should be corrected to reduce error, such as
17: 225:
methods such as MNI have tried to assuage this issue through linear and piecewise mapping between the Talairach and the MNI template, but can only account for differences in overall brain orientation and size and thus cannot correctly account for actual shape differences.
74:
in 1967, creating a standardized grid for neurosurgery. The grid was based on the idea that distances to lesions in the brain are proportional to overall brain size (i.e., the distance between two structures is larger in a larger brain). In 1988 a second edition of the
212:
is the process of mapping Talairach coordinates to subject-specific coordinates and generating a non-linear map in an attempt to compensate for actual shape differences between the two. Registration is usually nonlinear because the Talairach atlas is not a simple
162:
Brodmann's map proved useful in varying neuroimaging software packages and stereotaxic atlases, such as the Talairach atlas. This atlas also serves as a demonstration of the inherent problems (i.e., impressions of matches between areal borders and
808:
Laird, Angela R.; Robinson, Jennifer L.; McMillan, Kathryn M.; Tordesillas-GutiΓ©rrez, Diana; Moran, Sarah T.; Gonzales, Sabina M.; Ray, Kimberly L.; Franklin, Crystal; Glahn, David C.; Fox, Peter T.; Lancaster, Jack L. (June 2010).
167:
landmarks may lead to wrong conclusions in terms of localization of cytoarchitectonic borders or the usage of Brodmann's map without knowledge of the text that accompanies the drawing misleading researchers to false conclusions).
109:
By defining standard anatomical landmarks that could be identified on different subjects (the anterior and posterior commissures), it became easier to spatially warp an individual brain image obtained through
234:
named above. This optimization can be performed to help reduce individual anatomical biases of the original ICBM HBRT. The optimized HRBT is more adept at anatomically matching groups of brains.
146:
into 43 differing parts, which become visible in cell-body stained histological sections. Years later, a large group of neuroscientists still utilize Brodmann's map for the localization of
954:
Kochunov, P.; Lancaster, J.; Thompson, P.; Toga, A.W.; Brewer, P.; Hardies, J.; Fox, P. (October 2002). "An Optimized Individual Target Brain in the Talairach Coordinate System".
79:
came out that was coauthored by Tournoux, and it is sometimes known as the Talairach-Tournoux system. This atlas was based on single post-mortem dissection of a human brain.
39:
the location of brain structures independent from individual differences in the size and overall shape of the brain. It is still common to use Talairach coordinates in
118:(PET) and other imaging methods to this standard Talairach space. One can then make inferences about tissue identity at a specific location by referring to the atlas. 1013: 182: 48: 189:
further made up of different atlases, with different constraints, such as linearly/non-linearly aligned and symmetric or non-symmetric brain hemispheres.
792: 606: 512: 485: 458: 427: 400: 325: 288: 261: 811:"Comparison of the disparity between Talairach and MNI coordinates in functional neuroimaging data: Validation of the Lancaster transform" 754: 446:
Medical Imaging and Augmented Reality: Second International Workshop, MIAR 2004, Beijing, China, August 19-20, 2004, Proceedings
905:
Lacadie, Cheryl M.; Fulbright, Robert K.; Rajeevan, Nallakkandi; Constable, R. Todd; Papademetris, Xenophon (August 2008).
181:
The MNI coordinate system, also referred to as MNI space, are multiple stereotaxic brain coordinate systems created by the
635:
Fonov, Vladimir; Evans, Alan C.; Botteron, Kelly; Almli, C. Robert; McKinstry, Robert C.; Collins, D. Louis (2011-01-01).
201:, which can be adopted in order to minimize the variability in the literature regarding spatial normalization strategies. 193: 20:
Sagittal view of cingulate region of human brain with a Talairach grid superimposed in accordance with standard locators.
115: 111: 304:
Talairach, J.; Szikla, G. (1980), Gillingham, F. John; Gybels, Jan; Hitchcock, Edward; Rossi, Gian Franco (eds.),
197:
coordinate-based meta-analyses. There is a possibility that these disparities can be assuaged through the
43:
studies and to target transcranial stimulation of brain regions. However, alternative methods such as the
1008: 359: 218: 164: 44: 696: 214: 103: 52: 99: 16: 979: 724: 612: 564: 209: 139: 135: 40: 531:
Zilles, Karl; Amunts, Katrin (2010-01-04). "Centenary of Brodmann's map β€” conception and fate".
450: 354:
Talairach, Jean; Szikla, G. (1967). "Atlas of stereotactic concepts to the surgery of epilepsy".
971: 936: 887: 879: 840: 788: 750: 716: 674: 656: 602: 556: 548: 508: 502: 481: 475: 454: 423: 396: 331: 321: 284: 257: 251: 32: 390: 278: 963: 926: 918: 871: 830: 822: 780: 708: 664: 648: 594: 540: 417: 313: 372: 143: 585:
Evans, A.C.; Collins, D.L.; Mills, S.R.; Brown, E.D.; Kelly, R.L.; Peters, T.M. (1993).
1003: 931: 906: 835: 810: 669: 636: 305: 67: 712: 444: 997: 922: 826: 652: 87: 36: 983: 907:"More accurate Talairach coordinates for neuroimaging using non-linear registration" 728: 697:"Unbiased nonlinear average age-appropriate brain templates from birth to adulthood" 616: 591:
1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference
568: 386: 147: 64: 317: 598: 774: 586: 277:
Russell A. Poldrack; Jeanette A. Mumford; Thomas E. Nichols (22 August 2011).
883: 784: 773:
Poldrack, Russell A.; Mumford, Jeanette A.; Nichols, Thomas E. (2011-06-01).
720: 660: 552: 126: 975: 967: 940: 891: 875: 844: 678: 560: 859: 695:
Fonov, VS; Evans, AC; McKinstry, RC; Almli, CR; Collins, DL (2009-07-01).
335: 98:
The Talairach coordinate system is defined by making two anchors, the
544: 125: 15: 306:"Application of Stereotactic Concepts to the Surgery of Epilepsy" 637:"Unbiased average age-appropriate atlases for pediatric studies" 198: 253:
Handbook of Medical Imaging: Processing and Analysis Management
745:
Huettel, Scott A.; Song, Allen W.; McCarthy, Gregory (2004).
587:"3D statistical neuroanatomical models from 305 MRI volumes" 35:(known as an 'atlas') of the human brain, which is used to 312:, vol. 30, Vienna: Springer Vienna, pp. 35–54, 749:(1st ed.). Sinauer Asscociates, Inc. p. 273. 477:
Guide to Medical Image Analysis: Methods and Algorithms
310:
Advances in Stereotactic and Functional Neurosurgery 4
858:
Crum, W R; Hartkens, T; Hill, D L G (December 2004).
860:"Non-rigid image registration: theory and practice" 443:Guang-Zhong Yang; Tianzi Jiang (11 August 2004). 779:. Cambridge University Press. pp. 305–306. 504:The Human Frontal Lobes: Functions and Disorders 142:in his 1909 monogram. Brodmann's map splits the 392:The Statistical Analysis of Functional MRI Data 256:. Academic Press. 9 October 2000. p. 565. 229:Optimized high-resolution brain template (HRBT) 177:Montreal Neurological Institute (MNI) templates 580: 578: 150:data that is obtained in living human brains. 768: 766: 501:Bruce L. Miller; Jeffrey L. Cummings (2007). 154:Brodmann in relation to Talairach coordinates 138:map of the human brain that was published by 8: 183:Montreal Neurological Institute and Hospital 49:Montreal Neurological Institute and Hospital 690: 688: 630: 628: 626: 63:The coordinate system was first created by 283:. Cambridge University Press. p. 17. 159:architectonic data performed and defined. 134:The Brodmann area is an illustration of a 930: 834: 668: 776:Handbook of Functional MRI Data Analysis 280:Handbook of Functional MRI Data Analysis 130:A colorized image of the Brodmann areas. 243: 422:. Oxford University Press. p. 4. 368: 357: 172:Conversion to other coordinate systems 70:and Gabor Szikla in their work on the 51:) have largely replaced Talairach for 747:Functional Magnetic Resonance Imaging 740: 738: 526: 524: 474:Klaus D. Toennies (4 February 2012). 7: 1014:Three-dimensional coordinate systems 419:Cingulate Neurobiology and Disease 14: 90:as the labels for brain regions. 923:10.1016/j.neuroimage.2008.04.240 864:The British Journal of Radiology 827:10.1016/j.neuroimage.2010.02.048 653:10.1016/j.neuroimage.2010.07.033 122:Brodmann regions in neuroscience 507:. Guilford Press. p. 173. 194:neuroimaging software packages 1: 713:10.1016/S1053-8119(09)70884-5 593:. IEEE. pp. 1813–1817. 116:positron emission tomography 533:Nature Reviews Neuroscience 318:10.1007/978-3-7091-8592-6_5 1030: 599:10.1109/NSSMIC.1993.373602 416:Brent Vogt (4 June 2009). 395:. Springer. pp. 88–. 112:Magnetic Resonance Imaging 480:. Springer. p. 326. 785:10.1017/cbo9780511895029 41:functional brain imaging 210:Non-linear registration 205:Non-linear registration 968:10.1006/nimg.2002.1084 870:(suppl_2): S140–S153. 367:Cite journal requires 221:) of a subject brain. 131: 55:and other procedures. 21: 449:. Springer. pp.  129: 45:MNI Coordinate System 31:, is a 3-dimensional 25:Talairach coordinates 19: 876:10.1259/bjr/25329214 104:posterior commissure 199:Lancaster transform 100:anterior commissure 47:(originated at the 132: 22: 794:978-0-521-51766-9 608:978-0-7803-1487-0 514:978-1-59385-329-7 487:978-1-4471-2751-2 460:978-3-540-22877-6 429:978-0-19-856696-0 402:978-0-387-78191-4 327:978-3-211-81591-5 290:978-1-139-49836-4 263:978-0-08-053310-0 140:Korbinan Brodmann 136:cytoarchitectonic 33:coordinate system 1021: 988: 987: 951: 945: 944: 934: 902: 896: 895: 855: 849: 848: 838: 805: 799: 798: 770: 761: 760: 742: 733: 732: 692: 683: 682: 672: 632: 621: 620: 582: 573: 572: 528: 519: 518: 498: 492: 491: 471: 465: 464: 440: 434: 433: 413: 407: 406: 389:(10 June 2008). 383: 377: 376: 370: 365: 363: 355: 351: 345: 344: 343: 342: 301: 295: 294: 274: 268: 267: 248: 219:affine transform 27:, also known as 1029: 1028: 1024: 1023: 1022: 1020: 1019: 1018: 994: 993: 992: 991: 953: 952: 948: 904: 903: 899: 857: 856: 852: 807: 806: 802: 795: 772: 771: 764: 757: 744: 743: 736: 694: 693: 686: 634: 633: 624: 609: 584: 583: 576: 545:10.1038/nrn2776 530: 529: 522: 515: 500: 499: 495: 488: 473: 472: 468: 461: 442: 441: 437: 430: 415: 414: 410: 403: 385: 384: 380: 366: 356: 353: 352: 348: 340: 338: 328: 303: 302: 298: 291: 276: 275: 271: 264: 250: 249: 245: 240: 231: 215:rigid transform 207: 179: 174: 156: 144:cerebral cortex 124: 96: 84:Talairach Atlas 77:Talairach Atlas 72:Talairach Atlas 61: 29:Talairach space 12: 11: 5: 1027: 1025: 1017: 1016: 1011: 1006: 996: 995: 990: 989: 962:(2): 922–927. 946: 917:(2): 717–725. 897: 850: 821:(2): 677–683. 800: 793: 762: 755: 734: 684: 647:(1): 313–327. 622: 607: 574: 539:(2): 139–145. 520: 513: 493: 486: 466: 459: 435: 428: 408: 401: 378: 369:|journal= 346: 326: 296: 289: 269: 262: 242: 241: 239: 236: 230: 227: 206: 203: 178: 175: 173: 170: 155: 152: 123: 120: 95: 92: 88:Brodmann areas 68:Jean Talairach 60: 57: 13: 10: 9: 6: 4: 3: 2: 1026: 1015: 1012: 1010: 1007: 1005: 1002: 1001: 999: 985: 981: 977: 973: 969: 965: 961: 957: 950: 947: 942: 938: 933: 928: 924: 920: 916: 912: 908: 901: 898: 893: 889: 885: 881: 877: 873: 869: 865: 861: 854: 851: 846: 842: 837: 832: 828: 824: 820: 816: 812: 804: 801: 796: 790: 786: 782: 778: 777: 769: 767: 763: 758: 756:0-87893-288-7 752: 748: 741: 739: 735: 730: 726: 722: 718: 714: 710: 706: 702: 698: 691: 689: 685: 680: 676: 671: 666: 662: 658: 654: 650: 646: 642: 638: 631: 629: 627: 623: 618: 614: 610: 604: 600: 596: 592: 588: 581: 579: 575: 570: 566: 562: 558: 554: 550: 546: 542: 538: 534: 527: 525: 521: 516: 510: 506: 505: 497: 494: 489: 483: 479: 478: 470: 467: 462: 456: 452: 448: 447: 439: 436: 431: 425: 421: 420: 412: 409: 404: 398: 394: 393: 388: 387:Lazar, Nicole 382: 379: 374: 361: 350: 347: 337: 333: 329: 323: 319: 315: 311: 307: 300: 297: 292: 286: 282: 281: 273: 270: 265: 259: 255: 254: 247: 244: 237: 235: 228: 226: 222: 220: 216: 211: 204: 202: 200: 195: 190: 186: 184: 176: 171: 169: 166: 160: 153: 151: 149: 145: 141: 137: 128: 121: 119: 117: 113: 107: 105: 101: 93: 91: 89: 85: 80: 78: 73: 69: 66: 65:neurosurgeons 58: 56: 54: 50: 46: 42: 38: 34: 30: 26: 18: 1009:Neuroscience 959: 955: 949: 914: 910: 900: 867: 863: 853: 818: 814: 803: 775: 746: 704: 700: 644: 640: 590: 536: 532: 503: 496: 476: 469: 445: 438: 418: 411: 391: 381: 360:cite journal 349: 339:, retrieved 309: 299: 279: 272: 252: 246: 232: 223: 208: 191: 187: 180: 161: 157: 148:neuroimaging 133: 108: 97: 83: 81: 76: 71: 62: 28: 24: 23: 94:Description 998:Categories 956:NeuroImage 911:NeuroImage 815:NeuroImage 701:NeuroImage 641:NeuroImage 341:2024-02-03 238:References 53:stereotaxy 884:0007-1285 721:1053-8119 661:1053-8119 553:1471-003X 217:(or even 984:15967837 976:12377166 941:18572418 892:15677356 845:20197097 729:54410179 707:: S102. 679:20656036 617:14721539 561:20046193 932:2603575 836:2856713 670:2962759 569:5278040 336:7008525 114:(MRI), 59:History 982:  974:  939:  929:  890:  882:  843:  833:  791:  753:  727:  719:  677:  667:  659:  615:  605:  567:  559:  551:  511:  484:  457:  426:  399:  334:  324:  287:  260:  165:sulcal 1004:Brain 980:S2CID 725:S2CID 613:S2CID 565:S2CID 192:Most 86:uses 972:PMID 937:PMID 888:PMID 880:ISSN 841:PMID 789:ISBN 751:ISBN 717:ISSN 675:PMID 657:ISSN 603:ISBN 557:PMID 549:ISSN 509:ISBN 482:ISBN 455:ISBN 424:ISBN 397:ISBN 373:help 332:PMID 322:ISBN 285:ISBN 258:ISBN 102:and 82:The 964:doi 927:PMC 919:doi 872:doi 831:PMC 823:doi 781:doi 709:doi 665:PMC 649:doi 595:doi 541:doi 451:179 314:doi 37:map 1000:: 978:. 970:. 960:17 958:. 935:. 925:. 915:42 913:. 909:. 886:. 878:. 868:77 866:. 862:. 839:. 829:. 819:51 817:. 813:. 787:. 765:^ 737:^ 723:. 715:. 705:47 703:. 699:. 687:^ 673:. 663:. 655:. 645:54 643:. 639:. 625:^ 611:. 601:. 589:. 577:^ 563:. 555:. 547:. 537:11 535:. 523:^ 453:. 364:: 362:}} 358:{{ 330:, 320:, 308:, 986:. 966:: 943:. 921:: 894:. 874:: 847:. 825:: 797:. 783:: 759:. 731:. 711:: 681:. 651:: 619:. 597:: 571:. 543:: 517:. 490:. 463:. 432:. 405:. 375:) 371:( 316:: 293:. 266:.

Index


coordinate system
map
functional brain imaging
MNI Coordinate System
Montreal Neurological Institute and Hospital
stereotaxy
neurosurgeons
Jean Talairach
Brodmann areas
anterior commissure
posterior commissure
Magnetic Resonance Imaging
positron emission tomography

cytoarchitectonic
Korbinan Brodmann
cerebral cortex
neuroimaging
sulcal
Montreal Neurological Institute and Hospital
neuroimaging software packages
Lancaster transform
Non-linear registration
rigid transform
affine transform
Handbook of Medical Imaging: Processing and Analysis Management
ISBN
978-0-08-053310-0
Handbook of Functional MRI Data Analysis

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑